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Abstract: Wave energy conversion technologies have recently attracted more attention as part of
global efforts to replace fossil fuels with renewable energy resources. While ocean waves can provide
renewable energy, they can also be destructive to coastal areas that are often densely populated and
vulnerable to coastal erosion. There have been a variety of efforts to mitigate the impacts of wave- and
storm-induced erosion; however, they are either temporary solutions or approaches that are not able
to adapt to a changing climate. This study explores a green and sustainable approach to mitigating
coastal erosion from hurricanes through wave energy conversion. A barrier island, Dauphin Island,
off the coast of Alabama, is used as a test case. The potential use of wave energy converter farms to
mitigate erosion due to hurricane storm surges while simultaneously generating renewable energy is
explored through simulations that are forced with storm data using the XBeach model. It is shown
that wave farms can impact coastal morphodynamics and have the potential to reduce dune and
beach erosion, predominantly in the western portion of the island. The capacity of wave farms to
influence coastal morphodynamics varies with the storm intensity.

Keywords: wave energy conversion; wave farm; coastal erosion; nearshore impact; XBeach

1. Introduction

Wave energy conversion is the process of converting the kinetic and potential energy
of ocean waves into mechanical or electrical energy. Ocean wave energy is abundant,
consistent, and is an emerging source of renewable energy [1]. Energy in the waves can be
harnessed and converted into electricity through wave energy converter devices (WECs).
WECs are commonly configured in arrays, i.e., wave farms, to increase the span across
which waves can be captured, and optimize the use of materials such as underwater cables
that are used to transfer the generated electricity to the shore. Although the initial cost of
wave farms can be high [2,3], coastal communities can doubly benefit from them because
they not only provide electricity but also have the potential to reduce coastal erosion.

Beach erosion is a global coastal hazard with catastrophic consequences due to the
land and property loss that can ensue. Of the world’s sandy beaches, 24% of them are
experiencing erosion rates exceeding 0.5 m/yr [4]. In the United States, environmental
agencies have described stretches of the Gulf of Mexico (GOM) and Atlantic coastlines as
critically eroding [5]. The average coastal erosion rate along the Atlantic coast of the United
States is reported to be 0.6 to 0.9 m/yr [6]. Coastal erosion rates are expected to increase
in the coming years, and even those coastlines that are currently stable or accreting may
begin to experience erosion [7]. Furthermore, coastal regions are often heavily urbanized
and densely populated, comprising nearly 40% of the U.S. population [8]. The population
in coastal areas increased by 39% from 1970 to 2010, and this upward trend is projected
to continue [9]. The growing coastal population and climate change impacts (e.g., rising
sea levels and increasing severity of tropical cyclones) make coastal regions increasingly
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vulnerable to erosion [10]. An increase in coastal flood frequency and extreme events is
expected over the coming decades, which will accelerate beach and cliff erosion [11].

As a result, efforts to mitigate the effects of coastal erosion have intensified. The
construction of seawalls, breakwaters, revetments, and jetties, in addition to beach re-
nourishment projects are some of the more traditional coastal engineering approaches to
mitigation. However, these conventional methods may not adapt well to the changing
climate, and nature-based solutions may offer a better alternative [12]. Greener options,
including wetland protection and construction of living shorelines have been explored in
recent years [13–15]. While these strategies provide solutions to coastal erosion, they fail
to address the root causes of the hazard and often require substantial maintenance. For
example, beach-nourishment projects in Sand Key, FL have been implemented 26 times
since 1961, with a total cost of USD 142 million [16]. A seawall repair project in Ellis Island,
NY proposed in 2010 is expected to cost stakeholders a total of USD 29 million in addition
to the initial cost of construction [17].

In search of a sustainable approach to mitigating coastal erosion and utilizing marine
energy resources, an increasing number of studies have begun to explore the impacts of
WECs on coastal morphodynamics. While potentially harmful impacts of WECs to the
environment (e.g., scour to the seabed, changes to water circulation and water quality,
and attraction or repulsion of marine life) are continually being investigated [18,19], many
studies have illustrated that they often mitigate coastal erosion for gravel and sandy
beaches [20–22]. Specifically, wave dampening (i.e., removing the energy of the waves),
wave reflection (i.e., acting as a physical barrier) [23–38], and reduction in the bottom shear
stress [39,40] due to the presence of WECs can affect flow and energy in a way that can
contribute to coastline vitality. Studies to date have been focused mostly in Europe, with
one study in the United States carried out for Newport, OR [40]. In this study, we use the
numerical morphological model XBeach to simulate the impacts of wave energy conversion
on coastal erosion on a barrier island on the U.S Gulf Coast. We perform a case study,
focused on Dauphin Island, AL, where we use XBeach to simulate baseline (i.e., with no
wave farm) and wave farm scenarios under severe storm (Hurricane Ivan and Hurricane
Katrina) conditions, and analyze the impact of WECs to beach profiles, dune heights, total
water levels (TWL), i.e., total elevation of storm-induced water levels including storm surge,
astronomical tide, and wave runup, bottom shear stresses, and total sediment volume/area
of the coastline.

2. Case Study
2.1. Location

Dauphin Island is located in the northern Gulf of Mexico off the coast of mainland
Alabama (Figure 1). It is a narrow, 25 km-long, low-lying barrier island with an average
elevation of 2.18 m above mean sea level [41]. Dauphin Island has a diverse topography,
with beaches, dunes, wetlands, maritime forest, and freshwater ponds. The eastern portion
of the island has a double-dune structure, and the middle and western parts of the island
have relatively lower elevations.

The average annual offshore wave power density in this region is approximately
1.7 kW/m [42]. This wave action, along with the regular occurrence of tropical cyclones,
has made Dauphin Island especially vulnerable to coastal erosion. The rate of coastal
erosion was estimated as 4.7 m/yr at the beginning of the century [43]. Dauphin Island
has undergone substantial morphological changes over the past century due to coastal
processes and extreme events, causing breaches and island migrations [44]. Specifically,
Dauphin Island has experienced each of the Sallenger storm impact scale categories, i.e.,
swash, collision, overwash, and inundation [45]. Swash (i.e., when TWL is lower than the
dune toe) and collision (i.e., when TWL exceeds the dune toe) regimes can be observed
under fair weather conditions across the island. Due to its lower elevation, the western
portion of the island has historically experienced the overwash regime (i.e., when water
levels gradually increase and exceed the dune crest) and inundation (i.e., when the TWL
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exceeds the height of the entire beach system) under storm conditions. On the eastern
portion of the island the collision regime is more prevalent due to its higher elevations and
double dune structure.
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Figure 1. Study location; Dauphin Island, AL. (Created using Google Earth base map).

There have been substantial efforts to protect and stabilize the inhabited eastern
and middle portions of Dauphin Island through the construction of groins and breakwa-
ters [43,46]. Dunes have also played an essential role in regulating storm impacts. In the
eastern portion of the island, dune heights reaching up to 3 m have been constructed and
fortified to defend the homes and infrastructure behind them; however, this region remains
subject to significant morphological change. The low elevation of the middle portion of the
island makes it particularly susceptible to breaching [47]. During Hurricane Katrina in 2005,
a breach was generated in the middle of the island (known as the “Katrina Cut”) and has
since been restored with rocks, but the area remains vulnerable to substantial wave attack
and storm surges. The uninhabited western portion of the island is the most susceptible
to collision, overwash, and inundation during storm events due to the low dune heights
(less than 1.5 m) and the absence of protective structures. Figure 2 shows the prestorm bed
elevations at three cross-shore transects along the island.

2.2. Hurricanes

Dauphin Island has been impacted by ten major hurricanes in the past 25 years. For
this study, we focused on simulating the impacts of two major hurricanes that affected
Dauphin Island, AL during this time period: Hurricane Ivan and Hurricane Katrina.
Hurricane Ivan occurred in 2004 and was one of the most catastrophic storms in U.S.
history [48,49]. After peaking in strength, Ivan traveled northward across the GOM and
made landfall in Gulf Shores, Alabama as a Category 3 hurricane (Figure 3). It was
ultimately responsible for USD 20.5 billion in property damage [48] and 32 confirmed
deaths in the United States [49]. Hurricane Katrina made landfall in southeast Louisiana as
a Category 3 hurricane (Figure 3); and became the costliest natural disaster in U.S. history
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at that time, causing USD 125 billion in property damage [48]. To compensate for the
losses, The National Flood Insurance Program funded nearly USD 15 million to insurers
in Dauphin Island alone [50]. Katrina was also responsible for 1833 confirmed deaths,
including 2 that occurred in Alabama [51].

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 28 
 

 

 
Figure 2. Initial Profiles (Prestorm Bed Levels) and Water Level (dashed line) for west, middle, and 
east transects of Dauphin Island, AL shown in Figure 4. 

2.2. Hurricanes 
Dauphin Island has been impacted by ten major hurricanes in the past 25 years. For 

this study, we focused on simulating the impacts of two major hurricanes that affected 
Dauphin Island, AL during this time period: Hurricane Ivan and Hurricane Katrina. Hur-
ricane Ivan occurred in 2004 and was one of the most catastrophic storms in U.S. history 
[48,49]. After peaking in strength, Ivan traveled northward across the GOM and made 
landfall in Gulf Shores, Alabama as a Category 3 hurricane (Figure 3). It was ultimately 
responsible for USD 20.5 billion in property damage [48] and 32 confirmed deaths in the 
United States [49]. Hurricane Katrina made landfall in southeast Louisiana as a Category 
3 hurricane (Figure 3); and became the costliest natural disaster in U.S. history at that time, 
causing USD 125 billion in property damage [48]. To compensate for the losses, The Na-
tional Flood Insurance Program funded nearly USD 15 million to insurers in Dauphin 
Island alone [50]. Katrina was also responsible for 1833 confirmed deaths, including 2 that 
occurred in Alabama [51]. 

Figure 2. Initial Profiles (Prestorm Bed Levels) and Water Level (dashed line) for west, middle, and
east transects of Dauphin Island, AL shown in Figure 4.

2.3. Model Description

XBeach is an open-source, process-based numerical model, and here we use version
1.23.5527 [52]. This model was developed to simulate hydrodynamic and morphodynamic
processes and their impacts on sandy coastlines. Specifically, it can simulate wave-induced
currents and consequential sediment transport and morphological changes. It simulta-
neously solves equations defining the short wave-action balance, mass and momentum
balance, roller energy balance, nonlinear shallow water flow, sediment transport, and bed
update processes [53]. The spatial scale of XBeach can be on the order of several kilome-
ters, and its time scale is on the order of several days, i.e., the duration of a typical severe
storm. XBeach resolves the hydrodynamic processes of short and long wave transformation,
wave-induced setup, and overwash and inundation across a user-specified grid. Morpho-
dynamic processes, including bedload and suspended sediment transport, bed update
and breaching, and dune face avalanching are also resolved. XBeach has successfully
modeled hydrodynamics and storm-induced beach and dune evolution in both 1D and 2D
on a variety of coastlines [20,24,28,32,54,55], making it a useful tool for investigating the
morphological changes induced by the hydrodynamic effects associated with wave farms.

2.4. Model Setup and Assumptions

Here, we use a previously validated two-dimensional model for Dauphin Island [56].
The domain extends approximately 6 km seaward, 3.5 km landward, 3.5 km westward,
and 2 km eastward of the island (Figure 4). The alongshore spatial resolution is 25 m, and
the variable cross-shore spatial resolution ranges from 12.5 m in the offshore to 3 m across
the subaerial island.
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The topographic and bathymetric data were derived from a post-Katrina digital
elevation model [57]. This dataset describes the Katrina Cut, i.e., the breach that occurred in
the middle of the island after Hurricane Katrina in 2005 (Figure 4, middle transect). Using
this data set allows us to simulate the impacts of Hurricane Ivan and Hurricane Katrina
under present-day conditions with and without the wave farm. Bed friction coefficients
were parameterized using spatially variable Chezy coefficients based on land use/land
cover data [56].
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A number of previous studies have used numerical wave models such as Simulating
Waves Nearshore (SWAN) to investigate hydrodynamic impacts of WECs, specifically the
behavior of the wave climate in the lee of the wave farms. WECs are often represented as
partially transmitting and partially reflecting obstacles through transmission and reflection
coefficients (Kt and Kr, respectively), which define the ratio of transmitted or reflected
wave heights to incident wave heights [58]. These coefficients are specific to individual
WEC devices and also the configuration of the wave farm and are generally estimated from
laboratory experiments [34,35,59]. Both Kt and Kr range from 0 to 1, where Kt = 0 repre-
sents complete energy absorption by the WECs (no wave transmission through the WEC
farm) and Kt > 0 represents partial-to-full wave transmission. Similarly, Kr = 0 represents
no wave reflection by the WECs, and Kr > 0 represents partial-to-full wave reflection [58].
The presence of a wave farm can also be represented through wave parameters, such as
wave heights and wave periods, obtained from a wave model, and then used as input to
morphological models to investigate the morphological changes caused by WECs [24,32].

In this study, WECs are represented in the XBeach model through adjustments to the
offshore boundary conditions, which are extracted from a coupled Advanced Circulation
(ADCIRC)+SWAN model [60,61]. A hypothetical wave farm is assumed to be located
along the offshore boundary, since the adjustments to boundary conditions are made to
the offshore boundary. The XBeach model is forced with JONSWAP (Joint North Sea
Wave Project) wave spectra data describing the wave climate (i.e., significant wave heights,
peak frequencies, directional spreads, and main wave angles) and time-series water levels
derived from a large-scale ADCIRC+SWAN model that has been validated for Hurricane
Ivan and Hurricane Katrina [60]. A time-series of JONSWAP spectra is applied uniformly
along the offshore boundary. Time-series of hourly water levels are forced uniformly across
the onshore and offshore grid boundaries for Hurricane Ivan. For Hurricane Katrina, water
levels are forced at the four corners of the XBeach grid [56]. The XBeach model is executed in
surfbeat (instationary) mode to develop the baseline scenario (i.e., the case without WECs).
Wave heights in the JONSWAP spectra range between 0.76m and 5.55 m for Hurricane
Ivan, and 0.65 m and 5.99 m for Hurricane Katrina. Wave frequencies range between
0.0492 s−1 and 0.1674 s−1 for Ivan, and 0.0628 s−1 and 0.2332 s−1 for Katrina. Hurricane
Ivan is simulated for 63 h, and Katrina is simulated for 91 h based on the available data
and duration of the storms. Directions (i.e., main angle) of the storms following the storm
tracks are shown in Figure 3.

Next, the significant wave heights are reduced by 30% for the wave farm scenario.
This reduction is chosen based on recent studies on the efficiency of various types of
WECs including overtopping devices and point absorbers, which indicate that 30% is a
conservative but reasonable reduction ([24,25]). The reduced significant wave heights along
with the same water levels, wave directions, and peak wave periods from the baseline
scenario are then input to the XBeach model. The model is run for both scenarios, and
differences between the two cases are investigated. The impacts of the wave farm on
the morphology, water levels, and nearshore wave climate are observed. Specifically, the
peak and total water levels, regimes (e.g., collision, overwash, etc.), wave heights, dune
heights, bed elevations, inundated area, and bed shear stresses are used as proxies to assess
the differences between baseline and wave farm scenarios. With this approach, physical
wave-to-WEC or WEC-to-WEC interactions are not captured, i.e., we only represent the
energetic effects of wave farms. It should also be noted that since the waves are forced
on the offshore boundary, the effects of any localized wind waves are not resolved, i.e.,
we are only assessing the effects of the wave farm on the offshore waves that propagate
landward. Nevertheless, this serves as a fundamental step in understanding the (minimum)
potential of WECs to reduce coastal erosion; including physical effects would likely cause
additional reduction.
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3. Results
3.1. Hurricane Ivan
3.1.1. Response of Water Levels and Nearshore Wave Climate to Simulated Wave Farms

Here, we compare the output of the baseline (i.e., significant wave heights (Hs) un-
changed) and wave farm (Hs reduced by 30%) simulations to assess the impact of WECs.
Peak water levels during Hurricane Ivan, and the pre- and post-storm bed levels for the
baseline and wave farm scenarios are presented in Figure 5. The TWL exceeds most dune
heights and inundates a significant portion of the island in both the baseline and wave
farm scenarios. Peak water levels evaluated at the beach face for the baseline scenario are
higher than those observed in the wave farm scenario along the west and middle transects,
by 0.3 m and 0.1 m, respectively (Figure 5a,b). Along the east transect, however, the peak
offshore water level in the wave farm scenario (where the Hs is lower) is ~0.5 m higher than
that in the baseline scenario, and overtops the primary dune causing erosion with sand
deposited in the nearshore (Figure 5c). This is in contrast to the baseline scenario, where the
collision regime is observed at the primary dune, which causes avalanching. This is likely
due to nonlinear superposition of swell waves and wind waves, which can create higher
TWL at irregular locations [62,63]. Additionally, the impact of the reduction in wave heights
due to WECs on TWL varies in the north–south direction, as the hydrodynamics are also
influenced by the bottom surface (i.e., friction and topography) and geometry of the island.
This illustrates that the TWL is not always directly related to the wave heights defined on
the offshore boundary. In other words, the role of WECs in potentially changing the TWL
or the regime varies across the coast. The maximum water levels reached at each grid cell
during the simulation for the baseline and wave farm scenarios, as well as the difference
between the two scenarios, are illustrated in Figure 6. Overall, lower maximum water
levels are observed in the wave farm scenario (Figure 6b) compared to those observed in
baseline scenario (Figure 6a). The difference in maximum water elevation of the two model
scenarios illustrates the alongshore variability in maximum TWLs; the wave farm scenario
has high water levels compared to the baseline scenario near the eastern portion of Dauphin
Island (Figure 6c). Conversely, the opposite is illustrated for the western portion; therefore,
it should not be assumed that reduced wave heights offshore will result in uniformly lower
total water levels across the whole domain. For this storm, the wave farm is more effective
in reducing the TWL in the western part of the island where the water levels are the highest
in both the baseline and wave farm scenarios, which may have implications for the ideal
configuration of wave energy converters to achieve similar efficacy in the eastern region.
Additionally, this may mean that WECs make a bigger impact on the areas with high
maximum water levels. Focusing on the western portion of the island, Figure 6d,e shows
that the dry areas are more prevalent in the wave farm scenario than the baseline, indicating
that the presence of wave farms reduces overtopping and inundation at this location.

We examine how WECs impact wave-induced erosion by analyzing the maximum
Hs across the domain in both scenarios (Figure 7). It is observed that the Hs is lower
for the wave farm scenario relative to the baseline, as is expected due to the adjustment
in Hs on the offshore boundary condition to represent the wave farm. On average, the
nearshore wave heights in the wave farm scenario were found to be 0.3 m lower than the
baseline scenario, which results in lower potential erodibility due to decreased wave action
(Figure 7c). There are some areas where the wave farm does not make any impact, i.e.,
the white areas, which indicates the same Hs for both scenarios. Additionally, Hs in the
wave farm scenario appears to be slightly higher in the east and west portions of the island
compared to the baseline scenario, indicating that the impact of WECs on wave height is
reversed in the sheltered areas (east of the island) and landward of breaches. Figure 7c
illustrates that the impacts of WECs on Hs are not uniform, and we see pockets of no
differences due to the complex hydrodynamics. We mostly see no change in Hs behind the
island, with the exception of the Katrina Cut; here we again see higher wave heights in the
wave farm scenario, likely due to the channeling discussed in Section 3.1.2. In Figure 7d,
the percent difference in Hs is presented, and although the wave heights at the offshore
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boundary are reduced by 30% to represent the wave farm, this percent change does not
remain constant as waves propagate to the coast. In some areas, wave height reduction
reaches 50% (indicated by a circle in Figure 7d) in the wave farm scenario. This suggests
that the impacts of a wave farm on Hs extend beyond its local circumference (i.e., the
offshore boundary in this case).
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Figure 6. Maximum water levels [m] for baseline (a) and wave farm (b) scenarios for Dauphin Island,
AL. (c) Difference between the two scenarios: (b) subtracted from (a). (d,e) Magnified versions of (a)
and (b), respectively. White patches are the dry areas, and the black line is the poststorm zero-meter
contour of the island.

3.1.2. Response of Morphology to Simulated Wave Farms

To relate the impacts of water levels to coastal morphology, we examine the dune
heights, bed elevations, inundated area, and bed shear stress across the island. Initial and
final beach profiles are extracted from transects located on the eastern, middle, and western
regions of the island (Figure 4). Morphologic changes to the beach, dune face, and dune
heights are used as proxies for coastal erosion and bed level change.
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across the island with the presence of WECs. The maximum dune height difference be-
tween the two scenarios occurs at 825 m west of the west transect, where the dune height 
in the wave farm scenario is 1.77 m higher than in baseline scenario (see Figure 8). These 
results illustrate how wave dampening by wave farm presence can help diminish the 
damage due to inundation and overtopping. 

We also investigate the changes in the dune heights and beach profile at the west, 
middle, and east transects, shown in Figure 4 to better understand the morphological re-
sponse in different regions of the island. At the west transect (Figure 5a), the inundation 
caused by Hurricane Ivan causes sediment to be mobilized at the dune face and deposited 
behind the dune structure in the baseline scenario, and the dune height is reduced by 0.75 

Figure 7. Hurricane Ivan maximum wave heights (Hs) across the domain of Dauphin Island, AL:
(a) baseline scenario [m], (b) wave farm scenario [m] (c) Hs difference between the two scenarios in
[m] where baseline values are subtracted from wave farm values. (d) Hs difference in [%]. White
circles are some of the locations where the reduction in Hs exceeds 50% in the wave farm scenario.
The blue color represents the reduction in Hs due to wave energy converter devices (WECs), and
the red color represents the increase in Hs due to WECs. White and black lines are the poststorm
zero-meter contours of the island. The location of the Katrina Cut is marked with a red circle in (a).
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The average dune crest heights across the island are 3.24 m and 3.33 m for the baseline
and wave farm scenarios, respectively. This shows a 3% reduction in the dune loss across
the island with the presence of WECs. The maximum dune height difference between
the two scenarios occurs at 825 m west of the west transect, where the dune height in the
wave farm scenario is 1.77 m higher than in baseline scenario (see Figure 8). These results
illustrate how wave dampening by wave farm presence can help diminish the damage due
to inundation and overtopping.
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Figure 8. Hurricane Ivan bed levels (BL) and water levels (WL) under baseline and wave farm
scenarios at the location on Dauphin Island, AL where the maximum dune height difference between
the two scenarios occurs.

We also investigate the changes in the dune heights and beach profile at the west,
middle, and east transects, shown in Figure 4 to better understand the morphological
response in different regions of the island. At the west transect (Figure 5a), the inundation
caused by Hurricane Ivan causes sediment to be mobilized at the dune face and deposited
behind the dune structure in the baseline scenario, and the dune height is reduced by
0.75 m. In the wave farm scenario, the dune height is only reduced by 0.5 m, i.e., the erosion
is mitigated by 33% when the hydrodynamic impacts of wave farms are represented. The
differences in dune heights in the two scenarios are not as pronounced for the middle and
east transects. The middle transect is located at the breach of the island (i.e., it is initially
underwater); therefore, the changes in the surface wave heights do not substantially alter
the underwater bathymetry (Figure 5b). The east transect is prevented from complete
inundation by the high double-dune structure (Figure 5c). The primary dune takes on the
impacts of the storm and is eroded, while the secondary dune stays intact in both scenarios.
The difference between the final dune heights in the two scenarios is not substantial, most
likely due to the wave action being dissipated by the first dune and the high water levels
dominating the erosion process in the second dune. However, the height of the second dune
is slightly (5.5 cm) higher in the wave farm scenario in contrast to the baseline scenario.
For both scenarios, the bed elevations are unchanged from the initial (prestorm) profile in
both the seaward and landward ends of the transects. At all three transects and for both
scenarios, the sediment in the beach face is transported and deposited onshore poststorm
(i.e., immediately behind the prestorm dunes), creating irregular and shallow sand dunes.
Figure 5a–c show that in the baseline scenario, the sediment is transported 5 to 50 m further
inland than in the wave farm scenario for all three transects, i.e., the Final BL-Baseline
curve appears 5 to 50 m north (towards the land) of Final BL-Wave farm curve, at all three
transects.
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The differences in the final bed elevations across Dauphin Island post-Ivan under
the baseline and wave farm scenarios are shown in Figure 9. On the western portion
of the island, higher accretion in the westernmost point and lower cross-shore sediment
transport are observed in the presence of the wave farm compared to the baseline scenario.
Additionally, there are fewer channels cut through the island in the wave farm scenario
(Figure 9d). This substantially reduces the breaching tendencies in the area where the island
is the narrowest, with a width of ~230 m. In Pelican Island and the middle breach, however,
slightly lower bed elevations (i.e., more erosion) are observed in the wave farm scenario.
This can likely be attributed to the dominant swell wave angle coming from the southeast
(SE 144.05◦), which causes the sediment to be transported to the west [64]. The middle
breach shifts westward in the presence of the wave farms, and the width is 200 m smaller
than in the baseline scenario (the breach width is 2.4 km in the baseline scenario and 2.2 km
in the wave farm scenario). A smaller breach opening and lower bed levels underwater
in the presence of WECs indicate that wave farms can cause more precise erosive action
at a breach.

To quantify the impacts of the wave farm on coastal sediment, we present the results
of the inundated area, volume loss, and bed shear stress calculations for both scenarios in
Table 1. The initial area and volume of the island are identified by determining the dry
and wet cells within the computational domain. The zero-meter contour is identified, and
initial area and volume values are calculated based on the cells that fall into the zero-meter
polygon. Maximum water levels that occurred throughout the simulation are determined
for each cell, and they are compared to the initial and final bathymetry (i.e., z-value) to
determine the inundated cells for volume loss calculations. We find that the poststorm
subaerial island area and subaerial sand volume are higher when the WECs are present.
Additionally, the total inundated area and net loss in the sand volume are lower in the
wave farm scenario. Results indicate a 15% reduction in the net loss of sand volume due to
the wave farm.

Table 1. Inundated and dry areas, initial and final sand volume, net loss in sand volume, and
maximum bed shear stress values in x- and y-directions [N/m2] averaged over time in the mid-
domain nearshore area of Dauphin Island, AL under Hurricane Ivan conditions for baseline and
wave farm scenarios.

IVAN Baseline Wave Farm Difference

Initial island area (millions of m2) 14.19 14.19 -
Total dry area (millions of m2) 4.49 4.59 2%

Total inundated area (millions of m2) 9.69 9.59 −1%
Initial sand volume (millions of m3) 19.73 19.73 -
Final sand volume (millions of m3) 19.00 19.10 0.5%

Net loss in sand volume (millions of m3) 0.73 0.62 −15%
Maximum τbx 192.24 118.69 −38%
Maximum τby 76.19 67.81 −11%

Maximum τb =
√

τbx
2 + τby

2 206.79 144.71 −30 %

Bed shear stress is used as another indicator of erosion at the bed level, as the likelihood
of ocean bottom sediment to be mobilized is directly correlated with the intensity of
bed shear stress [40,65]. XBeach calculates the bed shear stress associated with the long
waves and mean currents using the following formulation in the cross-shore; x-(τbx) and
alongshore; y-(τby) directions [53]:

τbx = c f ρuE

√
(1.16 urms)

2 + (uE + vE)
2 (1)

τby = c f ρvE

√
(1.16 urms)

2 + (uE + vE)
2, (2)
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where cf is the dimensionless friction coefficient, ρ is the density of water, uE, and vE
are the Eulerian east–west and north–south velocities, respectively, and urms is the root-
mean-square velocity. In this study, the average maximum bed shear stress in the x- and
y-directions over the duration of the storm in the mid-domain nearshore area (i.e., where
the water depths are low and bed shear stress is responsive to the changes in the wave
heights) is calculated. The maximum shear stress in the wave farm and baseline scenarios,
as well as the differences between them, are listed in Table 1. The maximum averaged
bed shear stress values are reduced from 206.79 to 144.71 N/m2 for the baseline and wave
farm scenarios, respectively (30% reduction). It is observed that the reduction in the y-
direction (alongshore; 11%) is lower than the reduction in the x-direction (cross-shore; 38%),
indicating that the presence of wave farms impacts the bottom sediment transport more in
the cross-shore direction than in the alongshore direction.

3.2. Hurricane Katrina

We repeat the methodology described in Section 3.1 with storm data from Hurricane Katrina.

3.2.1. Response of Water Levels and Nearshore Wave Climate to Simulated Wave Farms

Results of the simulations of Hurricane Katrina show patterns similar to those seen for
Hurricane Ivan in terms of the water levels and inundation/overwash regimes experienced
along the transects, with the west and middle transects being entirely inundated. However,
Hurricane Katrina was a stronger storm and also coincided with high tides, causing peak
water levels to exceed 3.5 m and inundate the eastern portion of the island in contrast to
the impacts of Hurricane Ivan. Peak water levels are observed to be consistent between
the baseline and wave farm scenarios (Figure 10). This indicates that wave farms are not
as effective in changing the regime (e.g., collision, overwash) during intense storms when
TWL is high.

Figure 11 illustrates the maximum water levels across the domain for both scenarios
and the difference between them. As discussed in the case of Hurricane Ivan, Figure 11
indicates overall lower maximum water elevations in the wave farm scenario. In Figure 11c,
the areas where maximum TWLs are lower in the wave farm scenario are dominant across
the domain, unlike the Ivan case (see Figure 6c). It should be noted that the difference
between the TWLs for the two scenarios is on the order of centimeters for Katrina; therefore,
it may be inaccurate to conclude that the wave farm is more effective in reducing the TWL
across the domain for the Katrina case.

As expected, the maximum Hs is lower in the wave farm scenario compared to the
baseline scenario due to the adjustments made in Hs at the offshore boundary to represent
the wave farms (Figure 12). The response of the Hs to this adjustment dissipates as the
waves propagate towards the shore. On average, the nearshore wave heights in the wave
farm scenario are found to be ~0.2 m lower than the baseline scenario.

3.2.2. Response of Morphology to Simulated Wave Farms

The impacts of WECs on dune heights, bed elevations, and beach profiles shown in the
Hurricane Katrina case study are similar to those observed with Hurricane Ivan. Hurricane
Katrina fully erodes the dune systems at all three transects; however, like Hurricane Ivan,
the final bed levels are generally higher in the wave farm scenario than the baseline scenario
(Figure 10). The discussion in Section 3.1.2 related to the complete beach profiles and the
dune heights across the island under Hurricane Ivan conditions are applicable for the
results of the Hurricane Katrina case, i.e., the bed elevations are unchanged from the
initial (prestorm) profile in both the seaward and landward ends of the transects, and
the sediment at the beach face is transported and deposited onshore poststorm further
inland in the baseline scenario at all three transects. The average of subaerial dune heights
across the island is found to be 2.46 m and 2.55 m for the baseline and wave farm scenarios,
respectively. The maximum dune height difference between the two scenarios occurs at the
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eastern end of the island, where the dune height in the wave farm scenario is 1.6 m higher
than that observed in the baseline scenario (see Figure 13).
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Figure 9. Final bed elevations [m] for baseline (a) and wave farm (b) scenarios on Dauphin Island,
AL. (c) Difference between the two scenarios. (d) Magnified version of (c) showing the channels in
the western portion—Positive (blue) values show the locations where the final elevations are higher
in the wave farm scenario. The black line is the poststorm zero-meter contour of the island.
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line shows the 0 m elevation. 
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(a). The black line is the poststorm zero-meter contour of the island.
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Hs difference in [%]. 
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Figure 12. Maximum wave heights (Hs) across the domain of Dauphin Island, AL: (a) baseline
scenario, (b) wave farm scenario. (c) Hs difference between the two scenarios in [m] Baseline values
are subtracted from wave farm values. The blue color represents the reduction in Hs due to wave
energy converter devices (WECs), and the red color represents the increase in Hs due to WECs. (d) Hs
difference in [%].
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Figure 13. Bed levels (BL) and water levels for Dauphin Island, AL under Hurricane Katrina
conditions for baseline and wave farm scenarios at the location where the maximum dune height
difference between the two scenarios occurs.

Figure 14 shows the bed levels post-Katrina, where a second breach is observed in the
western portion of the island in both scenarios. The difference between the two scenarios
is not as pronounced as the Ivan case; however, we observe more landward overwash
deposition in the baseline scenario. Even though the dunes are still being overwashed, the
wave farm is reducing cross-barrier sediment transport.

Impacts of WECs on the inundated area and volume loss are found to be similar to
those seen in Hurricane Ivan, i.e., more dry areas and less sand volume loss are seen with
the presence of WECs (Table 2) In the wave farm scenario, the island experiences less
inundated area and an 11% reduction in net loss of sediment volume compared to the
baseline scenario. Compared to the Ivan case, the difference between the two scenarios is
less substantial.

Table 2. Inundated and dry areas, initial and final sand volume, net loss in sand volume, and
maximum bed shear stress values in x- and y-directions [N/m2] for Dauphin Island, AL averaged over
time in the mid-domain nearshore area for Hurricane Katrina under baseline and wave farm scenarios.

KATRINA Baseline Wave Farm Difference

Initial island area (millions of m2) 14.19 14.19 -
Total dry area (millions of m2) 1.88 1.92 2%

Total inundated area (millions of m2) 12.31 12.27 −0.3%
Initial sand volume

(millions of m3) 19.73 19.73 -

Final sand volume (millions of m3) 17.86 18.07 1%
Net loss in sand volume (millions of m3) 1.87 1.66 −11%

Maximum τbx 295.03 224.38 −24%
Maximum τby 106.77 99.30 −7%

Maximum τb =
√

τbx
2 + τby

2 313.76 245.37 −22%
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Figure 14. Final bed elevations at Dauphin Island, AL under Hurricane Katrina conditions for baseline
(a) and wave farm (b) scenarios. (c) Difference between the two scenarios. (d) Magnified version of
(c) showing the channels in the western portion—Positive (blue) values show the locations where
the final elevations are higher in the wave farm scenario. Black lines are the poststorm zero-meter
contours of the island.
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Finally, the results show that the bed shear stress values are reduced from 313.76
to 245.37 N/m2 in the presence of a wave farm, indicating a smaller likelihood of the
mobilization and erosion of bottom sediment (Table 2). This likely explains why we see
less cross-barrier sediment transport in the wave farm scenario (Figure 14c,d).

4. Discussion

Numerical simulations developed to investigate the impacts of a wave farm on coastal
morphology under storm conditions show that overall there are lower TWL and maximum
Hs, less overwash, less inundated area, less sand volume loss, and lower bed shear stress
magnitudes in the wave farm scenario, compared to the baseline scenario. However, the
reduction of storm impacts from the wave farm on coastal morphology and the ensuing
ocean climate vary spatially. While wave farms mitigate erosion in most parts of the domain,
adverse effects or no effects are also seen in some locations. For instance, WECs have the
potential to preserve the integrity of dunes in the western region of the island, where erosion
is higher in the baseline scenario, but there are some locations where the wave farm does
not make any impact, denoted by white in Figure 7c which indicates the same Hs for both
scenarios. Additionally, it is observed that the presence of the wave farm does not change
the regimes on the eastern side of the island, where the collision regime is prevalent. This is
in contrast to the western side of the island, which has lower elevations and does experience
overwash and inundation during peak water levels. Bathymetry is a major controller in the
spatial variation of the impacts of WECs, since the wave breaking depth is limited [24,40,66].
Bathymetry also impacts the bottom friction, the impact of which effectively changes with
depth. Plots of Hs (Figures 7 and 12) show how the variation in wave heights follows
the shallow shoals. Wave direction is also likely to play an important role in the spatial
variation of WEC impacts on coastal morphology. This is one of the reasons that the relative
maximum Hs during Ivan and Katrina (Figures 7c and 12c, respectively) vary spatially.

For both the baseline and wave farm scenarios, the bed elevations are unchanged from
the initial (prestorm) profile in both the seaward and landward ends of the transects. This
indicates that the storm does not impact the profile in deep water (i.e., greater than ~6 m
below sea level). However, it does impact the dunes as well as the subaerial beach and
surf zone, i.e., regions of shallow water, and this is also where we see the impacts of WECs.
Results show that in the baseline scenario, the sediment is transported 5 to 50 m further
inland than in the wave farm scenario for all three transects under both storm conditions.
This indicates that wave farms can reduce the magnitude of the physical forces involved in
sediment transport (e.g., wave action) and can shorten the distance over which sediment
is transported.

Wave farms predominantly mitigate erosion in the western portion of the island.
Although this area is uninhabited by humans, it is an important area for wildlife, and is
especially critical for the bird habitat and sea turtle nests [67]. It also plays an essential
role in protecting mainland Alabama by providing a first line of defense during storm
events. Therefore, efforts to protect this portion of the island from coastal erosion and
breaching are valuable. Furthermore, the spatial variability seen with this methodology
demonstrates the capacity for analyses of this sort to inform ideal configurations of wave
farms for optimal mitigation.

The comparison of the results of Ivan and Katrina simulations shows that the wave
farms are less effective in changing the Sallenger storm impact scale regime and protecting
the integrity of dune structures during intense storms. Because of the low dune elevations
on Dauphin Island, erosion and overwash events are observed even during weak storms
such as Hurricane Nate, which was a tropical depression when it made landfall in Alabama
in 2017 [68]. While a wave farm may not be an effective erosion mitigation strategy for in-
tense storms such as Hurricane Katrina, it can reduce erosion and overwash during weaker
storm events and reduce the need for subsequent beach nourishment projects. Impacts
of WECs on coastal morphology are more pronounced for Hurricane Ivan simulations
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compared to Katrina, meaning storm intensity plays a dynamic role in how effective the
WECs are in reducing coastal erosion.

Hydrodynamic changes due to WECs impact the coastal morphodynamics, as ex-
pected; however, this study also shows instances where the opposite is true. Local
bathymetry and island configuration influence how WECs modify the wave climate in
their lee. In fact, impacts of WECs are reversed in sheltered areas and at the locations of
breaches. This suggests that consideration of bathymetry and erosion patterns is essential
for accurate analysis when analyzing hydrodynamic impacts of WECs in the lee of wave
farms. Earlier studies on this topic often lack this consideration.

The amount of sand volume protected from inundation and loss by the wave farm in
this case study is comparable to the amount of sand added to beaches during nourishment
projects. For example, 250,000 m3 of sand was added to Dauphin Island for nourishment
in 2016 at the cost of USD 7 million [64], and here we show that WECs could have pro-
tected 110,000 m3–210,000 m3 of sand volume from inundation during Ivan and Katrina,
respectively. Considering that beach nourishment is a temporary solution that needs to
be repeated each decade, wave farms can be a long-term, cost-effective, and adaptable
alternative to current coastal protection methods. The initial cost of wave farms can be
high; however, they not only protect the coasts against erosion, they also provide renewable
energy to local coastal communities. This can be particularly valuable in the immediate
aftermath of a hurricane, when power outages are frequently pervasive. WEC developers
aim to increase WEC resiliency so that these devices are able to absorb excessive energy
from large storms and rough seas [69]. Studies show that the payback time of WECs
associated with the value of the renewable energy they provide is as short as one year [70].

Here, we have explored only the lower limits of the potential for wave energy conver-
sion to mitigate coastal erosion, as we have not accounted for the physical wave-to-WEC
or WEC-to-WEC interactions. We have also focused on short-term impacts, and expect
that even greater potential for protection may be found with longer-term analyses, particu-
larly with consideration of the changing climate. This work and subsequent studies can
be used to explore multicomponent coastal protection strategies combining wave farms,
nature-based solutions, and living shorelines, such as coral reefs and salt marshes, to
increase coastal adaptability to climate change. Additionally, while we have shown that
wave farms can reduce the impacts of coastal processes that are generally favorable to
coastal erosion, it is known that overwash and sand deposition on the back barrier during
storms are necessary for rollover to occur and to maintain island resilience over time [71,72].
This showcases an interesting trade-off between protection of existing environments and
infrastructure versus future island resilience, which may be evaluated in future studies.

5. Conclusions

This study explores the potential for wave energy conversion, conventionally used to
generate renewable energy, to simultaneously mitigate coastal erosion. XBeach simulations
of baseline (no WECs present) and wave farm scenarios (WECs represented as reduced
Hs) under tropical storm conditions on Dauphin Island, AL, demonstrate that wave farms
can alleviate the factors that cause coastal erosion, such as wave attack, bed shear stress,
and overwash and inundation. We also observe that the consideration of erosion patterns,
which has generally been overlooked in related studies, is essential for an accurate analysis
when investigating the hydrodynamic impacts of WECs in the lee of wave farms.

Simulations for both Hurricanes Katrina and Ivan yield similar results, supporting the
idea that wave farms can be effective in mitigating erosion. A comparison of the results of
the storm simulations shows that wave farms are less effective in changing the regime and
protecting the integrity of dunes during intense, stronger storms. Thus, the installation of
wave farms is a promising approach to mitigating coastal erosion; however, its capacity to
alter intense morphodynamic activity is limited. Coastal erosion caused by the strongest
hurricanes may be assuaged by more resilient and efficient WEC technologies. Moreover,



J. Mar. Sci. Eng. 2022, 10, 143 23 of 26

the varying impact of the wave farm across the domain emphasizes the need for a thorough
analysis when implementing WECs for coastal protection of specific locations.

This work provides a fundamental first step in the use of numerical simulation for
assessing the impact of wave energy conversion on coastal hydrodynamics, morphodynam-
ics, and the interactions of both processes. In future work, more detailed numerical wave
modeling might be implemented to represent physical wave-to-WEC or WEC-to-WEC
interactions and capture the effects of wave dampening and wave reflection functions of
WECs on reducing coastal erosion. Since the hydrodynamic impacts may vary based on the
WEC type and the wave farm configuration, numerical modeling might be implemented to
represent specific WEC types. Longer-term assessments of WECs on coastal morphology
might also be conducted to demonstrate even greater potential for coastal resilience, and
this study serves as a foundational step forward.
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