Abstract
The presence of biofouling communities in very large densities in offshore wind farms (OWFs) generates broad effects on the structure and functioning of the marine ecosystem, yet the mechanisms behind the temporal development of these communities remain poorly understood. Here, we use an 11-year series on biofouling fauna from OWFs installed in Belgian waters to determine succession patterns and to unravel the role of biological interactions in shaping community development. Our analysis shows that biological interactions, besides age and location, affect diversity patterns in OWFs. The abundance of foundation species, predators, and space occupiers was significantly related to richness and/or diversity. The trends in richness, diversity, and community composition suggest that no permanent stable climax is reached after 11 years, which can be linked to the dynamic and disturbance-prone environment of offshore fouling communities.