Abstract
Western Atlantic sciaenids comprise a taxonomically diverse teleost family with significant variations in the relationship between the swim bladder and the otic capsule. In this study, the auditory brainstem response (ABR) was used to test the hypothesis that fishes with different peripheral auditory structures (black drum, Pogonias chromis and Atlantic croaker, Micropogonias undulatus) show differences in frequency selectivity. In a black drum the swim bladder is relatively distant from the otic capsule while the swim bladder in Atlantic croaker possesses anteriorly-directed diverticulas that terminate relatively near the otic capsule. Signals were pure tones in the frequency range, 100 Hz to 1.5 kHz, and thresholds were determined both with and without the presence of simultaneous white noise at two intensity levels (124 dB and 136 dB, re: 1 μPa). At the 124 dB level of white noise background, both the black drum and Atlantic croaker showed similar changes in auditory sensitivity. However, in the presence of the 136 dB white noise masker, black drum showed significantly greater shifts in auditory thresholds between 300 and 600 Hz. The results indicate that the two species differ in frequency selectivity since the Atlantic croaker was less susceptible to auditory threshold shifts, particularly at the higher level of masking. This difference may be linked to peripheral auditory mechanisms. © 2004 Acoustical Society of America.