Abstract
Biologists now use a variety of survey platforms to assess the spatial distribution and abundance of marine birds, yet few attempts have been made to integrate data from multiple survey platforms to improve model accuracy or precision. We used density surface models (DSMs) to incorporate data from two survey platforms to predict the distribution and abundance of a diving marine bird, the Common Loon (Gavia immer). We conducted strip transect surveys from a multiengine, fixed-wing aircraft and line surveys from a 28 m ship during winter 2009-2010 in a 3,800 km(2) study area off the coast of Rhode Island, USA. We accounted for imperfect detection and availability bias due to Common Loon diving behavior. We incorporated spatially explicit environmental covariates (water depth and latitude) to provide predictions of the spatial distribution and abundance of wintering Common Loons. The combined-platform DSM estimated the highest Common Loon densities (>20 individuals km(-2)) in nearshore waters