Abstract
Wind energy is considered one of the most efficient and cost-effective ways to generate electricity, since it has a low environmental impact. So, it is essential to identify the best places to build wind farms that have the lowest impact on human health and the highest performance. In order to determine the appropriate locations for the construction of wind power plants, in the study first, the interpolation maps of the most important parameters for the construction of wind power plants were created. Then, using the analytic network process (ANP) method due to higher accuracy than other weighting methods (the two-by-two comparison of external and internal data), the weight of each criterion was determined by establishing the external and internal relationships between the criteria and sub-criteria. In this study, since the objective was to prepare land suitability maps with different levels of risk in order to further manage the area, the OWA method was used to prepare land suitability maps. Based on the results of the ANP method for weighing each parameter, wind speed and protected areas were the most and least important parameters to build the power plant. According to the results of the OWA method, 0.78 and 0.1% of the area were suitable for building power plants at high and low risk levels, respectively. The study also found that the number of wind turbines that can be built in the region at both high and low risk levels was 422 and 75, respectively. Using the buffer function, the number of turbines for the construction of high-risk power plants was reduced to 284 by using the appropriate distance from residential areas. The ANP and OWA methods were used to prepare several maps for the evaluation of land suitability with different levels of risk, one of which could be used for the construction of a power plant.