Abstract
Quantifying and mitigating environmental risks presented by marine energy conversion systems requires a variety of sensors (active acoustic, passive acoustic, and optical). The operation of these sensors must satisfy three directives to be effective: (1) do not alter the environment through operation of sensors; (2) capture rare events; and (3) do not accrue unmanageable volumes of low-value data. This requires integrating sensors into a single package, rather than operating them independently. The Adaptable Monitoring Package is an integrated instrumentation package that combines a multibeam sonar, acoustic camera, current profiler, optical cameras, and an array of hydrophones. The capabilities and limitations of the AMP sensors were benchmarked using cooperative targets, and real-time target tracking and detection was used to detect opportunistic targets (e.g., diving birds, seals). During an initial deployment, automatic detection of opportunistic targets achieved a 58% true positive rate and a 99% true negative rate (100% corresponding to an ideal system in both cases). In post-processing, target tracking data were used to evaluate automatic target classification capabilities using a k-nearest neighbor algorithm. Results suggest that real-time target classification should be possible and enable integrated instrumentation systems to meet the monitoring needs of marine energy deployments.