Abstract
The technology of extracting energy from the wind has evolved dramatically over the last few decades, and there have, up until now, been relatively few attempts to describe that technology in a single textbook. The lack of such a text, together with a perceived need, provided the impetus for writing this book.
The material in this text has evolved from course notes from Wind Energy Engineering, a course which has been taught at the University of Massachusetts since the mid-1970s. These notes were later substantially revised and expanded with the support of the US Department of Energy’s National Renewable Energy Laboratory (NREL). In this, the second edition of this textbook, we have again added new material to reflect the rapid worldwide expansion of wind engineering in the 21st century.
This book provides a description of the topics which are fundamental to understanding the conversion of wind energy to electricity and its eventual use by society. These topics span a wide range, from meteorology through many fields of engineering to economics and environmental concerns. The book begins with an introduction which provides an overview of the technology, and explains how it came to take the form it has today. The next chapter describes the wind resource and how it relates to energy production. Chapter 3 discusses aerodynamic principles and explains how the wind’s energy will cause a wind turbine’s rotor to turn. Chapter 4 delves into the dynamic and mechanical aspects of the turbine in more detail, and considers the relation of the rotor to the rest of the machine. Chapter 5 provides a summary of the electrical aspects of wind energy conversion, particularly regarding the actual generation and conversionoftheelectricity. Next, Chapter 6 presents a summary of wind turbine materials and components. Chapter 7 discusses the design of wind turbines and the testing of wind turbines. Chapter 8 examines wind turbine and wind system control. Chapter 9 discusses siting of wind turbines and their integration into electrical systems both large and small. Next, Chapter 10 gives a detailed summary of wind turbine applications. Chapter 11 concerns the economics of wind energy. It describes economic analysis methods and shows how wind energy can be compared with conventional forms of generation. Chapter 12 describes the environmental aspects of wind energy generation. Finally, a new appendix (C) has been added. This appendix provides an overview of some of the data analysis techniques that are commonly used in wind turbine design and use.
This book is intended primarily as a textbook for engineering students and for professionals in related fields who are just getting into wind energy. It is also intended to be used by anyone with a good background in math and physics who wants to gain familiarity with the subject. It should be useful for those interested in wind turbine design perse. For others, it should provide enough understanding of the underlying principles of wind turbine operation and design to appreciate more fully those aspects in which they have a particular interest. These areas include turbine siting, grid integration, environmental issues, economics, and public policy.
The study of wind energy spans such a wide range of fields. Since it is likely that many readers will not have a background in all of them, most of the chapters include some introductory material. Where appropriate, the reader is referred to other sources for more details.