Abstract
Visual fields were determined in three bird species representative of families known to be subject to high levels of mortality associated with power lines; kori bustards Ardeotis kori, Otididae, blue cranes Anthropoides paradisea, Gruidae and white storks Ciconia ciconia, Ciconiidae. In all species the frontal visual fields showed narrow and vertically long binocular fields typical of birds that take food items directly in the bill under visual guidance. However, these species differed markedly in the vertical extent of their binocular fields and in the extent of the blind areas which project above and below the binocular fields in the forward facing hemisphere. The importance of these blind areas is that when in flight, head movements in the vertical plane (pitching the head to look downwards) will render the bird blind in the direction of travel. Such movements may frequently occur when birds are scanning below them (for foraging or roost sites, or for conspecifics). In bustards and cranes pitch movements of only 25° and 35° respectively are sufficient to render the birds blind in the direction of travel; in storks head movements of 55° are necessary. That flying birds can render themselves blind in the direction of travel has not been previously recognised and has important implications for the effective mitigation of collisions with human artefacts including wind turbines and power lines. These findings have applicability to species outside of these families especially raptors (Accipitridae) which are known to have small binocular fields and large blind areas similar to those of bustards and cranes, and are also known to be vulnerable to power line collisions.