Abstract
Marine energy converters can generate electricity from energetic ocean waves and water currents. Because sound is extensively used by marine animals, the radiated noise from these systems is of regulatory interest. However, the energetic nature of these locations poses challenges for performing accurate passive acoustic measurements, particularly with stationary platforms. The Drifting Acoustic Instrumentation SYstem (DAISY) is a modular hydrophone recording system purpose-built for marine energy environments. Using a flow shield in currents and mass–spring–damper suspension system in waves, we demonstrate that DAISYs can effectively minimize the masking effect of flow noise at frequencies down to 10 Hz. In addition, we show that groups of DAISYs can utilize time-delay-of-arrival post-processing to attribute radiated noise to a specific source. Consequently, DAISYs can rapidly measure radiated noise at all frequencies of interest for prototype marine energy converters. The resulting information from future operational deployments should support regulatory decision-making and allow technology developers to make design adjustments that minimize the potential for acoustic impacts as their systems are scaled up for utility-scale power generation.