Abstract
Scour prediction is essential for the design of offshore foundations. Several methods have been proposed to predict the equilibrium scour depth for monopiles. By introducing an effective diameter, such methods could also be applied to predicting scour depth for pile groups. Yet, there are still difficulties in estimating the equilibrium scour depth of foundations in complex shapes, such as the tripod foundation. This study investigates the clear-water scour around the tripod and hexapod foundations through laboratory experiments, with uniform bed sediment and steady current. Here, the authors propose an approach to calculate the effective diameter for the tripod and hexapod models, which is similarly as for the pile groups. Three widely-used methods in predicting equilibrium scour depth have been evaluated, and the best method is recommended.