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1  |  I�NTRODUCTION

Because of their ability to operate without illumination or water 
clarity, acoustic cameras are increasingly popular tools for imag-
ing marine animals and objects in the water column at ranges on 

the order of tens of metres (Colbo et al.,  2014). Recently, they 
have been used for fisheries research to monitor fish presence 
and behaviour in a variety of habitats, including at marine en-
ergy sites. Marine current energy turbines convert the energy in 
water currents (i.e. tidal, riverine or ocean currents) to electricity. 
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Abstract
Marine current energy converters such as tidal and riverine turbines have the poten-
tial to provide reliable, clean power. The risk of collision of fishes with marine energy 
turbines is not yet well understood, in part due to the challenges associated with 
observing fish at turbine sites. Turbidity and light availability can limit the effective-
ness of optical sensors like video cameras, motivating the use of acoustic cameras 
for this task. However, challenges persist in collecting and interpreting data acquired 
from acoustic cameras. Given the limited number of turbine deployments to date, it is 
prudent to draw on the application of acoustic cameras to monitor fish in other sce-
narios. This article synthesizes their use for other fisheries applications to inform best 
practices and set realistic expectations for the results of acoustic camera monitoring 
at turbine sites. We discuss six key tasks performed with acoustic cameras: detecting 
objects, identifying objects as fish, counting fish, measuring fish, classifying fish taxo-
nomically and analysing fish behavior. Specific challenges to monitoring fish at turbine 
sites are discussed. This article is intended to serve as a reference for researchers, reg-
ulators and marine energy developers on effective use of acoustic cameras to monitor 
fish at turbine sites. The studies detailed in this article provide evidence that, in some 
scenarios, acoustic cameras can be used to inform the risk of fish collision with marine 
energy turbines but doing so requires careful study design and data processing.
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2  |    COTTER and STAINES

An illustration of various types of current energy turbines can 
be found in Copping et al., 2021. Collision of fishes with moving 
components of current energy turbines (hereafter referred to as 
turbines) has been identified by researchers and regulators as a 
potential risk associated with this form of renewable energy de-
velopment (Copping & Hemery, 2020).

Quantification of collision risk requires an understanding of the 
number of fish that encounter a turbine (i.e. encounter rate), the be-
haviour of fish around a turbine and the likelihood of collision occur-
ring if a fish does pass through the swept area of the turbine. The 
encounter rate is related to the abundance of fish in the area where 
the turbine is deployed. Relevant behaviours include avoidance or 
attraction (i.e. do fish avoid the turbine area or are they attracted to 
it?) as well as fine-scale evasion behaviours around turbine blades. 
Ultimately, this information can be used to predict whether there 
may be individual or population-level impacts on fish species. To 
date, data to address these questions are limited due to the chal-
lenges associated with monitoring fishes at turbine sites (Sparling 
et al., 2020).

Acoustic cameras have been identified as well suited to collect 
data to inform collision risk at sites where optical cameras have lim-
ited capabilities (Matzner et al., 2017; Polagye et al., 2014). However, 
while they can provide valuable data, there are limitations to what 
information about individuals, schools and shoals can be observed 
with acoustic cameras. When compared with video cameras, the 
imagery is low resolution and does not represent colour, so iden-
tification and classification of each detected object is based on its 
size, shape or behaviour. Further, background noise or acoustic 
artefacts can obscure object detection. Despite these limitations, 
acoustic cameras are the only sensor to date capable of directly ob-
serving fish interactions with turbines in turbid or dark waters and 
have been applied to study fish interactions with turbines in several 
studies. While these studies have provided some preliminary infor-
mation about collision risk, results have been limited by challenges 
associated with noise from entrained air (e.g. Amaral et al., 2015) or 
debris (e.g. Staines et al., 2022) and interpretation and processing 
of collected data (Viehman & Zydlewski, 2015). However, acoustic 
cameras have been used more broadly to monitor fish for other ap-
plications, including ecological assessment of fish behaviours (e.g. 
Langkau et al., 2016; Magowan et al., 2012; Rand & Fukushima, 2014) 
and hydroelectric dam monitoring (e.g. Grote et al., 2014; Lenihan 
et al., 2019; Piper et al., 2018).

In this review, we describe the capabilities and limitations of 
acoustic cameras to inform researchers, regulators and marine en-
ergy developers about how and when they may be used most effec-
tively to observe fish interactions with turbines and to identify areas 
for future research. To do this, first, we provide a contextual over-
view of acoustic camera operation. Then, we draw on literature from 
the broader fisheries research community to provide a synopsis of 
how acoustic cameras are used to monitor fish and how these capa-
bilities can be applied to understanding the risk of collision between 
fish and a turbine. Finally, we identify challenges or considerations 
specific to marine energy turbine sites.

2  | ACOUSTIC CAMERA FUNDAMENTALS

Multibeam sonars were initially developed in the 1960s for sea-
floor characterization, but more recently have been applied to im-
aging animals, objects and physical processes in the water column 
(Colbo et al., 2014). Correspondingly, in the last two decades, high-
frequency (i.e. high-resolution) multibeam sonars, referred to here 
as acoustic cameras, have been designed for water column imag-
ing over ranges less than a metre to tens of metres. In this section, 
we provide relevant background about the operating principles of 
acoustic cameras, which we define as multibeam sonars with operat-
ing frequencies above 500 kHz.

The fundamental principles of all active acoustic sonars are the 
same. A transducer transmits an acoustic pulse at a specified fre-
quency or spanning a specified frequency range. After pulse transmis-
sion, the acoustic wave travels through the water column and scatters 
off targets and boundaries, and some of these signals return to the re-
ceiver (i.e. backscatter). Backscattered returns are received, digitized 
and typically processed onboard the instrument in near-real time. A 
simplified version of the sonar equation describes this process:

where EL is echo level (received level), SL is source level (magnitude 
of the transmitted pulse), TL is transmission loss due to spreading and 

EL = SL − 2TL + TS,

1. INTRODUCTION 1

2. ACOUSTIC CAMERA 
FUNDAMENTALS

2

3. CAPABILITIES OF ACS FOR 
MONITORING FISH AROUND 
TURBINES

4

3.1. Detecting objects 4

3.2. Identifying objects 4

3.3. Counting fish 5

3.4. Estimating fish length 5

3.5. Classifying fish taxonomically 7

3.6. Analyzing fish behavior 7

3.6.1. Spawning 7

3.6.2. Predator/Prey 8

3.6.3. Attraction/Repulsion 8

4. DATA PROCESSING 8

5. DISCUSSION 9

5.1. Challenges 9

5.2. Considerations for deploying acoustic 
cameras at turbine sites

10

6. CONCLUSIONS 11

ACKNO​WLE​DGE​MENTS 11

DATA AVAILABILITY STATEMENT 11

REFERENCES 11

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12782 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [01/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 3COTTER and STAINES

attenuation (the factor of two accounts for spreading and loss in both 
directions) and TS is target strength, or the backscattering from indi-
vidual targets in the pulse's path. All values are in decibels. For acoustic 
cameras (and all multibeam sonars), multiple transducers are combined 
into an array, referred to as a beam array. Using the known direction of 
transmission of each beam relative to the array, received signals from 
all transducers in the beam array are combined to form a composite 
image. While the sonar equation is important for understanding the 
transmission and reflection of sound underwater, especially for cali-
brated fisheries echosounders (Korneliussen, 2018), in most acoustic 
camera applications, sensors are uncalibrated and backscatter values 
are relative. This means that acoustic cameras are not typically used to 
quantitatively assess scattering like fisheries echosounders.

The backscattering from a fish (i.e. backscattering cross sec-
tion or TS) depends on the physical characteristics of the fish and 
the transmitted acoustic frequency. Backscatter from an object in-
creases with the ratio of the sound speed and density of the ob-
ject to that of the surrounding water. Therefore, in fishes that have 
gas-filled swimbladders, these high impedance anatomical features 
contribute 90%–95% of the scattering, and, at the relatively low 
frequencies used by most fisheries echosounders, scattering from 
the rest of the fish body is often considered negligible (Foote, 1980). 
Conversely, at the relatively high frequencies used by acoustic cam-
eras, the body of the fish contributes more significantly to the scat-
tering and, under some conditions, the shape and morphology of the 
fish may be detected (Chu et al., 2015). This is an important capabil-
ity of acoustic cameras for monitoring fishes—imaging the body of 
the fish allows users to monitor fine-scale movements and measure 
size, therefore improving classification capabilities. However, as dis-
cussed in subsequent sections, acoustic camera data interpretation 
is complex, and capabilities vary depending on the site, sensor con-
figuration and size and species of fishes being monitored.

Generally, acoustic camera data are recorded as beamformed im-
ages, though, in some cases, raw data may be accessed. In this work, 
we define the cross-beam direction in the beamformed image as the 
direction moving across the beam array, perpendicular to transmission 
and the along-beam direction as the direction moving along the beam 
array, parallel to transmission (often referred to as range with single 
beam sonars). These directions are depicted in Figure 1. Image reso-
lution in the cross-beam direction is limited by the spacing and width 
of the individual beams and their ping rate, while resolution in the 
along-beam direction is limited by the characteristics of the transmit-
ted pulse (frequency, pulse duration). In practice, beamformed images 
are frequently exported as Cartesian images (i.e. in  .mp4 video or .jpg 
image file), requiring transformation of data from polar to Cartesian 
coordinates, which may affect image resolution. Because Cartesian 
images are typically viewed and processed in a similar manner to im-
agery from optical cameras, each point in the image is commonly re-
ferred to as a ‘pixel’.

A variety of acoustic cameras are commercially available and dif-
fer in how they transmit, receive, beamform and display acoustic re-
turns (Thompson, 2003), which, in turn, results in differences in their 
capabilities for monitoring fish. Brief overviews of the operational 

details of two distinct acoustic cameras are provided in the following 
paragraphs to illustrate the concepts presented in this section and 
highlight the differences between two commonly used technologies. 
We note that this does not represent a comprehensive list of all com-
mercially available acoustic camera systems.

Teledyne BlueView acoustic cameras use a blazed array of trans-
ducers (Thompson et al.,  2001) to form multiple subsectors, each 
with 22.5° horizontal fields of view (FOVs). These subsectors are 
stitched together to form 45°, 90° or 130° beam array configurations. 
Frequency modulated pulse transmissions have a wide frequency 
range. For instance, the BlueView M900 ranges from 600 to 1200 kHz 
with the centre frequency at 900 kHz for each subsector. Frequency 
and beamwidth change within a sector to facilitate fast ping rates 
without interference: each transducer array forms a directional beam 
for a specific frequency, for example, at 1200 kHz the beam points 
towards −22.5° from the centre of the FOV and at 600 kHz it points 
towards −45° from the centre of the FOV. Returned signals are pro-
cessed in the frequency domain and a discrete Fourier transform is 
used to extract the frequency-steered directional signal response rel-
ative to the array angle. This information is then processed to produce 
an image that can be viewed in real time or recorded for later process-
ing (pers. comm. Tyler Whitaker, Teledyne Technologies).

F IGURE  1 Graphic depiction of along-beam and cross-beam 
directions.
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4  |    COTTER and STAINES

In contrast, Sound Metrics Corporation (SMC) acoustic cameras 
(the Adaptive Resolution Imaging Sonar [ARIS] and the Dual-frequency 
IDentification Sonar [DIDSON]) conduct beamforming with an acous-
tic lens, which reduces the width of individual beams in the array, 
increasing both the cross-range resolution and the dynamic range of 
the image at the cost of a relatively narrow horizontal FOV (Belcher 
et al., 2001, 2002). Rather than transmitting from all beams simulta-
neously, subsets of equally spaced beams transmit sequentially, which 
removes most sidelobe returns because adjacent beams are not simul-
taneously operational. SMC sensors operate at high frequencies (700–
3000 kHz), which provides increased cross-beam resolution at the 
expense of decreased maximum range (pers. comm. Bill Hanot, Sound 
Metrics Corporation). Because their high-resolution imagery is suitable 
for imaging smaller targets like fish, SMC sensors are the acoustic cam-
era most frequently used in the studies discussed in this review.

3  |  CAPABILITIES OF ACOUSTIC 
CAMERAS FOR MONITORING FISH 
AROUND TURBINES

Acoustic cameras are used for six distinct tasks for monitoring fish, 
presented here in increasing level of analytical complexity and effort:

•	 detecting objects,
•	 identifying objects as fish,
•	 counting fish,
•	 estimating fish length,
•	 classifying fish taxonomically and
•	 analysing fish behaviour.

In the following sections, we summarize the pertinence of each 
of these tasks for assessing the risk of fish collision with turbines 
and describe the capabilities and limitations of acoustic cameras for 
performing each task. Finally, we provide an overview of the data 
processing techniques and software used for analysis.

3.1  | Detecting objects

Any acoustic camera-based assessment of fish initially requires detec-
tion and identification of imaged fishes. Many studies do not explicitly 
discuss object detection prior to identification of an object as a fish, 
but confidence in this step is essential and should not be overlooked. 
The successful detection of an ensonified object is related to its back-
scatter, sometimes referred to as the brightness of that object. If an 
object's backscatter is less than or near the background noise level, 
then its detection will be difficult or impossible. The background 
noise level is a combination of volume and boundary reverberation. 
Volume reverberation is backscatter from entrained air or particles, 
such as sediment, in the water column, while boundary reverbera-
tion is backscatter from the bottom of a waterbody (i.e. seafloor), the 
water surface or infrastructure like the frame holding a tidal turbine 

(Viehman & Zydlewski, 2015). Volume reverberation levels may vary 
with the operating frequency of an acoustic camera depending on the 
size of entrained air and particles (e.g. Polagye et al., 2020). In addition 
to background noise levels, the detectability of an object depends on 
its range from the transducers; an object becomes more difficult to 
resolve with increasing distance from the sensor because of beam 
spreading (i.e. decreasing cross-beam resolution), attenuation of the 
transmitted sound, and increasing volume reverberation.

Even when an object can be detected above background noise, it 
may intermittently ‘disappear’ as its orientation and position change. 
Tušer et al.  (2014) demonstrated this in a controlled tank experi-
ment: Fish that were otherwise detectable by an SMC DIDSON were 
not detectable when they were oriented directly head-on or tail-on. 
Similarly, a fish that moves in a sporadic manner may be difficult or 
impossible to detect in some positions. For example, as an eel swims 
(anguilliform), it scatters more sound when it is convex towards the 
acoustic camera than when it is concave (Mueller et al., 2010). Fish 
may also be temporarily undetectable when they move between the 
acoustic camera and a hard surface and are obscured by boundary 
reverberation.

An object must register in multiple pixels to be detectable above 
sensor background noise, and the probability of detection increases 
with the number of pixels that the object is registered in (Handegard 
& Williams,  2008). When an object scatters more sound than the 
background noise, it ‘lights up’ as many pixels as it scatters sound 
in. If part of an object, like the end of a fish's tail or tip of its head, is 
partially ensonified in a pixel and scatters enough sound, it lights up 
that entire pixel (Burwen et al., 2010). The smallest detectable tar-
get varies between acoustic cameras: the size of pixels is related to 
the resolution of the acoustic camera, which is driven by operating 
frequency, the number of beams and transducer design. An object 
also typically must be detected in multiple frames to be detected 
by a human reviewer or computer-driven methods. Tracking a target 
through the beam array yields confidence that it represents an ob-
ject, rather than a spurious detection of noise.

Challenges associated with target detection can sometimes be 
mitigated through adjustment of software-configurable settings 
and/or the physical positioning of the acoustic camera. Some acous-
tic cameras allow the user to select between multiple operating fre-
quencies. Generally speaking, higher operating frequencies provide 
both increased along-beam and cross-beam resolution due to shorter 
wavelengths and narrower beam widths respectively. However, the 
trade-off for higher operating frequencies is a decrease in overall 
detection range. Other user-configurable settings, such as the pulse 
width or source level, may decrease background noise levels, though 
settings available to users vary between instruments and manufac-
turers. High background noise levels due to volume reverberation 
can be difficult to mitigate. Moving the acoustic camera to a location 
with less entrained air or sediment will help, but is not always possi-
ble when the area of interest is a specific location (i.e. near a turbine 
installation). Similarly, boundary reverberation may be avoided by 
proper aiming of the acoustic camera to avoid boundaries such as 
the water surface, seafloor or underwater structures. Unfortunately, 
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    | 5COTTER and STAINES

boundary reverberation challenges may be unavoidable when moni-
toring for fish collision with a turbine because of the requirement to 
directly observe fish interactions with the turbine structure.

3.2  |  Identifying objects

If an object is detected (referred to then as a target), the next stage 
of processing is to identify whether it is a target of interest (e.g. 
fish or not a fish). In most cases, this involves the separation of fish 
from debris, entrained air or other sources of background noise. In 
ideal circumstances, the shape of a target can make identification 
straightforward. However, the smaller a target is, the fewer pix-
els it is made up of and the less the target's shape is observable. 
Background noise may also obscure distinctive aspects of a fish's 
shape (i.e. fins). Target movement can aid in human and computer-
driven identification. While debris and entrained air move passively, 
many animals have a component of acceleration to their movements, 
making them stand out from the rest of the targets moving through 
the beam array. Co-temporal measurements of water velocity (e.g. 
from an Acoustic Doppler Current Profiler [ADCP]) can be used to 
determine the velocity of passive particles to aid in target identifica-
tion. The velocity of detected targets can be compared to the veloc-
ity of passive targets to determine whether they differ.

The chance of accurate identification increases with the number 
of frames in which the target is observed, because there is an in-
creased probability that the shape or movement will be observed as 
the orientation of the target changes relative to the beam array, and 
the motion of the target can be observed for a longer duration. This 
means that a faster frame rate may improve identification capabili-
ties. Additionally, the number of frames in which a target is detected 
is inversely related to the velocity of the target. This is important for 
turbine sites where water velocities typically exceed 1 m/s (Polagye 
& Thomson, 2013). Further, because beamforming does not occur 
simultaneously in the beam array in most acoustic camera designs, 
movement of a target during the generation of an image can create 
motion artefacts. This may appear in the form of ‘broken’ targets 
(Staines et al., 2022) or rigid targets like sticks that may appear to 
move like eels (EPRI, 2017).

3.3  |  Counting fish

Counting fish (i.e. abundance estimation) for management pur-
poses is a long-standing objective in the field of fisheries (Hilborn 
& Walters, 1992). It is of particular importance when studying the 
risk of fish collision with a turbine because the rate of encounter 
and probability of collision are likely driven by the number of fish 
present. Fish counting is especially challenging in shallow, turbid en-
vironments or near infrastructure such as tidal or in-river turbines 
where the use of traditional approaches, such as trawls or optical 
cameras, are not effective. Acoustic cameras can address this gap 
and extend counting abilities to formerly unobservable scenarios 

(Lankowicz et al., 2020), but accurate interpretation of data requires 
accounting for several limitations and sources of error.

Counting fishes near turbines to inform determinations of col-
lision risk is a relatively new application for acoustic cameras. 
Previously, acoustic cameras have been used to count fishes in a va-
riety of scenarios, such as entering hydropower turbine draft tubes 
(Braga et al., 2022) or in an aquaculture net pen (Han et al., 2009), 
and a variety of counting techniques have been used that pro-
vide absolute (e.g. Ogburn et al.,  2017) or relative (e.g. Becker & 
Suthers, 2014) abundance estimates. While the specific methodol-
ogy for fish counting may vary between scenarios, several general 
factors should be considered in any fish counting application.

First, attempts to count fishes with acoustic cameras can be 
challenging when there is a high density of fish and they are entering 
and exiting the beam array in quick succession (Braga et al., 2022). In 
this scenario, fish can be double counted, missed or, when counting 
is performed by a human reviewer, the analyst may struggle to main-
tain consistency through frames (Holmes et al., 2006). Furthermore, 
when a school or shoal of fish is in the beam array through multiple 
frames, changes in the orientation, range and relative position of 
individual fish can complicate counting as fish disappear and reap-
pear from view (see Supplementary Materials, ‘2 Fish School Video’ 
from Staines et al., 2020 for an example of this). Milling behaviour 
is when a fish maintains position in or repeatedly moves into and 
out of the beam array (Eggleston et al., 2020). Like high fish den-
sity, milling complicates fish counting: the same fish may be counted 
multiple times because it is not possible to determine whether the 
same fish is re-entering the frame. This may be adjusted for using a 
co-temporal count from a different sensor (e.g. optical camera) or 
physical capture.

As discussed under Section 3.1, the ability to detect objects and 
identify them as targets of interest is affected by background noise. 
Similarly, boundary and volume reverberation can reduce accuracy 
when counting fishes. Braga et al. (2022) observed this phenomenon 
in a turbine draft tube at a hydroelectric dam; when fish passed over 
the concrete floor, their brightness resembled that of the concrete 
surface. Viehman and Zydlewski  (2015) and Staines et al.  (2022) 
found that entrained air and scattering from hard surfaces affected 
counting capabilities around turbines, even after focusing and at-
tempting to aim the beam array to minimize background noise.

3.4  |  Estimating fish length

Broadly, estimations of fish length are used to inform fisheries man-
agement through determination of size and age distributions of the 
population (Hilborn & Walters, 1992). At turbine sites, this may in-
form monitoring requirements or the determination of acceptable 
collision risk levels. Additionally, the risk of collision of a fish with 
a turbine blade is assumed to be higher for larger fish (Hammar 
et al., 2015), and fish length distributions can serve as inputs to prob-
ability- and physics-based models that estimate the probability of 
encounter or collision (Buenau et al., 2022). Acoustic cameras offer 

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12782 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [01/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6  |    COTTER and STAINES

one approach to collecting these data, but their limitations should 
be considered relative to both study design and data interpretation.

A variety of approaches have been used to assess the accu-
racy of fish length estimates derived using acoustic cameras. 
These range from the use of synthetic fish-shaped targets (Cook 
et al., 2019) to the tethering of fish of known lengths in the beam 
array (Burwen et al.,  2010). Generally, these assessments have 
found that length estimates from acoustic cameras fall within 5%–
20% of the true length (Cook et al.,  2019). Several factors have 
been found to affect accuracy, including the range from the acous-
tic camera, angular position within the beam array, orientation 
of the fish and species. We briefly discuss each of these factors 
below. Factors related to the position of the fish in the beam are 
illustrated in Figure 2.

Several studies have found that the range of a fish from an acous-
tic camera does not statistically affect the accuracy of the associated 
length estimates (Burwen et al., 2010; Daroux et al., 2019; Gurney 
et al., 2014; Hightower et al., 2013). This observation is counterin-
tuitive: cross-beam resolution decreases with range due to beam 
spreading, so a decrease in accuracy with range would be expected. 
It is possible that beam spreading has a relatively small effect when 
compared to other sources of error such as fish movement and back-
ground noise. However, in some scenarios, length estimates may be 
less accurate for fish at short ranges from the acoustic camera: Cook 
et al. (2019) found that, between the 1.5 and 3 m range, the length 
estimate accuracy using an SMC ARIS decreased with range to the 
sensor, and they attributed this to acoustic cross-talk resulting in 
overestimates. Acoustic cross-talk occurs when backscatter from a 
strong scatterer is received in the sidelobes of adjacent beams (Sung 
et al., 2018).

The angular position of a fish within the beam array (i.e. the 
beams in which it is detected) can affect the accuracy of length esti-
mates. Tušer et al. (2014) found that estimates of fish length using an 
SMC DIDSON were slightly overestimated when fish were detected 
towards the centre of the beam array and were underestimated 
when they were detected towards the edges. The authors attribute 
this to lower beam intensity towards the edge of the array.

The orientation of a fish relative to the acoustic camera also 
plays a role in the accuracy of length estimates. Generally speak-
ing, the most accurate length estimates are obtained when the fish 
is oriented perpendicular to the beam array (i.e. broadside) and the 
area of the fish ensonified is maximized (Burwen et al., 2010; Zhang 
et al., 2014). However, broadside ensonification of the fish can also 
result in acoustic cross-talk that can blur the edges of the fish that 
causes the fish to appear elongated (Cook et al., 2019). The orien-
tation of the acoustic camera in the water column should also be 
considered—length estimation may be more accurate and straight-
forward from a horizontally oriented acoustic camera that ensonifies 
the side of the fish compared to a vertically oriented acoustic camera 
that ensonifies the top or bottom of the fish (i.e. a downward-looking, 
vessel-mounted acoustic camera; Kerschbaumer et al., 2020).

The accuracy of length estimations has been shown to vary 
between species due to differences in the swimming mode and/
or the body morphology of the fish (Cook et al., 2019; Hightower 
et al., 2013). The speed of the fish may also play a role if it is moving 
through the image so quickly that it moves significantly during the 
time it takes to create an image. In this case, cross-talk may occur 
that can ‘blur’ the edges of the fish, making it appear to be longer 
(Burwen et al., 2010). The time that it takes SMC ARIS to ‘create an 
image’ (acquire sample data) is primarily a function of end range as all 

F IGURE  2 Graphic depictions of (a) the range (along-beam direction) of a fish from the sonar, (b) the orientation of the fish in the beam 
array and (c) the angular position of the fish in the beam array.
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    | 7COTTER and STAINES

beam forming is done through the acoustic lens in real time. The time 
required for image rendering on the acquisition computer is an order 
of magnitude faster than for data acquisition. Sensor manufacturers 
can provide guidance on calculation of image generation time for a 
particular acoustic camera.

The accuracy of length estimates from acoustic cameras has 
been compared to alternative non-invasive sensing techniques. 
Cook et al.  (2019) compared length estimates obtained using an 
SMC ARIS acoustic camera to those made using a stereo optical 
camera system and found that while the optical camera system was, 
on average, an order of magnitude more accurate, it was limited by 
its relatively short range and the requirement for illumination. Lin 
et al.  (2016) compared length estimates from an SMC DIDSON 
acoustic camera to those derived by applying target strength/fish 
length relationships to data from a 200 kHz fisheries echosounder 
and found that the DIDSON was more accurate, largely because of 
the dependence of echosounder-derived length estimates on accu-
rate target strength/fish length relationships.

3.5  |  Classifying fish taxonomically

Taxonomic classification of fish species is important when assessing 
collision risk when it is desirable to quantify the impacts on certain 
species of regulatory interest (i.e. threatened, endangered or com-
mercially important). The ability to perform taxonomic classification 
of fishes identified in acoustic camera data depends on the species 
present, background noise levels, the orientation of the fish and the 
distance of the fish from the acoustic camera. Further, accurate clas-
sification typically requires a priori knowledge of the species present 
in the habitat being monitored, either from concurrent physical sam-
pling, optical cameras or historical data. Even for expert reviewers, 
classification of fishes in acoustic camera data is challenging and lim-
ited, and results may differ between reviewers (Jones et al., 2021).

Classification is only possible when the fish species present 
have large size differences relative to the length measurement error 
(Burwen et al., 2010; Stott & Miner, 2022) or when a species is mor-
phologically distinct from other species present. For example, mul-
tiple studies have classified eels in acoustic camera data with high 
confidence because of their distinctive shape and swimming mode 
(e.g. Lenihan et al., 2019; Magowan et al., 2012; Mueller et al., 2008). 
In some cases, other morphological features such as caudal fins may 
be discernible at close ranges, but the ability to discern these fea-
tures varies with fish orientation (Jones et al., 2021) or the proxim-
ity of the fish to other features in the environment (i.e. boundary 
reverberation) (Parsons et al., 2017). Generally speaking, distinctive 
features that may aid in taxonomic classification are more easily dis-
cernible for larger fish (Jones et al., 2021; Staines et al., 2020).

In many cases, fish behavior (i.e. swimming speed or location in 
the water column) may provide more information to support taxo-
nomic classification than individual images (Jones et al., 2021). This 
stands in contrast with taxonomic classification of fishes in optical 
camera imagery, where classification can often be performed based 

on a single image. Several studies have proposed the use of tail beat 
frequency as a quantitative behavioural metric that may aid in classi-
fication (e.g. Able et al., 2014; Egg et al., 2017; Helminen et al., 2020; 
Kang,  2011; Mueller et al.,  2010; Parsons et al.,  2017). Helminen 
et al. (2021) and Mueller et al. (2010) demonstrated the potential of 
this approach and successfully calculated tail beat frequencies from 
data collected using an ARIS and DIDSON respectively. However, 
the utility of this technique is likely to change between sites because 
fish may alter their behaviour in different environments (Helminen 
et al.,  2021) and background noise levels will affect the ability to 
discern tail beats (Mueller et al., 2010).

Finally, the ‘acoustic shadow’ may offer further insight into the 
morphology of a fish. Acoustic shadows are a relatively low-intensity 
region behind a target resulting from reflection and attenuation of 
the beam, and are only visible in some scenarios that depend on the 
range and orientation of the target. Langkau et al.  (2012) investi-
gated the utility of the acoustic shadow in a series of tank tests with 
both synthetic fish-shaped targets and live fish and found that the 
acoustic shadow showed detailed morphology of synthetic targets, 
and, while noise and artefacts from acoustic cross-talk reduced 
the accuracy of the method for classifying live fish, in many cases, 
acoustic shadows could still be intuitively identified by a human ob-
server. Acoustic shadows have also been shown to aid in discrimina-
tion between species of fish in data collected in the field (e.g. Able 
et al., 2014; Artero et al., 2021; Jones et al., 2021). While acoustic 
shadows may aid in classification in some scenarios, they can also 
pose a challenge for detection if acoustic shadows of larger fish 
mask detections of smaller fish (Magowan et al., 2012).

3.6  | Analysing fish behavior

Acoustic camera imagery is often of high enough quality to provide 
users with the ability to define and describe the small-scale behav-
iour of fishes within the beam array. As discussed in the previous 
section, fish behaviour can aid in taxonomic classification. However, 
further discussion of fish behaviour in this section describes their 
movements in relationship to their environment and not for clas-
sification. Specifically, the behaviours described in this section are 
chosen to inform the ability to use an acoustic camera to observe 
detailed movements associated with fish interactions with a turbine 
(e.g. evasion, avoidance and collision).

3.6.1  |  Spawning

The spawning behaviour of fishes is specific to species and is made 
up of small-scale movements that are often sex-specific. While the 
spawning behaviour of fish does not directly inform the determination 
of collision risk with turbines, the ability to identify specific fine-scale 
behaviours with acoustic cameras is evidence that fish interactions 
with turbines may also be observable. Tiffan and Rondorf (2005) suc-
cessfully observed and characterized chum salmon (Oncorhynchus 
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8  |    COTTER and STAINES

keta) spawning behaviour at night using an SMC DIDSON. Behaviours 
included defensive chasing away of smaller fish by both sexes as well 
as nest digging and covering behaviour by females as evidenced by 
imaged sediment plumes and substrate movement. The release of 
gametes during spawning was not observable. Allis shad (Alosa alosa) 
are broadcast spawners, so, unlike chum salmon that build nests, they 
release gametes in the pelagic water column. Langkau et al.  (2016) 
successfully observed Allis shad spawning behaviour using an SMC 
DIDSON with fish pairs and sometimes triplets of fish circling as part 
of the known spawning behaviour of this species. Successful spawn-
ing events terminated with the release of gametes that could be seen 
as a cloud in the DIDSON images, followed by individuals separating 
and swimming away from each other.

3.6.2  |  Predator/prey

The interactions between fishes and their predators are impor-
tant to understand when managing populations or communities, 
especially when anthropomorphic influences can lead to varia-
tions in predation levels (Murphy et al.,  2021). Further, ecologi-
cal modelling techniques used to study interactions between prey 
and predators have been applied to predict the risk of the colli-
sion of fish and turbines (Buenau et al., 2022). Avoidance and eva-
sion behaviours associated with fish eluding predators can also be 
used to describe fish responses to the presence of moving turbine 
blades (Sparling et al.,  2020), and acoustic camera observations 
of these behaviours are informative for collision risk assessments. 
Smith et al.  (2021) observed fish behaviour in front of a floating 
surface collector (FSC) on the North Fork dam of the Clackamas 
River using an SMC ARIS. The authors showed that the direction 
of travel of most prey-sized targets was away from the FSC when 
predator-sized targets were present and towards it when preda-
tors were absent. In a separate study, using an SMC DIDSON, 
Cheng et al.  (2022) directly observed predator/prey interactions 
between bull trout (Salvelinus confluentus) and outmigrating sock-
eye salmon (Oncorhynchus nerka) smolts downstream of a salmon 
counting fence. Murphy et al.  (2021) demonstrated that an SMC 
ARIS can observe fish avoidance behaviour (i.e. changes in travel 
direction), while Cheng et al.  (2022) provided evidence that the 
SMC DIDSON observed distinct fish evasion behaviour when en-
countering predators.

3.6.3  |  Attraction/repulsion

Fishes may be attracted or repelled by external stimuli such as visual 
cues or water velocity rheotaxis, and the associated behaviours are 
important for managing fish populations or communities that are 
affected by anthropogenic influences. Understanding how fishes 
respond to the presence of a turbine is critical when assessing col-
lision risk. While some fish species or life stages may be attracted 
to turbines because lower flow speeds in the turbine wake provide 

a place for resting or foraging, others may be repelled due to blade 
movement visual cues, generator noise or closer range stimuli like 
the hydrodynamics in the upstream nearfield of the turbine.

Several studies have analysed fish attraction or repulsion to an-
thropogenic structures using acoustic cameras. Schmidt et al. (2018) 
combined measurements from an SMC DIDSON and an ARIS with 
flow velocity measurements to determine fish hydrodynamic pref-
erences upstream of a dam trash rack. Similarly, Viehman and 
Zydlewski (2015) employed downward-looking SMC DIDSON acous-
tic cameras to characterize fish behaviour around a tidal turbine tested 
from a moored barge. Behaviour was classified into seven categories 
that included ‘avoiding’ and ‘remaining in wake’—both of which are ex-
amples of repulsion and attraction behaviour. Fish behaviour in front 
of a towed trawl net was observed by Rakowitz et al. (2012) using an 
SMC DIDSON and 11 categories of avoidance were documented that 
included moving away from, under and over the trawl.

4  | DATA PROCESSING

Extensive processing is required to extract the information about 
fish discussed in the previous sections from acoustic camera data. 
Data processing may be manual, semi-automated or automated. 
Here, we define manual processing as frame-by-frame human re-
view of acoustic camera imagery; semi-automated processing as 
any processing that includes at least one step that removes human 
involvement and is done automatically; and automated processing 
as end-to-end approaches that input raw data and output final 
metrics with minimal human oversight (i.e. requires tuning of 
parameters).

Analysis of fish in acoustic camera data is most commonly per-
formed manually by a human observer using software provided 
by the instrument manufacturer (Able et al., 2014). Most acoustic 
camera manufacturers provide software with manual tuning op-
tions to optimize the visualization of objects of interest. Tuning may 
include applying thresholds or filters to remove background noise, 
performing background subtraction to remove backscatter of non-
moving objects (e.g. river bottom) or correcting for transmission 
loss to account for spreading and absorption. Manual data process-
ing typically consists of watching image frames in sequence like a 
movie, with the playback speed adjusted depending on the number 
and speed of objects in the frame. After an object is detected, the 
observer may determine whether it is a fish (i.e. identification), mea-
sure its length, attempt species classification or note its behaviour. 
Identification is typically performed by reviewing the target in suc-
cessive image frames to determine its shape and movement. When 
a fish is detected in multiple frames, observers selectively choose 
the best detection(s) for analysis and measurement. Some software 
packages have built-in tools for annotation, which can output data 
to a log file for further analysis (i.e. counting of fish or generation 
of fish length distributions). Frame-by-frame manual review may be 
performed with an echogram, which can reduce processing time. 
In this representation of acoustic camera data, each image frame 
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    | 9COTTER and STAINES

is compressed to a vertical line that contains the maximum sonar 
return for all beams displayed for each range sample. The result is 
similar to the echograms used to visualize fisheries echosounder 
data: the vertical axis represents range, and the horizontal axis rep-
resents time. Fish passing through the beam array create a track in 
the echogram that is often detectable during manual review.

A key consideration when interpreting the results of manual 
processing is observer bias. Several studies have analysed the ef-
fect of observer bias on fish counts (Keefer et al., 2017; Petreman 
et al.,  2014), length estimation (Daroux et al.,  2019; Helminen 
et al., 2020; Lagarde et al., 2020) and classification (Able et al., 2014; 
Holmes et al., 2006; Jones et al., 2021; Magowan et al., 2012). While 
differences between observers were not always found to be statis-
tically significant, they highlight the subjectivity inherent to manual 
processing. Notably, Daroux et al. (2019) compared results between 
experienced and inexperienced operators and found that experi-
enced operators produced more accurate length estimates. While 
this is an unsurprising result, it indicates that training is necessary 
for effective review of acoustic camera data and that review may 
not easily be crowdsourced, an approach that has been taken for 
the review of optical camera data sets (e.g. for camera traps [Hsing 
et al., 2018]). Because of observer bias, the best way to obtain con-
sistent results across a data set is to use a single observer. When this 
is not possible because of the volume of data or time constraints, ob-
server bias may be mitigated by having all observers review a subset 
of data and comparing results.

A different type of bias may be caused by the subsampling of 
data. Frequently, it is not feasible to analyse the entire data set and 
data are subsampled, requiring the assumption that the observed 
data are representative of the entire data set. While this approach 
has been shown to provide accurate estimates of fish passage (Lilja 
et al., 2008; Petreman et al., 2014), it is likely to miss some events 
of interest (e.g. turbine blade strike) if the goal of the research may 
be to detect a particular rare event (Cotter et al.,  2017; Matzner 
et al., 2016).

While manual processing remains the most common approach 
to analysing fish in acoustic camera data, several studies have im-
plemented semi-automated or automated processing to standard-
ize and accelerate analysis. Semi-automated processing pipelines 
for fish detection, identification, counting and length estimation 
have been implemented using manufacturer-provided software 
(Martignac et al.,  2015) or using commercially available software 
such as Echoview (https://echov​iew.com; Boswell et al.,  2008; 
Kang, 2011) and Sonar5-Pro (Martignac et al., 2021), and automated 
pipelines have been implemented in custom software (Kupilik & 
Petersen,  2014). These pipelines automate the detection and, in 
some cases, tracking of targets and automatic extraction of informa-
tion (i.e. length) about the targets. However, it is important to bench-
mark automated analyses against manual processing. Comparisons 
of Echoview-generated fish length estimates and manual measure-
ments have found that manual measurements were more accurate 
(Helminen et al., 2020; Hightower et al., 2013), which can generally 
be attributed to the fact that human reviewers can more easily select 

the ‘best’ detection(s) of a fish to measure and exclude those detec-
tions where the fish is not fully elongated, the image is affected by 
acoustic cross-talk, or the fish is not entirely ensonified.

Development of automated or semi-automated approaches for 
target classification is an active area of research. While there are 
no standardized approaches, several recent studies have applied 
machine learning to the classification of fishes in acoustic camera 
data. Stott and Miner (2022) trained a classification and regression 
tree for classification of four fish species using human-extracted 
features, including the mode of swimming (amiiform or other), width 
of the head and width of the body. This approach was shown to be 
100% effective when applied to data collected in a test tank, but in 
situ accuracy was not assessed. Kandimalla et al.  (2022) applied a 
neural network-based algorithm to simultaneously detect and clas-
sify eight species of fish in a publicly available labelled data set of 
DIDSON imagery collected at a single riverine site containing be-
tween 100 and 2000 detections of each labelled species. Overall, 
this approach achieved a mean average precision (mAP) of 0.73, but 
results varied between species.

Semi-automated or automated analysis of fish behaviour is less 
common because of the inherently qualitative nature of behaviour 
analysis. The methods that do exist typically rely on effective target 
tracking. For example, Williamson et al.  (2021) implemented auto-
mated tracking of targets between subsequent frames (with human 
quality control) and calculated metrics based on the position of the 
target to quantitatively describe behaviour, including the direction 
that the target was moving relative to the flow and its tortuosity, 
a measure of the number of twists and turns in a target's path. 
Comparison of these metrics between a tidal turbine test site and 
an undisturbed site provided insight into the behaviour of marine 
animals around a tidal turbine mounting structure.

5  | DISCUSSION

Imagery is an intuitive medium: It conveys information that is read-
ily interpretable by scientists, regulators and stakeholders. It is no 
wonder that when presented with a turbine site in turbid water 
where fish collision is seen as a risk, acoustic cameras are frequently 
the tool of choice for monitoring because they can provide human-
interpretable imagery in conditions where optical cameras are not 
viable. However, unlike video from optical cameras, acoustic camera 
imagery contains image artefacts, perspective shifts and other phe-
nomena that require experience and expertise to interpret. In the 
following sections, we describe challenges to using acoustic cameras 
to monitor fish at turbine sites and identify key considerations nec-
essary to use them most effectively.

5.1  |  Challenges

While acoustic cameras offer advantages over alternative tech-
nologies for fish monitoring, several key challenges persist, many 
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10  |    COTTER and STAINES

of which are exacerbated in the high-energy conditions that are 
characteristic of the habitats where turbines are deployed. First, the 
detection, identification and classification capabilities of acoustic 
cameras vary significantly between sites. At some sites, where there 
is little debris in the water column and the species present are mor-
phologically distinct or only one species is present, taxonomic classi-
fication of most detected fish may be possible; at other sites, where 
the fish species present have similar morphologies, the detection, 
identification and counting of fish may be straightforward, but clas-
sification may not be possible; and at other sites, where entrained 
air and debris obscure detection, it may not be possible to detect 
and identify fish at all. The latter is characteristic of many current 
energy sites. For example, at a riverine energy site, fish could not be 
distinguished from woody debris (i.e. twigs and sticks) because the 
fast-moving currents precluded observation of any fish movement 
(Staines et al., 2022). Similarly, entrained air from waves or turbu-
lence can complicate data analysis because the acoustic scattering 
from bubbles (i.e. volume reverberation) may obscure all or part of 
the acoustic camera FOV, precluding detection of any targets of in-
terest. This has been observed at multiple tidal energy sites (Cotter 
& Polagye, 2020; Viehman & Zydlewski, 2015).

An additional challenge for analysis of acoustic camera data is 
discerning targets that are near other objects in the FOV, such as 
the seabed, rocks or dock pilings. For some applications, it may be 
possible to position the acoustic camera to avoid these objects, but 
at turbine sites, acoustic camera placement is often dictated by the 
position of the turbine being monitored. This can be particularly 
challenging for moving objects such as turbine blades. Not only does 
this movement preclude the use of standard background subtraction 
approaches, but moving parts can produce backscatter artefacts in 
other parts of the image due to acoustic cross-talk or, in the case 
of SMC acoustic cameras, motion artefacts over the course of the 
generation of a composite image.

An acoustic camera can only resolve the along-beam (range) and 
across-beam dimensions, not the elevation (long-axis of beam array) 
of a target in the beam. If objects are located at the same range, in 
the same beams, but at different elevations (assuming the long-axis of 
beam array is vertical), they cannot be separated (Belcher et al., 2002). 
This is illustrated in Figure 3, in which the two white fish are at the 
same range and are ensonified by the same beams in the beam array, 
but are at different elevations. In this scenario, it is not possible to 
discern both white fish, so the acoustic camera will display a single 
target. If a human reviewer was aware that two fish were present 
because they were identified and tracked in previous frames, the 
reviewer would still not be able to determine the distance between 
the fish or whether they physically interacted with each other. This 
limitation is particularly relevant when trying to determine whether 
a fish comes in contact with a turbine blade and is made even more 
complex by the constant motion of the blade itself. However, in some 
cases, sudden changes in fish orientation or trajectory may indicate 
collision (e.g. Courtney et al., 2022; Staines et al., 2022).

Another challenge in interpreting acoustic camera data is beam 
aliasing that can occur when a previous transmission (ping) returning 

from a distant object or from multi-path reflections arrives at the 
acoustic camera at the same time as the current ping. These returns 
cannot be distinguished, which can lead to objects appearing at the 
wrong range, an object or boundary appearing at multiple locations 
in the image (‘reflections’), or ‘dark beams’ in the image. When imag-
ing a moving object, like a turbine, these challenges can be exacer-
bated because they may change dynamically with turbine rotation. 
This, as well as several of the other sources of noise previously dis-
cussed in this work, can be observed in Video S1.

Analysis of acoustic camera data often relies on expert manual 
review, which is time intensive and costly (labour effort). These con-
straints can limit the volume of data that may be processed and the 
repeatability of results. This is a challenge for all applications, but is 
particularly relevant for the monitoring of turbines where events of 
interest (i.e. collision or near-miss events between a fish and a tur-
bine) rarely occur (Sparling et al., 2020). Observation of such events 
requires analysis of large volumes of data, because subsampling is 
likely to miss rare events. To address this, several automated or semi-
automated approaches have been developed, but are generally not 
as accurate as manual processing. This does not mean that it is not 
possible for automated processing to be as accurate as human re-
view, but rather that this is a key area of development required to 
facilitate effective acoustic camera-based monitoring of fish interac-
tions around turbines. Automated processing also addresses the lack 
of repeatability associated with human annotation of data. However, 
because any automated processing approach requires training or 
validation with human-annotated data, it can still reflect human bi-
ases. Challenges facing the advancement of automated processing 
tools include the requirement for time- and cost-intensive data an-
notation to train and validate machine learning algorithms and the 

F IGURE  3 Graphic depiction of the detection of multiple fish at 
the same range in an acoustic camera beam array. The two white 
fish are at the same range and are ensonified by the same beams 
in the beam array but are at different elevations in the beams. The 
black fish is at the same range as the white fish, but is ensonified by 
different beams.
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    | 11COTTER and STAINES

uncertainty associated with even expert annotations. The latter can, 
in some cases, be addressed through data collection from multiple 
sensors; for example, a publicly available data set collected in the 
Ocqueoc River in Michigan, USA, used co-spatial optical camera 
data for taxonomic classification before identifying the same targets 
in acoustic camera data (McCann et al., 2018).

5.2  |  Considerations for deploying acoustic 
cameras at turbine sites

Most studies discussed in this review use SMC acoustic cameras 
(ARIS or DIDSON) because of their relatively high resolution and 
ability to suppress artefacts due to the use of an acoustic lens. 
However, several considerations should be weighed before select-
ing and deploying an acoustic camera for environmental monitoring 
at a turbine site. Sensor selection will be informed by the fish spe-
cies of interest, the range over which monitoring is necessary and 
the level of information desired (e.g. identification or classification). 
In a scenario where only the fine-scale behaviour of fish around a 
turbine is of interest, and it is possible to deploy an acoustic cam-
era close to the turbine, an acoustic camera with relatively short 
range and high resolution (high frequency) is desirable. Conversely, 
if the monitoring objective is to count fish passing a turbine in a 
wide river, and fine-scale interactions are not the objective, a longer 
range, lower resolution (low-frequency) acoustic camera would be 
more appropriate. The orientation and positioning of the acoustic 
camera can be as important as the selection of the sensor itself and 
will often involve a trade-off between minimizing sources of noise 
and imaging the area of interest. Because it is not possible to re-
solve the elevation of a fish in the beam array, the ability to discern 
collisions with a turbine blade is likely to be limited to only some 
portions of the swept area of the turbine rotor. In some cases, this 
may be addressed through the use of multiple acoustic cameras that 
can ‘see’ the turbine from different angles. However, use of mul-
tiple acoustic cameras would increase the cost of monitoring and 
fusion of multiple data streams would increase the complexity of 
data analysis. Finally, it is important to consider interference with 
other acoustic sensors used at the site (e.g. ADCPs, echosounders 
and hydrophones), because active acoustic transmissions may inter-
fere with each other or produce sound at frequencies of interest for 
passive acoustic monitoring.

6  |  CONCLUSIONS

In dark or turbid water, acoustic cameras are the only sensor that 
can directly observe fish-turbine interactions. The extensive use of 
acoustic cameras for fisheries applications described in this review 
provides evidence that acoustic cameras can be used to characterize 
fishes in a variety of scenarios. Further, the limited number of stud-
ies that have applied acoustic cameras at turbine sites show that, 
while challenges persist, acoustic cameras can observe fish–turbine 

interactions. In some cases, challenges can be mitigated through 
optimized positioning of the acoustic camera, careful selection of 
parameters and rigorous data processing, but capabilities will vary 
between sites. The limited number of deployments of acoustic cam-
eras around turbines precludes the development of generalized ap-
proaches to sensor deployment and data processing. Nevertheless, 
targeted studies to address the specific challenges associated with 
observing fish-turbine interactions could lead to the development 
of standards for data collection and advance the development of 
automatic processing tools. Standardization will promote the trans-
ferability of data and results, allowing for meaningful comparisons 
between marine energy turbine sites.
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