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INTRODUCTION  

 Marine hydrokinetic (MHK) energy is a 

renewable resource that helps meet growing 

energy demands, but potential environmental 

impacts due to site development and device 

operation have not been fully investigated [1]. 

Environmental monitoring is used to detect 

impacts caused by anthropogenic disturbances and 

is a mandatory requirement of operating licenses 

in the United States [2]. Because the number of 

operating sites is limited in the United States, 

studies describing environmental change due to 

the presence and operation of tidal and surface 

wave energy converters are scarce [3], restricting 

information that can be used to quantify regulatory 

thresholds.  

 

 A successful biological monitoring program 

provides data that will help developers and 

regulators make informed operational decisions 

and modifications to devices [4]. To achieve this 

goal, it is essential that monitoring programs detect 

changes that are biologically relevant, which we 

term impacts. To detect an impact, baseline data 

(data previous to change [5]) must be collected to 

facilitate comparison to any data collected during 

installation and operation [6]. Determining the 

maximum amount of change that constitutes an 

impact is a high priority when forming a 

monitoring plan [7]. Detection of change above a 

defined threshold may determine if a MHK project 

is allowed to continue operating [8]. Thus it is 

imperative to characterize relevant variables and 

potential impacts before operation and 

environmental monitoring begin at a MHK site [9]. 

 

 Because little information exists that can 

inform impact characterization for MHK 

monitoring program development [10], regulators 

must model or estimate thresholds of biological 

change. Extreme value theory (EVT) is an approach 

used to model values that are infrequent but are 

potentially associated with impacts [11]. A distinct 

advantage of EVT is the ability to model outcomes 

of unobserved, rare values since the full range of 

outcomes may not be observed during baseline 

sampling. Results from EVT can be used by 

developers and regulators to characterize extreme 

but rare values associated with environmental 

impacts, and construct monitoring programs to 

include operational protocols for conditions under 

which these events occur. The goal of this study 

was to evaluate whether EVT is an appropriate 

method to characterize infrequent events that may 

result in biological impacts at a tidal MHK site. We 

tested the utility of EVT using a baseline, active 

acoustic dataset collected at a proposed turbine 

site in Admiralty Inlet, WA.  

 

METHODS 

 

Site Description 

 Admiralty Inlet is the site of the Snohomish 

Public Utility District’s (SnoPUD) proposed tidal 

energy pilot project which received its project 

license from FERC on March 20th, 2014. The 

proposal was to deploy two OpenHydro turbines 

(http://www.openhydro.com/) approximately 

one kilometer off the coast of Whidbey Island.  

 

 To monitor changes in the densities and 

distributions of fish and macrozooplankton in the 

water column, data were collected using an 

upward-looking echosounder deployed on the 

seabed. Acoustic backscatter (i.e. ensemble 

reflected energy) data were recorded from May 9th 
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to  June 9th, 2011 using a BioSonics DTX 

echosounder operating at 120 kHz [12]. The 

echosounder was placed at 55 m depth about 750 

m off Admiralty Head (Figure 1). The echosounder 

operated at 5 Hz for 12 minutes every 2 hours. For 

analysis, the data were constrained to 25 m from 

the bottom (2 x the proposed turbine height), 

thresholded at -75 dB re 1μPa to reduce noise and 

were vertically integrated over 12 minute sampling 

periods, yielding 361 datapoints. 

 

 
 

FIGURE 1: STUDY LOCATION WITHIN PUGET SOUND, 

WASHINGTON (RIGHT) WITH LOCATIONS OF 

SNOPUD PROPOSED TURBINE AND ECHOSOUNDER 

(LEFT). 

 

Extreme Value Theory 

 Extreme value theory [11,13,14] is a statistical 

approach for describing and modeling extreme 

values, which are statistically rare values in the tail 

of a distribution. A Peaks-Over-Threshold (POT) 

analysis is an EVT method that fits a generalized 

Pareto distribution (GPD) to values above a high 

threshold [11]. A quantity x follows a GPD: 
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 Where u is the threshold, σ is the scale 

parameter, and ε is the shape parameter.  

 

 To perform a POT analysis, first a threshold (u) 

is selected, then the scale (σ) and shape (ε) 

parameters are estimated with the data using MLE 

or Bayesian methods. The GPD threshold is usually 

defined visually [15] using mean residual life 

(MRL) and parameter stability plots. A MRL plot 

quantifies the mean number of values above a 

threshold as the threshold is increased. A 

parameter stability plot depicts the fit of the GPD 

scale or shape parameters as a function of 

threshold value. The optimal GPD threshold is 

identified where the plots stabilize or become 

linear. As this threshold detection is visual and 

subjective [16], we propose that an objective and 

automated way of selecting a threshold is to take 

the derivative of the slope of the MRL or parameter 

stability plot (Figure 3), and calculate the point 

where the derivative first equals zero. This point 

corresponds to the first inflection point and can be 

used as a threshold for extreme values.  

 

 The GPD can also be used to predict extreme 

value periodicity, termed return levels, including 

values that have not been observed [11,17]. These 

predictions should be of interest to both MHK 

regulators and developers as they predict the 

occurrence of conditions associated with high risk 

of impacts, such as extreme biomass 

concentrations near a device. Return levels are 

generated by inverting the GPD cumulative 

distribution function. We generated return levels 

using Markov chain Monte Carlo (MCMC) 

simulation [18], because it enables calculation of 

uncertainty in return levels by generating 

posterior distributions for the GPD shape and scale 

parameters.  

 

 The GPD was fit to two monitoring metrics 

(Figure 2) to characterize density (mean volume-

backscattering strength, or mean Sv (unit: dB re 1 

m-1)) and patchiness (aggregation index, AI (unit: 0 

to 1, with 0 being evenly dispersed and 1 being 

aggregated)) of fish and zooplankton in the water 

column [19]. 

 

 
FIGURE 2: MEAN SV AND AGGREGATION INDEX 

DISTRUBITIONS. 

 

RESULTS AND DISCUSSION 

 

Threshold Choice 

 For the density metric (Mean Sv), the mean 

residual life plot was approximately linear 

between u ≈ -75 and u ≈ -71 (Figure 3). The scale 

parameter appears to be stable until about u ≈ -75, 

which is also the point where the variance sharply 

increased. After taking the derivative of both the 

MRL and parameter stability plots the first point 
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where dY=0 for the mean residual life plot 

occurred at u = -74.58, and for the parameter 

stability plot at a value of u = -74.48. First dY=0 

values for the Aggregation Index resulted in a 

threshold of u =0.135 for the mean residual life 

plot, and u =0.144 for the scale parameter stability 

plot. 

 

 
 

FIGURE 3: (LEFT SIDE) THE MRL PLOT AND SCALE 

PARAMETER STABILITY PLOT, (RIGHT SIDE) THE 

MATCHING DERIVATIVES WITH RED LINE SHOWING 

DY=0. 

  

 Using the first derivative to determine the 

threshold provides greater precision than visual 

estimation. Also, for both mean Sv and aggregation 

index metrics, the point estimates where the 

derivatives equaled zero were less than 0.1 units 

apart for the MRL and parameter stability plots. 

The proximity of the two sets of threshold 

estimates from the derivative method indicates the 

consistency of the method. Additional extreme 

value data are needed to determine if estimated 

threshold values remain constant and can be 

determined accurately. 
 

Bayesian Analysis of Return Levels 

 For the Admiralty Inlet data, the spread of the 

95% credible intervals of return levels showed that 

return level predictions have great uncertainty, 

even at low biomass density levels (Figure 4). 

Uncertainty could be decreased by collecting 

additional baseline data, but will increase baseline 

site characterization sampling. Data collected 

during project operation could supplement 

baseline data, with return levels used to inform 

project managers about conditions under which 

values exceeding thresholds are predicted to occur. 

This may be useful when large volumes of 

monitoring data will be collected, as more data will 

give better estimates for GPD parameters, which 

will decrease return level uncertainty. 

 
FIGURE 4: MEAN SV (TOP) AND AGGREGATION INDEX 

(BOTTOM) RETURN LEVELS FROM MEDIAN 

POSTERIOR ESTIMATE, WITH CREDIBLE INTERVAL 

GRADIENT. THE RETURN PERIOD IS ON A LOG10 

SCALE.  

 

Next Step 

 The general applicability of EVT to MHK 

projects is being investigated by applying the 

methods developed for Admiralty Inlet to another 

dataset. We will compare the results of two tidal 

energy sites to evaluate how sensitive GPD 

parameters are to data values and whether EVT 

results are unique to each site. Tidal energy sites, 

though they may contain different biological 

communities, are predicted to have similar 

physical characteristics and should have similar 

ranges of extreme values in biological monitoring 

variables. This comparison will enable us to 

determine the generality of the approach for MHK 

biological monitoring. 

 

CONCLUSION 

 

 EVT provides an efficient tool to analyze 

baseline environmental monitoring data and can 

be used to establish statistically significant 

thresholds for rare and potentially high-impact 

events. EVT has many possible applications for 

biological monitoring; it can be used to infer 

conditions that result in impacts and be used to 

establish or refine regulatory thresholds used in 

monitoring programs.  

 

Observations above a threshold are statistically 

rare and occur where high-risk events are likely to 

transpire [11]. Observing values above a threshold 
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or an increase in the frequency of extreme values, 

could be used to indicate when an impact has 

occurred. Defining a threshold for extreme values 

will help MHK managers assess the risk of impacts 

as well as establish a baseline for expected extreme 

value periodicity. Data collected after a device 

begins operating can be used to supplement the 

EVA calculated using baseline data to refine return 

level and associated uncertainty estimates.  

 

 EVT will also be useful for understanding 

factors that cause environmental impacts. Extreme 

events can be correlated with biological or physical 

covariates such as biomass distribution or tidal 

speed. Patterns in these metrics may provide 

insight about the conditions under which impacts 

occur, which could then be used to adjust operating 

regulations and to increase vigilance during 

monitoring. 
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