Abstract
Marine current energy converters such as tidal and riverine turbines have the potential to provide reliable, clean power. The risk of collision of fishes with marine energy turbines is not yet well understood, in part due to the challenges associated with observing fish at turbine sites. Turbidity and light availability can limit the effectiveness of optical sensors like video cameras, motivating the use of acoustic cameras for this task. However, challenges persist in collecting and interpreting data acquired from acoustic cameras. Given the limited number of turbine deployments to date, it is prudent to draw on the application of acoustic cameras to monitor fish in other scenarios. This article synthesizes their use for other fisheries applications to inform best practices and set realistic expectations for the results of acoustic camera monitoring at turbine sites. We discuss six key tasks performed with acoustic cameras: detecting objects, identifying objects as fish, counting fish, measuring fish, classifying fish taxonomically and analysing fish behavior. Specific challenges to monitoring fish at turbine sites are discussed. This article is intended to serve as a reference for researchers, regulators and marine energy developers on effective use of acoustic cameras to monitor fish at turbine sites. The studies detailed in this article provide evidence that, in some scenarios, acoustic cameras can be used to inform the risk of fish collision with marine energy turbines but doing so requires careful study design and data processing.