Abstract
Characterising the movement and habitat affinities of fish is a fundamental component in understanding the functioning of marine ecosystems. A comprehensive array of acoustic receivers was deployed at two near-shore coastal sites in south-eastern Australia, to examine the movements, activity-space size and residency of a temperate rocky-reef, herbivorous species Girella elevata. Twenty-four G. elevata individuals were internally tagged with pressure-sensing acoustic transmitters across these two arrays and monitored for up to 550 days. An existing network of coastal receivers was used to examine large-scale movement patterns. Individuals exhibited varying residency, but all had small activity-space sizes within the arrays. The species utilised shallow rocky-reef habitat, displaying unimodal or bimodal patterns in depth use. A positive correlation was observed between wind speed and the detection depth of fish, with fish being likely to move to deeper water to escape periods of adverse conditions. Detection frequency data, corrected using sentinel tags, generally illustrated diurnal behaviour. Patterns of habitat usage, residency and spatial utilisation highlighted the susceptibility of G. elevata to recreational fishing pressure. The results from the present study will further contribute to the spatial information required in the zoning of effective marine protected areas, and our understanding of temperate reef fish ecology.