Abstract
Radar provides a useful and powerful tool to wildlife biologists and ornithologists. However, radar also has the potential for errors on a scale not previously possible. In this paper, we focus on the strengths and limitations of avian surveillance radars that use marine radar front-ends integrated with digital radar processors to provide 360° of coverage. Modern digital radar processors automatically extract target information, including such various target attributes as location, speed, heading, intensity, and radar cross-section (size) as functions of time. Such data can be stored indefinitely, providing a rich resource for ornithologists and wildlife managers. Interpreting these attributes in view of the sensor's characteristics from which they are generated is the key to correctly deriving and exploiting application-specific information about birds and bats. We also discuss (1) weather radars and air-traffic control surveillance radars that could be used to monitor birds on larger, coarser spatial scales; (2) other nonsurveillance radar configurations, such as vertically scanning radars used for vertical profiling of birds along a particular corridor; and (3) Doppler, single-target tracking radars used for extracting radial velocity and wing-beat frequency information from individual birds for species identification purposes.