Abstract
Offshore wind energy holds significant promise as a solution in the energy transition. However, installing offshore pile foundations can generate substantial levels of underwater noise, posing potential risks to marine life. This paper examines the influence of asymmetric impact forces and pile inclination on producing underwater noise and seabed vibrations based on cases of a small- and large-diameter monopile. The study focuses on scenarios involving inclined and eccentric forces and tilted piles. The analysis reveals that nonsymmetrical conditions significantly impact the sound pressure levels around the ring frequency of the pile due to various noise generation mechanisms. However, it is observed that the vertical component of the impact force predominantly contributes to the generation of underwater noise, primarily due to its considerably higher amplitude.