Abstract
Although wind power is a promising source of renewable energy, previous studies have focused on uncovering species and abundance decreases caused by wind farms. However, very few studies focus on collision risk of onshore wind farms in relation to birds’ movements which are the important indicators for balancing wind energy development and biodiversity conservation. Here, birds’ movement were recorded by combining 15 ducks’ satellite tracking and six field surveys to assess collision risks in Yangtze River Mouth, the wintering site for migratory waterbirds along the East Asian–Australasian Flyway. It is found that distances between ducks’ locations and nearest wind turbines in middle and later wintering periods were significantly higher than during early period. Besides, ducks inside wind farm tended to fly outside turbine rotor height range (45–135 m: between lowest and highest points the rotor tips) within 300 m from the dyke where the turbines were located, thus decreasing their collision risk. Ducks also tended to fly below the minimum rotor tip height (< 45 m) when the turbines were rotating. These results suggest that ducks adopt behavioural avoidance strategies in response to wind farms, and turning off turbines to reduce collision risks may be unnecessary.