Abstract
The nighttime sky is increasingly illuminated by artificial light sources. Although this ecological light pollution is damaging ecosystems throughout the world, the topic has received relatively little attention. Many nocturnally migrating birds die or lose a large amount of their energy reserves during migration as a result of encountering artificial light sources. This happens, for instance, in the North Sea, where large numbers of nocturnally migrating birds are attracted to the many offshore platforms. Our aim is to develop bird-friendly artificial lighting that meets human demands for safety but does not attract and disorient birds. Our current working hypothesis is that artificial light interferes with the magnetic compass of the birds, one of several orientation mechanisms and especially important during overcast nights. Laboratory experiments have shown the magnetic compass to be wavelength dependent: migratory birds require light from the blue-green part of the spectrum for magnetic compass orientation, whereas red light (visible long-wavelength) disrupts magnetic orientation. We designed a field study to test if and how changing light color influenced migrating birds under field conditions. We found that nocturnally migrating birds were disoriented and attracted by red and white light (containing visible long-wavelength radiation), whereas they were clearly less disoriented by blue and green light (containing less or no visible long-wavelength radiation). This was especially the case on overcast nights. Our results clearly open perspective for the development of bird-friendly artificial lighting by manipulating wavelength characteristics. Preliminary results with an experimentally developed bird-friendly light source on an offshore platform are promising. What needs to be investigated is the impact of bird-friendly light on other organisms than birds.