Abstract
The present publication summarizes the methodological possibilities of tracking radar and describes some features of nocturnal migration at two sites in the Negev, which include anwers to basic questions of bird migration. The directions of spring and autumn migration were practically opposite; only the headings in spring indicated some more compensation for stronger westerly winds. The volume of nocturnal spring migration was only about 65% of autumn migration, which may be an indication of mortality outside tie breeding area. Highest densities of migration at the two radar sites in the Negev Highlands (450 m above sea level) and in the Arava Valley (150 m below sea level) indicated flightlevels adjusted to atmospheric conditions aloft, and not to round level. Due to the trade-wind system, the birds heading southward in autumn flew mainly below flew mainly above 1500 m above sea level, while in spring they tended to make use of the anti-trades at higher altitudes. The decisive factor for altitude choice was the speed of tailwind in spring and autumn; other factors, such as temperature, humidity and pressure had no significant influence on the altitude distributions. With respect to the question of non-stop or intermittent flight across large desert areas, the data show that between the eastern deserts of Egypt and the Sinai/Negev complex the nocturnal migrants maintained their schedule of nocturnal flight and diurnal rest. A few exceptions of nocturnal migrants continuing migration at high altitudes into the day were identified mainly as heron- and gull-type birds. The proportion of waders and waterfowl identified by wing-beat pattern in nocturnal migration is nearly the same at both sites, indicating broad-front migration across the desert. The numbers of birds with continuous wingbeats is, however, so large compared to available estimates of waders and waterfowl wintering in Africa that careful reconsideration of the underlying assumptions in the radar and field estimates is necessary.