Abstract
Worldwide the renewable energy sector is expanding at sea to address increasing demands. Recently the race for space in heavily used areas such as the North Sea triggered the proposal of co-locating other activities such as aquaculture or fisheries with passive gears in offshore wind farms (OWFs). Our interdisciplinary approach combined a quantification of spatial overlap of activities by using Vessel Monitoring System and logbook data with a stakeholder consultation to conclude and verify on the actual feasibility of co-location. In the German Exclusive Economic Zone (EEZ) of the North Sea up to 90% of Danish and 40% of German annual gilinet fleet landings of plaice overlapped with areas where OWFs are developed. Our results indicated further that the international gilinet fishery could lose up to 50% in landings within the North Sea German EEZ when OWF areas are closed entirely for fisheries. No spatial overlap was found for UK potters targeting brown crab in the German EEZ. We further identified a number of key issues and obstacles that to date hinder an actual implementation of co-location as a measure in the marine spatial planning process: defining the legal base; implementation of safety regulations; delineation of minimum requirements for fishing vessels such as capacities, quotas, technical equipment; implementation of a licensing process; and scoping for financial subsidies to set up business. The stakeholder consultation verified the scientific findings and highlighted that all those points need to be addressed in a planning process. In the German EEZ we have shown that the socioeconomic importance of spatial overlap varies within planning boundaries. Therefore we recommend an interdisciplinary bottom-up approach when scoping for suitable areas of co-location. Hence, an informed marine spatial planning process requires comprehensive and spatial explicit socio-economic viability studies factoring in also ecological effects of OWFs on target species.