Abstract
Large wind farms are power plants that generate clean energy from a renewable source. They are increasingly being installed and operated to replace and complement fossil fuel power plants in an effort to help reduce greenhouse and other pollutant emissions (American Wind Energy Association, 2012 [1]; American Wind Energy Association, 2011 [2]; Global Wind Energy Council, 2011 [3]; US Department of Energy, 2008 [4]; Wiser et al., 2007 [5]). Wind energy can have a positive economic impact and numerous locations on the planet are good candidates for wind energy production. Any direct environmental impact of large-scale wind farms needs to be investigated because it could impact agriculture, economics, health, society, and technology. A recent study showed that surface temperature is observed to increase directly downwind of large wind farms [6]. This research, performed concurrently, shows that similar and complementary results are obtained for a different location, and using remotely sensed temperature data obtained from a different satellite, at higher resolution and for a longer time span. Satellite remote sensing observations from Landsat 5 Thematic Mapper are used to study temperature changes over the San Gorgonio Pass Wind Farm from 1984 to 2011, with a pixel resolution of 120 m. A warming trend is consistently observed downwind of the wind farm.