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José Juanes*
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The development of the marine renewable energy and offshore aquaculture sectors is susceptible to being affected by climate change.
Consequently, for the long-term planning of these activities, a holistic view on the effects of climate change on energy resources and environ-
mental conditions is required. Based on present climate and future climate scenario, favourable conditions for wind and wave energy exploita-
tion and for farming six marine fish species are assessed using a suitability index over all European regional seas. Regarding available energy
potential, the estimated changes in climate do not have direct impacts on the geographic distribution of potential regions for the energy in-
dustry (both wind and wave based), that is they pose no threat to this industry. Long-term changes in environmental conditions could how-
ever require adaptation of the aquaculture sector and especially of its exploitation areas. Opportunities for aquaculture expansion of the
assessed species are identified. Possibilities for co-location of these activities are observed in the different climate scenarios. The evaluation of
potential zones for the exploitation of marine renewable energy resources and offshore aquaculture represents a stepping-stone, useful for im-
proving decision-making and assisting in the management of marine economies both in the short-term and in the long-term development of
these sectors.
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Introduction
Renewable energy resources and aquaculture will play a key role

in providing energy and food security to meet global demands in

the coming decades. The expansion of these activities has been

contemplated in public policies at the international, national, and

regional levels, such as the European Commission’s Blue Growth

Strategy (European Commission, 2017). These emergent activi-

ties, within the context of Blue Growth, have been increasingly

enabled to operate in hostile environments (Bahaj, 2011), justify-

ing their strategic position (European Commission, 2017). The

expansion of these industries towards the offshore environment

has promoted the development of multi-use platforms during the

last decade (Abhinav et al., 2020). This is the case for wind en-

ergy, wave energy, and aquaculture activities, which present syn-

ergies, mainly structural and operational, that allow the co-

location of these activities (e.g. Shiau-Yun et al., 2014; Buck et al.,

2017; Weiss et al., 2018a). Currently, renewable resources are part

of a large and diversified world energy mix, with a share of renew-

able marine energy sources of 69 198 GWh in 2018, and a total

installed capacity of 28 686 MW in 2019 (IRENA, 2020).

Meanwhile, the growth of the aquaculture sector has increased

the average consumption of fish and its by-products globally

(FAO, 2016a) and is expected to be the main source of aquatic

food in the next years (Ottinger et al., 2016). The long-term
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development of these sectors is however susceptible of being af-

fected by climate change.

The effects of global warming induced by greenhouse gas emis-

sions indicate relevant changes in future climate patterns, with di-

rect impacts on the environment (IPCC, 2014a). In this context,

General Circulation Models (GCMs) are essential tools for assess-

ing climate change under future scenarios. The outcomes of cur-

rently available GCMs from the fifth phase of the Coupled Model

Intercomparison Project (CMIP5) are described in the Fifth

Assessment Report (AR5) of the Intergovernmental Panel on

Climate Change (IPCC) (IPCC, 2014b). Such projection models

take into account Representative Concentration Pathways (RCPs)

introduced in the AR5 of the IPCC (IPCC, 2014a). According to

this document, the severe increase in greenhouse gas emissions

has reached the worst emission scenario proposed by the IPCC,

the RCP 8.5 (IPCC, 2014a; Clark et al., 2016). The very high base-

line emission scenario, RCP 8.5, is based on the continuity of the

current level of CO2 emissions and is considered the more realis-

tic scenario if no specific mitigation objective is implemented

(Riahi et al., 2011; Van Vuuren et al., 2011). However, GCM out-

puts are limited for wind-wave climate parameters compared to

other environmental variables, such as temperature and

precipitation.

Since wind-wave climate and environmental conditions (phys-

ical–chemical factors) respond to climate variability and changes

(Callaway et al., 2012; Hoeke et al., 2013), the main issue is what

impact can climate change have on the marine renewable energy

and offshore aquaculture sectors? Consequently, another question

arises, what are the opportunities (e.g. new areas for exploitation

of activities, as well as for co-location) and threats (e.g. currently

suitable areas that may be affected by climate change) to these in-

dustries in the long-term period?

Several studies have carried out simulations to project ocean

wind-wave climate (Camus et al 2017; Saha et al., 2017; Morim et

al., 2018) and environmental variables (Tinker et al., 2016; De la

Hoz et al., 2018; Hand et al., 2019) to respond to different trajec-

tories of increased greenhouse gas emissions throughout the 21st

century. More specific studies have assessed the effects of climate

change on energy resources and on environmental conditions for

aquaculture using climate models (regional and global). Pryor

and Barthelmie (2010) and Koletsis et al. (2016), for instance,

sought to recognize direct changes in wind power potential. In

turn, regional wave climate projections over Europe for different

scenarios and projected changes in wave energy flux was analysed

in Perez et al. (2015). Moreover, considerable attention has been

focused on climate projections relevant to aquaculture. For in-

stance, Sarà et al. (2018) developed an approach to assess spatial

and temporal patterns of covariation between maximized envi-

ronmental cost-benefit changes under present and future climate

conditions and narrowing the science-policy communication gap.

Merino et al. (2012) investigated the feasibility of sustaining cur-

rent and increased rates of fish consumption per capita in a future

scenario, considering economic, climatic, and social aspects.

Although an effort has been made by the scientific community

to project climate change, to date, there are no approaches to as-

sess the distribution of potential zones for the exploitation of ma-

rine renewable energy resources and for open-sea fish farming in

future scenarios. Consequently, to help in long-term planning

and the adaptation of the marine renewable energy and offshore

aquaculture sectors to future climate conditions, a holistic view

of the changes in available energy potential and environmental

conditions for open-sea fish farming is required. Furthermore,

defining and analysing present and future conditions, including

climate and environmental conditions, are two of the most im-

portant phases in the marine spatial planning (MSP) process,

both included in the United Nations Educational, Scientific and

Cultural Organization (UNESCO) methodology (Steps 5 and 6,

Ehler and Douvere, 2009). In this sense, this work aims to assess

the geographical distribution of potential zones for the exploita-

tion of offshore wind and wave resources, for farming six marine

fish species and for the co-location of these activities, due to the

climate change. For this purpose, present and projected climate

conditions are analysed to recognize areas with favourable condi-

tions for these activities, thus identifying opportunities and

threats for these marine economies.

Study area
The study area encompasses the Mediterranean Sea, the Black

Sea, the Baltic Sea, and the Northeast Atlantic Ocean (including

the North Sea and the Barents Sea). These regions that include all

the European regional seas are of particular interest to the off-

shore renewable energy and aquaculture sectors. Europe has a

leading role in the use of marine energies, accounting for >90%

of the installed offshore wind capacity in the world (Kalogeri et

al., 2017). The enormous wind potential in the North Atlantic

sub-basin is evidenced by the advanced development of the wind

industry in the North and Baltic Seas. Conversely, this industry is

still in its initial developmental phase in the Mediterranean Sea,

with some wind farms in operation, but most still under con-

struction or being planned (4COffshore, 2020; Wind Europe,

2020a, b). Another area of special interest for wind and wave en-

ergy exploitation is the Black Sea (Rusu et al., 2018). According

to Kalogeri et al. (2017), the North Atlantic sub-basin also has a

high potential for the exploitation of wave energy.

With regard to aquaculture, the Mediterranean Sea is one of

the areas with the greatest potential for farming European sea-

bass, Gilthead seabream, Atlantic Bluefin tuna, and Meagre

(FAO, 2005a, b, c, 2015; Weiss et al., 2018b), the last three species

currently being farmed at commercial scale in Turkey and Greece

(FAO, 2017). The African coast of the North Atlantic presents

great opportunities for farming Greater amberjack (Weiss et al.,

2018b). Elsewhere, Norway and the United Kingdom are the

main producers of Atlantic salmon in the North Sea (FAO, 2017).

Material and methods
This study analysed present and future spatiotemporal dynamics

in met-ocean conditions and oceanic physical–chemical factors

for the exploitation of energy resources and open-sea fish farm-

ing. The available wind energy potential and wave energy flux are

estimated to identify zones with favourable conditions for energy

exploitation, and other environmental conditions are analysed to

identify zones with optimal conditions for fish growth. The delta

change method (delta downscaling or change factor method,

Mosier et al., 2014, 2018) is adopted to assess the future changes

due to climate change. This method is based on the use of a

“change factor”, the difference between a mean value in the refer-

ence period and future simulations. This “change” is then applied

to the historical data series to transform this series set into time

series that is representative of the future climate (Figure 1).

The suitability of the study area is estimated using an index

[suitability index (SI)] measuring the probability of meeting

favourable conditions for each evaluated aspect (c.f. “SI
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assessment” section). Figure 1 shows a general overview of the

methodology followed in this work, which is explained in more

detail in the following sections.

Data
For the present climate, a combination of historical climate data

information (21–37 years) at different temporal (hourly, daily,

and weekly) and spatial (0.017–0.3�) resolutions is used, depend-

ing on the availability of homogeneous datasets (Table 1). As for

the future scenario, a long-term (2070–2099) projection, based

on the RCP 8.5 from the CMIP5 (Taylor et al., 2012), is consid-

ered. GCMs of the baseline scenario (RCP 8.5) are chosen to rep-

resent the projections of long-term changes since they correspond

to the pathway with the highest greenhouse gas emissions, that is

if no specific measure of climate mitigation is included (Riahi et

al., 2011; Van Vuuren et al., 2011). To ensure data accuracy,

GCMs are selected according to their ability to represent projec-

tions in the Northeast Atlantic region (Perez et al., 2014, 2015)

and because it is the reference set of the IPCC (IPCC, 2014a)

(Table 1).

The variables used to represent the climate in the present and

projected scenarios are based on the driving elements for energy

production and the limiting factors for fish growth. Wind and

wave data are considered to evaluate the availability of a viable re-

source for energy exploitation. On the other hand, temperature

and salinity, two most limiting factors for distribution of marine

organisms at a biogeographical scale, are considered to assess

favourable environmental conditions for fish farming. These vari-

ables allow the mapping of areas with potential for these sectors,

thus identifying opportunities and threats due to long-term cli-

mate change.

Simulation of long-term projections
The simulation of future climate scenarios for the period 2070–

2099 is assessed to apply the delta change method, which is widely

used in the literature (Lutz et al., 2014; Mosier et al., 2014; Räty,

et al., 2014). As a quality control, data from GCMs during the ref-

erence period are compared against historical data for the same

period (1985–2005). GCM data with >20% of the values outside

the limits of the Mean Squared Errors (MSEmean 6 MSEstd) are

discarded (Chai and Draxler, 2014). This period is used because

historical data overlap with the data available in most GCMs. A

detailed description of the data validation procedure is presented

in De la Hoz et al. (2018).

To avoid systematic biases, parameters (mean, min, max, std)

are calculated for each GCM independently and averaged with

the ensemble method (Meier et al., 2011; Arnell et al., 2016;

Camus et al., 2017; De la Hoz et al., 2018). Differences in the

means between the future simulations (2070–2099) and the refer-

ence period (1985–2005) of the GCM data series are applied to

the historical data series, generating projected data series (2070–

2099). The same bias is assumed in present and future climate

conditions, and the spatial and temporal resolutions of the pro-

jected data are the same as the available historical data. Because

the spatial and temporal resolutions of the GCM outputs are too

coarse to allow a direct comparison with the analytical reanalysis,

the points with the shortest Euclidean distance among them are

considered.

SI assessment
The SI evaluates the favourable conditions of energy resources

and environmental conditions for the exploitation of renewable

energy and aquaculture activities, respectively. This index meas-

ures the percentage of time that the study area is in favourable

conditions for these activities, according to the thresholds in

Table 2. The percentage of time, explained in more detail in item

3.3.2 for wind and wave energy resources and in item 3.3.3 for

aquaculture, is expressed on a standardized scale of probability,

where value 1 means the maximum suitability and 0 means the

minimum suitability.

Evaluation criteria
The analyses for renewable energy resources are based on refer-

ence operating thresholds of large wind turbines and wave devi-

ces, considering the feasibility for energy extraction. For

aquaculture, optimal environmental ranges are considered for the

growth of the six selected marine fish species. Depth limits for en-

ergy and aquaculture activities are similar to those established in

previous studies (Table 2).

Wind and wave energy resources
The assessment of resource availability is based on the percentage

of time during which favourable production conditions occur,

for both wind and wave devices (Table 2). Wind energy is evalu-

ated based on the percentage of time the available potential re-

main above the threshold considered for energy extraction. The

available potential is calculated for a height of 90 m, according to

the average hub height of wind turbines considered in this study.

Therefore, the SI of the wind resource (SIWind) is defined accord-

ing to the following equation:

Figure 1. Diagram depicting the various steps followed under the
proposed methodological approach. The differences [i.e. change (3)]
in the means between the reference period (1) and the future
simulations (2) of the GCM data series are applied to the historical
data (4) series, generating the projected data (5) series. Historical and
projected data [present scenario (4) and future scenario (5),
respectively] are analysed using a SI (6) to measure the probability of
meeting favourable conditions (6) for wind energy, wave energy, and
aquaculture. The possibilities of co-location (7) are calculated using
the limiting values of the SI of each activity (minimum value of
suitability).
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Table 2. Aspects, species assessed, thresholds, data sources, and criteria.

Aspects/species Thresholds Sources of information Criteria (0–1)

Wind resource
Available potential (W/m2) � 400 Jonkman et al. (2009, 2012) and Bak

et al. (2013)
% of time

Wave resource
Available energy flux (kW/m) �15 Babarit et al. (2012), De Andres et al.

(2015), and Roberson et al.
(2016)

% of time

Bathymetry (m) �500 Weiss et al. (2018c) Boolean
Aquaculture Temperature (�C) Salinity (Practical Salinity

Unit, PSU)
European seabass, Dicentrarchus labrax 18� to �27 30� to �40 FAO (2005a), Hossu et al. (2005),

Katavi�c et al. (2005), Kavadias
et al. (2003), Person-Le Ruyet
et al. (2004), and Weiss et al.
(2018b)

% of time

Gilthead seabream, Sparus aurata 18� to �26 30� to �40 FAO (2005b), Katavi�c et al. (2005),
Seginer and Ben-Asher (2011),
and Weiss et al. (2018b)

% of time

Atlantic salmon, Salmo salar 6� to �16 30� to �35 FAO (2004), Gooley et al. (2000),
Katavi�c et al. (2005), Nath et al.
(2000), and Weiss et al. (2018b)

% of time

Atlantic Bluefin tuna, Thunnus thynnus 18� to �26 30� to �40 FAO (2015), Katavi�c et al. (2005),
Ticina et al. (2007), Tucker
(1998), Weiss et al. (2018b) and
Wright (2008)

% of time

Meagre, Argyrosomus regius 18� to �26 30� to �40 Duncan et al. (2013), FAO (2005c),
Martı́nez-Llorens et al. (2011),
Monfort (2010), Schuchardt et al.
(2007), and Weiss et al. (2018b)

% of time

Greater amberjack, Seriola dumerili 20� to �26 30� to �36 Chambers and Ostrowski (1999),
FAO (2016b), Jover et al. (1999),
Tucker (1998), and Weiss et al.
(2018b)

% of time

Bathymetry (m) �700 Weiss et al. (2018b) Boolean

Table 1. Summary of available periods, data sources, resolutions and models for the present and future climate.

Variable Available period
Sources of

information
Temporal
resolution

Spatial
resolution (�) Method

Wind 1979–2010 Saha et al. (2010) Hourly 0.3 Reanalysed data
2011–2015 Saha et al. (2014) 0.2
2070–2099 WCRP (2018) Daily 0.25a Projections CNRM-CM5; GFDL-ESM2G;

GFDL-ESM2M; IPSL-CM5A-LR; IPSL-
CM5A-MR; MPI-ESMMR

Waves 1979–2015 Perez et al. (2017) Hourly 0.25 Reanalysed data
1979–2015 Reguero et al. (2012) 0.25
2070–2099 WCRP (2018) Monthly 0.25a Projections CNRM-CM5; GFDL-ESM2G;

GFDL-ESM2M; IPSL-CM5A-LR; IPSL-
CM5A-MR; IPSLCM5B-LR; MPI-ESM-LR;
MPI-ESM-MR

Water temperature 1985–2013 Donlon et al. (2012) Daily 0.25 Reanalysed data
2071–2099 WCRP (2018) Daily 0.25 Projections CNRM-CM5; GFDL-ESM2G;

IPSL-CM5A-LR; IPSL-CM5A-MR; MPI-
ESM-LR; MPI-ESM-MR

Salinity 1993–2013 Copernicus (2016) Weekly 0.25 Reanalysed data
2079–2099 WCRP (2018) Monthly 0.25a Projections IPSL-CM5A-LR; IPSL-CM5A-MR;

IPSLCM5B-LR; CNRM-CM5; GFDL-
EMS2G; GFDL-ESM2M

Bathymetry 2009 Amante and Eakins
(2009)

Static 0.017 Satellite measurements

aSpatial resolution derived from reanalysis data, c.f. 3.2. Simulation of long-term projections.
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SIWind ¼
tAp

�t

� �
; (1)

where tAp is the time, at the temporal resolution of the base vari-

able (wind, Table 1), that the available potential at a height of

90 m (Ap) remained above 400 W/m2 (Table 2) throughout the

analysed time series (�t ).

The wave energy suitability assessment is based on the percent-

age of time a site presents waves that could be harvested energeti-

cally, considering the flux of wave energy where the availability of

resource is viable for energy extraction. The SI for wave resource

(SIWave) according to the following equation is

SIWave ¼
tEf

�t

� �
; (2)

where tEf is the time, at the temporal resolution of the base vari-

able (waves, Table 1), that energy flux (Ef ) remained above

15 kW/m (Table 2) throughout the analysed time series (�t ).

Aquaculture
The assessment of suitable zones for open-sea fish farming is

based on two limiting factors for fish growth: sea surface temper-

ature (sst) and sea surface salinity (sss). The SI for aquaculture

(SIAq) is therefore established according to the percentage of time

that sst and sss remained within the biological thresholds for each

species (Table 2) in concomitance (con):

SIAq ¼ con
tsst

�t
;

tsss

�t

� �
; (3)

where tsst is the time, at the temporal resolution of the base vari-

able (temperature, Table 1), that the sst remained within the de-

fined thresholds for each fish species (Table 2) throughout the

analysed time series (�t ). Also, tsss is the time, at the temporal

resolution of the base variable (salinity, Table 1), that the sss

remained within the defined thresholds for each fish species

(Table 2) throughout the analysed time series (�t ).

Finally, map results are showing after a Kriging method inter-

polation (Ghiasi and Nafisi, 2016) on a homogeneous grid with

0.10� spatial resolution.

Co-location
The SIs for the wind energy (1), wave energy (2), and aquaculture

(3) are integrated in a combined maps to identify zones with po-

tential for the co-location of these activities. The integration of

the maps is based on the limiting values of each SI (minimum

value of suitability, min) of the evaluated activities. The potential

zones for co-location, in the present and future scenarios, are

expressed in a standardized scale of probability (SICo, 0–1) of the

minimum value found for each activity in the study area, at each

grid cell:

SICo ¼ min SIWind; SIWave; SIAqð Þ: (4)

Different combinations of activities were used for the calcula-

tion of SICo (e.g. wind þ wave; wave þ aquaculture; wind þ
aquaculture; and the three activities).

Results and discussion
Wind energy
The projected long-term changes in the mean wind speed are

shown in Figure 2. A decrease of �5% in energy potential is

found in most of the study area. The projected mean wind speed

of the ensemble is generally smaller than that of the present cli-

mate conditions, except for that in the Baltic and Barents Seas.

The decrease in resource availability in the North Atlantic sub-

basin is consistent with the findings of Casas-Prat et al. (2018)

and Semedo et al. (2012). Hemer et al. (2013) also predicted a

weakening in wind velocities in the North Atlantic sub-basin but

of a greater magnitude (�3 m/s) than those observed in this study

(�0.43 m/s). These variations in magnitude could be justified by

the different scales of analysis and the models and methods used

in each study.

For the Mediterranean and Black Seas, the patterns of the

changes in wind speed are similar to those calculated by Koletsis

et al. (2016) and Soukissian et al. (2018), showing a negative

trend in most parts of both seas. These authors nevertheless

found increases in specific areas, such as in the Aegean Sea and in

the western part of the Black Sea (Koletsis et al., 2016) and in the

Adriatic and Ionian Seas (Soukissian et al., 2018), and these

increases are not observed in this study. The increase in wind

speed identified for the Baltic Sea shows increases of up to

0.49 m/s in the northern part of the sea. Various studies carried

out in this region also have stated that there may be an increase

in wind speed (Gräwe et al., 2013); however, other studies have

claimed that wind characteristics will not change (Deng et al.,

2015).

The available potential (power density) calculated for the pre-

sent climate is consistent with the conclusions of Zheng and Pan

(2014) and Zheng et al. (2018) (Figure 3a). In addition, the spa-

tial distribution pattern and values found in this study are similar

to those found by Kalogeri et al. (2017) (see Supplementary mate-

rial for wind potential in the different scenarios). The areas with

the highest power density are in Iceland, the North Sea, and the

Baltic Sea. Among the areas with the highest potential, the North

and Baltic Seas are currently the main development areas for the

offshore wind industry (4COffshore, 2020). Specific areas in the

Mediterranean Sea, such as the coast of France, which is expand-

ing this industry (Wind Europe, 2020b), also stood out as having

the potential for wind exploitation. Southwestern regions, such as

Figure 2. Projected changes in the ensemble mean of the mean
wind speed (m/s), i.e. the differences in the means between the
reference period and the future simulations of the GCM data series
(c.f. Figure 1).
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the Canary Islands, also present favourable conditions regarding

wind potential (Kalogeri et al., 2017).

The differences between the SI of the present (Figure 3a) and

future (Figure 3b) climate scenarios are not relevant enough to

affect the availability of a good resource (potential �400 W/m2).

Therefore, potential zones for wind exploitation tend to maintain

favourable conditions, allowing the long-term expansion of this

sector.

As an example, Figure 4a shows the location of the offshore

wind projects in the North Sea (4COffshore, 2018). The wind

farm location sites, whether in the operation, installation, or

planning stage, remained under favourable conditions for both

scenarios >40% of the time (0.4 of SI, Figure 4b). There is only a

slight decrease in the SIWind in some locations for the projected

scenario, but this decrease does not pose a threat to the future of

the North Sea wind sector.

Wave energy
Long-term changes in wave energy flux are noticed for the end of

the 21st century (2070–2099, Figure 5). In general, a decrease in

wave potential is expected in most of the study area, mainly to-

wards the west (decrease of �0.45 kW/m). Wave simulations pro-

jected lower waves in the North Atlantic sub-basin than in other

areas. These projections are consistent with the results of Hemer

et al. (2013), Semedo et al. (2012), Wang et al. (2014), and Casas-

Prat et al. (2018), who observed a decrease in significant wave

height (Hs) and wave periods in that region. In comparison to

the other areas studies, the Mediterranean Sea, the North Sea and

the Baltic Sea showed a higher stability or a moderate decrease in

this energy resource. Consistent with the work of Morim et al.

(2018), a decrease in the North Atlantic and the Mediterranean

Sea occurred, although no substantial increase in wave power is

observed in the Baltic Sea. The only zone with increased wave en-

ergy flux is the Norwegian Sea, in accordance with the results

Figure 3. SI for the available wind potential in the (a) present climate (1979–2015) and (b) future climate scenarios (2070–2099). SI range
(1¼maximum suitability, 0¼minimum suitability).

Figure 4. (a) Location of the wind projects in the North Sea,
classified as either fully commissioned, generating power, under
construction, consent authorized, consent application submitted, or
early planning (4COffshore, 2018). (b) SI for the present climate
conditions and future climate scenario in the locations of the
represented wind farms according to their longitude. SI range
(1¼maximum suitability, 0¼minimum suitability).

Figure 5. Projected changes in the ensemble mean of the wave
energy flux (kW/m), i.e. the differences in the means between the
reference period and the future simulations of the GCM data series
(c.f. Figure 1).

Climate change effects 3173

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/7-8/3168/6000672 by guest on 24 Septem
ber 2024



from the climatological projections for Hs determined by Semedo

et al. (2012), Liu et al. (2016), and Casas-Prat et al. (2018). Since

the selection of the GCMs is based on the models and skills rec-

ommended by Perez et al. (2014, 2015) for wave climate, the

changes in energy flux are similar to those found by these

authors. However, changes in greater magnitudes are observed

that are mainly negative changes in the North Atlantic sub-basin.

The Black Sea is not considered for the energy flux calculations

due to the lack of available data to calculate long-term

projections.

Wave energy flux shows areas with higher energy potential in

the North Atlantic, near Ireland, the United Kingdom, Faroe

Islands, and Iceland than in other areas (see Supplementary mate-

rial for present and projected wave energy flux). The energy flux

in the North Atlantic region is �80 kW/m, as determined by

Reguero et al. (2011). The energy potential calculated for the pre-

sent climate follows the same distribution and have similar values

as those in previous studies (Kalogeri et al., 2017; Weiss et al.,

2018c), which is consistent with the conclusions of Reguero et al.

(2015). As the changes in wave energy flux are not pronounced

(Figure 5), the SIs for the present (Figure 6a) and future

(Figure 6b) climate scenarios differed negligibly. Considering the

time in which it took the resource to reach values above 15 kW/

m, long-term changes in met-ocean conditions should not di-

rectly influence energy extraction projects. As with the wind re-

source scenarios (c.f. Figure 3a and b), the availability of energy-

efficient resources remained stable, with minor changes at specific

points. Therefore, there are opportunities for long-term invest-

ments in the wave energy sector in the identified potential zones

since there are currently no operational wave farms.

Aquaculture
In contrast to projections for marine energy resources, water tem-

perature and salinity indicate changes in greater magnitudes,

reaching a difference of �5�C (Figure 7a) and 2.7 PSU

(Figure 7b), respectively. The long-term temperature projection

showed increases in all European regional seas, coinciding with

the findings of De la Hoz et al. (2018). The spatial distribution of

these increases followed the same pattern as that found by these

authors. The rates of the projected changes in temperature are

similar to those found by Tinker et al. (2016) and Hand et al.

(2019) in the North Atlantic sub-basin, with a substantial long-

term increase of �1.3�C. The long-term projections of Meier

(2006) in the Baltic Sea also showed an increase in sea surface

temperature. In the Mediterranean Sea, the detected changes var-

ied between 1 and 3�C, equal to those found for the same long-

Figure 6. SI for the available wave energy flux in the (a) present climate (1979–2015) and (b) future climate scenario (2070–2099). SI range
(1¼maximum suitability, 0¼minimum suitability).

Figure 7. Projected changes in the ensemble mean of the (a) water
temperature (�C) and (b) salinity (PSU), i.e. the differences in the
means between the reference period and the future simulations of
the GCM data series (c.f. Figure 1).
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term period by Mariotti et al. (2015). Larger changes are identi-

fied in the Black Sea, with increases over 4�C (Sakali and Başusta,

2018).

Changes in sea surface salinity for the future climate scenario

showed both increases and decreases in the study area

(Figure 7b). The different estimated spatial change patterns in sa-

linity compared to those in temperature are due to adjective pro-

cesses and local freshwater inputs (Tinker et al., 2016). The

salinity projection is validated with OCLE (Observatory of

Climate change effects on Littoral Ecosystems) data (http://ocle.

ihcantabria.com/, De la Hoz et al., 2018), which showed the same

climate change spatial patterns. The increases found in this study

are, however, higher than those observed in the OCLE project. A

decrease in salinity is predicted mainly for the North Atlantic

sub-basin, concentrated in the North Sea, and with differences of

up to -2.18 PSU. Tinker et al. (2016) also observed a decrease in

this region, although with declines in �0.41 PSU. The Baltic Sea

also shows a salinity decrease in relation to the present climate

conditions, as documented by Meier (2006). Conversely,

increases (of up to 2.5 PSU in the Aegean Sea) are observed in

most of the Mediterranean Sea, although particular areas showed

decreases (approximately �1.8 PSU on the Egyptian coast and

�0.7 to the extreme west of the Mediterranean Sea). Projections

for the Black Sea identified increases of �1 PSU.

The effects of climate change on marine environmental condi-

tions are evident (Hand et al., 2019), with direct and indirect

impacts on aquaculture (Barange and Cochrane, 2018) and sea-

food quality (Barbosa et al., 2017) and implications for the

growth rate of farmed species (Sarà et al., 2018). In this context,

changes in environmental conditions suitable for open-sea fish

farming tend to drive the long-term spatiotemporal evolution of

this industry. In the study area, changes in these conditions are

mainly associated with the increase in suitable areas for aquacul-

ture, providing long-term opportunities for this sector. Evidence

indicating long-term threats to the current potential farming

areas has been identified for small areas in the central west and

east of the United Kingdom and eastern Ireland for Atlantic

salmon farming (Figure 8c).

Due to the similarity in temperature and salinity thresholds

(euryhaline and eurythermal species), Gilthead seabream,

Atlantic Bluefin tuna, Meagre, and European seabass show a simi-

lar distribution of suitable zones (Figure 8a and b). The areas

with the greatest SIs for these species are concentrated mainly in

the Mediterranean Sea and along the North Atlantic coast of

Morocco and the Canary Islands. However, there is a consider-

able increase in the SI for the RCP 8.5 scenario at the end of the

century over the Moroccan coast and the southern part of Spain

and Portugal. Smaller increases occurred in the southern

Mediterranean and the Aegean Sea between Greece and Turkey

(main producers of Atlantic Bluefin tuna, Gilthead seabream and

Meagre, FAO, 2017), mainly due to changes in temperature

(Figure 8a and b).

With increasing water temperatures, suitable zones for farming

Atlantic salmon will be redistributed to higher latitudes, as evi-

denced on the Norwegian coast (Figure 8c). However, salinity

projections demarcated higher SIs along the North Atlantic sub-

basin latitudes. The spatial redistribution of favourable condi-

tions for Atlantic salmon farming demonstrated both the resil-

ience of the current industry (production of Atlantic salmon in

Norway and the United Kingdom, FAO, 2017) and new market

opportunities. No suitable zones are identified for farming

Greater amberjack under the present climate conditions, mainly

due to temperature and salinity thresholds to the north and south

of the study area, respectively (Figure 8d). The SI for the pro-

jected climate scenario increased along the coast of Morocco,

southern Spain, the Canary Islands, and the Bay of Biscay, for this

species (Figure 8d).

The identified climate change effects will require adaptation by

the aquaculture sector, mainly regarding exploitation areas.

While long-term changes are apparently positive (i.e. enabling

farming of certain species in other regions), the long-term devel-

opment of this sector requires preventive management and plan-

ning. In this context, assuming that climate change will have a

direct impact on wild fish resources (Frost et al., 2012; Barbosa et

al., 2017), the aquaculture sector can contribute to food security

throughout this century since it can adapt to changes in the envi-

ronmental conditions suitable for fish farming.

As an example, the SI means of the present and future scenar-

ios for Meagre, Gilthead seabream and Atlantic Bluefin tuna are

presented in the Major Fishing Areas of the Mediterranean Sea

(Figure 9a and b; FAO, 2018a). The largest increases in SI have

been predicted for Divisions 1.1 and 1.2, indicating opportunities

for the long-term expansion of Meagre and Gilthead seabream

farming in France (production of 600 and 700 tonnes in 2016, re-

spectively) and Meagre, Gilthead seabream, and Atlantic Bluefin

tuna farming in Spain (production of 1661, 10 128, and 910

tonnes in 2016, respectively) (FAO, 2018b). Opportunities for

new markets have been identified in Algeria and Morocco for the

three species and in France for Atlantic Bluefin tuna (FAO,

2018b). Increases in SI have also been observed in Divisions 2.2,

3.1, and 3.2. The main production zone of these three species

(FAO, 2017), Division 3.2, indicates a continuity of favourable

conditions, thus favouring the long-term expansion of this indus-

try. The zones in Divisions 1.3 and 2.1 will maintain present envi-

ronmental conditions, with SIs for both scenarios being similar

(with a 0.01 and 0.004 difference, respectively). Therefore, the

continuity of aquaculture activities for these species does not

seem to be threatened by the predicted increase in ocean temper-

ature and changes in salinity.

Co-location
The increasing and often conflicting uses of marine resources

have driven the search for technological solutions to the co-

location of different activities. Thus, and due to the massive de-

velopment trend towards the open ocean, multipurpose and hy-

brid platforms can be an alternative for the sustainable

development of marine economies (Christensen et al., 2015).

Multipurpose concepts combining aquaculture with wind energy

were proposed by Buck et al. (2017). Hybrid platforms were de-

veloped for the combined exploitation of offshore wind and wave

energy, such as the W2Power hybrid system (Pelagic Power,

2010). Different approaches to combine energy exploitation,

aquaculture, and related maritime transport have been analysed

by the FP7-funded TROPOS project (Shiau-Yun et al., 2014).

The co-location of these activities has significant potential in

economizing CAPEX (capital expenditure) and operational costs

by means of concerted long-term spatial planning and infrastruc-

ture sharing (Abhinav et al., 2020). Moreover, the process of

planning and building offshore farms and platforms takes a long

time and has a long-projected lifespan, thus requiring essential

climate change information.
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Figure 8. SI for (a) Meagre, Gilthead seabream, and Atlantic Bluefin tuna; (b) European seabass; (c) Atlantic salmon; and (d) Greater
amberjack under present (left column) and future (right column) climate conditions. SI range (1¼maximum suitability, 0¼minimum
suitability).
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In this contribution, long-term climate changes show opportu-

nities for the co-location of energy activities and aquaculture of

some fish species assessed in this study. Different combinations of

activities are shown in Figure 10; moreover, all possibilities for

co-location are in the Supplementary material. The possibilities

for co-location of wind and wave energy exploitation devices are

similar under both scenarios (Figure 10a). The potential zones for

the combined exploitation of these resources are concentrated in

the Norwegian and North seas, on the coast of Ireland and the

United Kingdom, and between Iceland and the Faroe Islands.

Since available energy resources remain stable (c.f. Figures 3

and 6), the main factor driving the long-term possibilities of co-

location of energy and aquaculture activities is the increase in the

SI for fish species. This is the case for the combination of wind

energy, wave energy, and Atlantic salmon (Figure 10b). The op-

portunities for co-location of these activities are related to the in-

crease in areas with favourable conditions in the future scenario.

The main areas with increased SI are between Iceland and the

United Kingdom and on the Irish coast. Zones with the potential

for co-location between wind energy and aquaculture are docu-

mented in the study area, as is the case for Greater amberjack

farming (Figure 10c). Due to the increase in the Greater

Amberjack’s SI for the projected climate scenario (c.f. Figure 8d),

possibilities of combined exploitation with wind energy are iden-

tified in the Canary Islands, on the Atlantic and Mediterranean

coasts of Morocco, in southern and northern Spain, and in south-

ern Portugal and western France. Opportunities for the co-

location of wave energy and Meagre, Gilthead seabream, and

Atlantic Bluefin tuna farming increased in the future scenario

(Figure 10d). Higher values of SI are found on the Portuguese

coast and in the Gulf of Biscay.

Conclusion
A regional downscaling of the atmospheric conditions for multi-

variate wind-wave climate and environmental conditions is devel-

oped and applied over the European regional seas. The

methodological approach used is based on the delta change

method to simulate future met-ocean and environmental condi-

tions based on the continuity of the current level of CO2 emis-

sions (i.e. RCP 8.5). The application of this method allows

improving the spatial and temporal resolution of the GCM out-

puts, generating a projected time series between the years 2070

and 2099 that enabled SI calculations for the different activities in

future scenarios with a higher robustness. Climate projections us-

ing the very high baseline emission scenario (RCP 8.5) indicate

that the energy potential for both wind and wave energy will not

Figure 9. (a) Mediterranean Sea FAO Major Fishing Area with its respective divisions (FAO, 2018a). (b) SI means for the present climate
conditions and future climate change scenario in each division as proposed by the FAO. SI range (1¼maximum suitability, 0¼minimum
suitability).
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Figure 10. SI for the co-location of activities, considering the combination of (a) available wind potential, available wave energy flux and
Atlantic salmon; (b) available wind potential and available wave energy flux; (c) available wind potential and Greater amberjack; and (d)
available wave energy flux and Meagre, Gilthead seabream, and Atlantic Bluefin tuna, under present (left column) and future (right column)
climate conditions. SI range (1¼maximum suitability, 0¼minimum suitability).
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be negatively impacted by climate change. In fact, both resources

showed a relative stability between historical and projected cli-

mate situations. In the case of environmental conditions for

open-sea fish farming, a considerable long-term change is pre-

dicted. The increase in temperature (Figure 7a) and differences in

salinity (Figure 7b) will require an adaptation of the aquaculture

sector regarding the geographical location of the farms. In any

case, management responses should be implemented in advance

to reduce the impacts of unfavourable conditions and maximize

opportunities in areas suitable for aquaculture. Opportunities for

co-location of these activities increase in the future scenario, such

as the combination of wind energy, wave energy, and Atlantic

salmon farming (Figure 10b). Projections to assess the effects of

climate change on emerging marine economies assist in strategic

management and long-term planning of the marine space, i.e. the

MSP process. In this sense, a holistic view of spatial displacement

trends in the energy and aquaculture industries, within a Blue

Growth perspective, highlights opportunities and threats for these

sectors. It also identifies potential pressures from these activities

in areas that are not yet prepared for such development (e.g. the

expansion of the aquaculture industry for European seabass farm-

ing along the Morocco coast). Moreover, a strategic vision is im-

portant to ensure the sustainable development of these sectors

from a perspective of coexistence (e.g. multi-use offshore plat-

forms), thus optimizing the use of space and reducing impacts on

the marine environment. Therefore, the assessment of potential

zones for the exploitation of marine renewable energy resources

and fish farming represents a useful stepping-stone for improving

decision-making and confirming the long-term resilience of such

activities in the study area, both for individual and co-location

exploitation.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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