Abstract
Fish communities face increasing anthropogenic pressures in freshwater and marine ecosystems that modify their biodiversity and threaten the services they supply to human populations. To address these issues, studies have been increasingly focusing on functions of fish that are linked to their main ecological roles in aquatic ecosystems. Fish are indeed known to control other organisms through predation, mediate nutrient fluxes, and can act as ecosystem engineers. Here for each of the key functions played by fish, we present the functional traits that have already been used to assess them. We include traits measurable from observations on living individuals, morphological features measured on preserved organisms or traits categorized using information from the literature, and we discuss their respective advantages and limitations. We then list future research directions to foster a more complete functional approach for fish ecology that needs to incorporate functional traits describing, food provisioning and cultural services while accounting more frequently for intraspecific variability. Finally, we highlight ecological and evolutionary questions that could be addressed using meta-analyses of large trait databases, and how a trait-based framework could provide valuable insights on the mechanistic links between global changes, functional diversity of fish assemblages, and ecosystem services.