Abstract
The Whooping Crane (Grus americana) is a federally endangered species in the United States and Canada that relies on wetland, grassland, and cropland habitat during its long migration between wintering grounds in coastal Texas, USA, and breeding sites in Alberta and Northwest Territories, Canada. We combined opportunistic Whooping Crane sightings with landscape data to identify correlates of Whooping Crane occurrence along the migration corridor in North Dakota and South Dakota, USA. Whooping Cranes selected landscapes characterized by diverse wetland communities and upland foraging opportunities. Model performance substantially improved when variables related to detection were included, emphasizing the importance of accounting for biases associated with detection and reporting of birds in opportunistic datasets. We created a predictive map showing relative probability of occurrence across the study region by applying our model to GIS data layers; validation using independent, unbiased locations from birds equipped with platform transmitting terminals indicated that our final model adequately predicted habitat use by migrant Whooping Cranes. The probability map demonstrated that existing conservation efforts have protected much top-tier Whooping Crane habitat, especially in the portions of North Dakota and South Dakota that lie east of the Missouri River. Our results can support species recovery by informing prioritization for acquisition and restoration of landscapes that provide safe roosting and foraging habitats. Our results can also guide the siting of structures such as wind towers and electrical transmission and distribution lines, which pose a strike and mortality risk to migrating Whooping Cranes.