Abstract
In marine invertebrates, abiotic stresses on adults can act directly on gametes quality, which impacts phenotype and development success of the offspring. Human activities introduce noise pollution in the marine environment but still few studies on invertebrates have considered the impacts on adult or larval stages separately, and to our knowledge, never investigated the cross-generational effects of anthropogenic noise. This article explores parental effects of pile driving noise associated with the building phase of offshore wind turbines on a coastal invertebrate, Pecten maximus (L.). Adults were exposed to increasing levels of sound during gametogenesis, then their offspring were also exposed. The results highlight that anthropogenic noise experienced by the parents reduces their reproductive investment and modify larval response in similar conditions. Also, larvae from exposed adults grew 6-fold faster and metamorphosed 5-fold faster, which could be an amplified adaptive strategy to reduce the pelagic phase in a stressful environment.