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A B S T R A C T

Mitigating global warming requires the rapid deployment of renewable energy (RE) systems throughout all parts 
of the world economy. A crucial step for such deployments is the assessment of their social, economic and 
environmental impacts. By reviewing three hundred and sixty-nine studies, this work identifies and synthesises a 
myriad of social, economic and environmental aspects of RE technologies deployment that have been studied 
over the past decade. The review identifies barriers and drivers that have been found to be common across 
countries, and those where studies and/or local contexts have found contradictory results.

Amongst social issues, trust and quality of institutional governance were found to be increasingly prominent 
themes of research and key drivers for RE deployment. The review also reveals a growing interest in attachment 
to place, but with contradicting findings for its negative or positive impacts.

Amongst economic issues, the review found widespread agreement that, irrespective of the type of economy, 
countries continue to preferentially pursue economic growth through expanded production and innovation in 
fossil fuels.

The review of the environmental impacts found that studies of RE deployments tend to focus on negative local 
impacts, leaving positive global benefits, such as mitigating climate change, as implicit, and that there are only a 
few studies on the environmental impacts of RE in developing economies.

Two gaps that the review identifies as demanding future work are investigating the benefits of RE co-location 
in developing economies and redressing the underrepresentation of First Nations perspectives and participation 
in research and RE deployments.

1. Introduction and motivation

The coming decades are set to see a tremendous growth in de-
ployments of renewable energy (RE) technologies globally. These will be 
driven by at least three forces. Firstly, pursuit of United Nations Sus-
tainable Development Goal 7 demands that “affordable, reliable, sus-
tainable and modern energy” [1] be expanded to be available to the 940 
million people currently living without it [2]. Secondly, addressing 
climate change requires the complete displacement of current fossil 
fuelled electricity generators with zero emissions generators, the vast 
majority of which will likely be renewables (with the remainder being 
nuclear). Thirdly, another consequence of mitigating climate change 
will see demand for electricity increase substantially as fossil fuel 
powered appliances, including vehicles, are replaced by more efficient 
electric appliances that can run on zero emissions electricity.

This rise in RE deployments, and the corresponding decline of fossil 
fuel activities, will have global environmental [3,4], economic [5,6] and 
geopolitical consequences [7–10]. It will also have profound local im-
pacts. These include local social, economic and environmental impacts 
on the communities situated close to deployments and which they serve.

This review synthesises the global studies from the past decade on 
the impacts of RE deployments around the world in geographical loca-
tion and type of economies. Unlike other review studies [11–14], this 
work does not focus on a specific type of RE, nor specific regions nor 
disciplines, but rather focuses on multiple RE technologies, across a 
range of geographies and disciplines. It captures (much of) the diversity 
of impacts and thereby provides relevant information for RE de-
velopments in many distinct local contexts and reveals areas of ambi-
guity and contradiction in the studies as well as research gaps. By 
identifying common threads and shining light on disagreements among 
studies, this review illustrates the specificities and complexities of 
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deploying RE technologies. Reaching carbon neutrality and minimising 
reliance on fossil fuels is a global goal. By classifying the various studies 
in terms of their economic regions, this review illustrates the disparities 
in RE research, innovation and development across the world. Recog-
nition of these will help to shape RE technology research and develop-
ment to improve deployment impacts.

The focus of the review on social, economic and environmental im-
pacts complements the substantial studies on the technical feasibility of 
RE deployments [15–25]. Additionally, the focus on local impacts from 
technology deployments complements studies of global impacts up-
stream and downstream of deployments, such as life cycle analysis of 
embedded energy and emissions, working conditions during resource 
extraction and manufacturing, as well as recycling and end of life ar-
rangements [26–33].

The rest of the study is organised as follows: Section 2 provides the 
methodology by which the systematic review was carried out. Section 3 
is dedicated to the literature review itself, grouped into social, economic 
and environmental considerations. Section 4 provides a summary of the 
review and presents a categorisation of the various subtopics covered. 
Section 5 covers the limitations of the study and presents some avenues 
for future work. Finally, Section 6 concludes the study.

2. Methodology

This section describes the research questions included and excluded 
from investigation through the review and the methodology by which 
the literature review was performed.

2.1. Research questions of the literature review

The research questions addressed in this review are:

• RQ1: How do RE deployments impact, and how are they impacted 
by, local social conditions?

• RQ2: How do RE deployments impact, and how are they impacted 
by, local economic conditions?

• RQ3: How do RE deployments impact the local environment?

These questions define the limits of the study. Some of the exclusions 
from the study are impacts upstream or downstream from RE de-
ployments; impacts on electricity systems such as the degree of decen-
tralisation, network loads, and the need for energy storage; the efficacy 
of energy market structures or policies; the history and politics of energy 
transition.

Another limitation of the study comes from what RE technologies are 
included. The review considers major RE technologies: solar photovol-
taic (PV), onshore and offshore wind farms, wave energy converters 
(WECs), tidal turbines, floating solar photovoltaic (FPV), hydro energy 
and bioenergy. Geothermal technologies were not considered because 
geothermal energy is only available in limited locations. Some recent 
studies that tackled the social, economic and environmental impacts of 
geothermal energy include [34–36]. Nuclear energy and hydrogen were 
not considered because nuclear is not a renewable energy source and 
hydrogen is not a technology for generating energy but rather may play 
a role as a medium for energy transport or storage. With the urgent need 
to decarbonise and find alternative fuel solutions, focus on hydrogen has 
been growing quickly and recent studies covering the social, economic 
and environmental impacts include [37–40]. In addition, this review 
only covers RE generators. Energy storage systems such as batteries, 
thermal energy storage, compressed-air storage and flywheels, were all 
excluded. The reader is pointed to recent review studies covering im-
pacts of energy storage systems, including [41–43].

2.2. Search strategy and selection criteria

A systematic literature review was performed to identify and analyse 
published studies related to the research questions. This consisted of 
three-steps: (1) identification, (2) screening, and (3) eligibility.

In the identification step, peer-reviewed studies were retrieved from 
the Scopus database using specific keywords. This process was con-
ducted between 04 October and 04 November 2022. The search was 
restricted to journal articles published from 2010 to 2022 so as to focus 
on developments from the past decade. This review explicitly targets 
issues surrounding the deployment and operation of RE, and as such 
papers discussing about life cycle assessments were excluded. Searches 
related to the social and economic research questions were conducted in 
a technology agnostic manner using the following keywords:

• “Social acceptance” AND “renewable energy”
• “Social barriers” AND “renewable energy”
• “Economic drivers” AND “renewable energy”
• “Economic barriers” AND “renewable energy”

In identifying papers regarding environmental impacts of RE a search 
using the keywords “environmental impacts” AND “renewable energy” 
returned 10,495 studies in the Scopus database, which is infeasible to 
process. Therefore, the search was refined through the specification to 
certain RE technologies, using the keywords “environmental impact” 

Abbreviations

RE Renewable energy
PV Photovoltaic
OWF Offshore wind farm
FPV Floating solar photovoltaic
WEC Wave energy converter

Table 1 
Three steps search strategy.

Keywords Identification Screening Eligibility

Number of 
papers 
retrieved

Number of 
studies selected 
for full-text 
reading

Number of 
studies cited 
in the review

“Social acceptance” AND 
“renewable energy”

419 106 92

“Social barriers” AND 
“renewable energy”

351 84 20

“Economic drivers” AND 
“renewable energy”

641 165 84

“Economic barriers” AND 
“renewable energy”

674 69 51

“Wind energy” AND 
“environmental impacts”

2594 112 66

“Solar PV energy” AND 
“environmental impacts” 
(limited to 
environmental science 
subject area)

356 43 8

“Floating solar” AND 
“environmental impacts”

50 12 14

“Bioenergy” AND 
“environmental impacts” 
(limited to energy and 
environmental science 
subject areas)

497 54 8

“Wave converters” AND 
“environmental impacts”

86 26 16

“Tidal turbines” AND 
“environmental impacts”

137 29 25

“Hydro energy” AND 
“environmental impacts”

488 47 18

Total 6290 747 402
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together with the following keywords:

• “Wind energy”
• “Solar PV”
• “Floating solar”
• “Wave converters”
• “Tidal turbines”
• “Bioenergy”
• “Hydro energy”

In the second step of the literature review, the retrieved studies were 
screened based on their titles and abstracts. The third step involved full- 
text reading and further exclusion of unrelated papers. Table 1 sum-
marises the three-step search strategy. Thirty-three studies were at least 
found in two of the keywords searches. It is worth noting that the 
literature is shaped by funding structures, potentially including biases of 
vested interests, and that this search did not track the funding sources of 
studies.

Disregarding the duplicates, a total of three hundred and sixty-nine 
studies have been reviewed. Using the United Nations World Eco-
nomic Situation and Prospects 2022, the cited studies were categorised 
according to geographical region and type of economies. Fig. 1 presents 
a visual representation of the proportional distribution of the cited 
studies and is available in tabulated form in Table 2. As seen, developed 
economies, especially the European region, received most attention. 
When it comes to developing economies, Asia received most attention 
while Africa and Latin America were less represented. The uneven 

Fig. 1. Categorisation of the economies in the cited studies in the review.

Table 2 
Categorisation of studies according to the type of economy.

Type of 
economies

Region Number of 
papers

References

Developed 
economies

North America 54 [44–57, 58–68, 69–79, 
80–97]

Europe 157 [50,51,61,64–74,76–80,
98–120, 121–130, 
131–150, 151–170, 
171–190, 191–210, 
211–235]

Asia Pacific 29 [50,64,66–70,72–74,
76–80,107,112,
236–247]

Economies in 
transition

South-Eastern Europe 4 [65,70,74,248]
Commonwealth of 
Independent States and 
Georgia

11 [51,65,66,71,72,74,
249–253]

Developing 
economies

Africa 41 [51,65,70,71,74,80,132,
142,250,253, 254–282]

Asia 76 [51,65–67,70–72,74,76,
77,80,142,164,166,244,
250–253,260,283–300,
301–315, 316–338]

Latin America and the 
Caribbean

25 [51,65,67,70–72,74,
76–78,80,250,252,253,
260,339–348]
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representation of various regions might illustrate the fact that RE 
adoption is still lagging behind in developing or weak economies.

Using data from World Bank, the chart located at the bottom right of 
Fig. 1 shows the population distribution across the different economies 
in 2022. The two charts illustrate the contrast and distortion between 
research and world population distribution. To address the pressing 
needs to mitigate the effects of climate change, reach carbon neutrality 
and ensure affordable and reliable energy access to the growing world 
population, more research is required in developing economies.

3. Literature review

This section covers the literature review and is organised in three 
subsections namely 1) social impacts of, and on, renewable energy de-
ployments, 2) economic impacts of, and on, renewable energy de-
ployments, and 3) environmental impacts of renewable energy 
deployments.

3.1. Social impacts of, and on, renewable energy deployments

This section examines the relationship between RE technologies and 
the societies within which they are deployed. This includes how RE 
deployments impact societies and things that societies value, as well as 
the characteristics of societies that may influence their position towards 
RE deployments.

The analysis begins with broad issues of demographics, environ-
mental concerns, impact on landscape and place attachment. The study 
then reviews procedural aspects of building and maintaining trust, 
community engagement, community ownership and benefits. Finally, 
the section concludes with insights into more granular effects of the type 
of RE technology, proximity of RE deployments, and knowledge of, and 
past exposure to, RE technologies.

3.1.1. Demographics
Numerous studies have examined the influences that gender, age, 

education and employment status may play in the social acceptance of 
RE. A comparison of these studies shows significant variation across 
contexts, including many contradictory findings. For instance, a survey 
in Croatia showed that female participants exhibited higher willingness 
to pay for RE compared to their male counterparts [98], while a survey 
in Ghana revealed that male participants were more likely to accept RE 
than their female counterparts [254].

One trend that appears to hold broadly across contexts is that 
younger people are more willing to pay for RE (including in Japan [236] 
and China [283]) and are generally more likely to feel optimistic about 
the positive impacts of RE and to support RE (including in the United 
Kingdom [99], United States of America [44], and Greece [100]). 
Higher education levels are also broadly found to correspond with a 
higher awareness of, and positive disposition to, RE technologies [101,
102].

This review reveals an underrepresentation of First Nation’s per-
spectives and engagement in the literature. This is a serious omission 
given First Nations’ cultural and legal custodianship of country and that 
recent energy studies demonstrate [349] positive and negative framings 
of Indigenous renewable energy development are much more nuanced 
than often portrayed and must be viewed alongside colonial histories 
responsible for structural issues affecting communities [350].

3.1.2. Environmental concerns
Sensitivity towards environmental concerns, and climate change in 

particular, is a major driver for support for RE. This has been found 
consistently in studies around the world, including in the Shandong 
Province of China, where local residents indicated that their acceptance 
of RE stemmed from their environmental concerns [284]; in Greece, 
where environmental protection was the most important reason for RE 
deployment, followed by reduction in oil dependency [103]; in 

Romania, where serious concerns about climate change correlated with 
strong support for RE technologies and a preoccupation with energy 
saving [104]; in the Czech Republic, where concern for the environment 
correlated with support for RE and worries about the use of nuclear 
energy [105]; in India, where a survey revealed that participants who 
were mostly in favour of RE were also aware of the environmental 
problems of fossil fuels [285]. However, in some cases, for countries 
with low levels of carbon emissions, RE consumption is seen more as a 
way to improve energy access, rather than a motivation to mitigate 
climate change [274].

Furthermore, Karytsas et al. showed that people who have better 
environmental behaviours (recycling, domestic energy saving, habits 
during transportation, participation in environmental organizations) are 
more likely to know about RE [106]. In Japan, a survey study showed 
that installation of residential PV systems affects people’s concerns for 
the environment and leads to an increase in environmental behaviour 
[237]. Incorporating biodiversity benefits into the design of RE in-
frastructures could also help bolster public support, as suggested by 
Klain et al. where their study found that residents were more willing to 
pay for offshore wind farms (OWFs) that offer high quality artificial reef 
habitat [351]. Similar findings led Ntanos et al. to suggest that states 
should promote access to environmental information as a way to 
encourage citizen support and participation [103]. Peri et al. also sug-
gest that decision-makers should consider projects based on transparent 
environmental planning procedures with clear protocol [352].

3.1.3. Impact on landscape and place attachment
While commitments to global environmental issues, such as climate 

change and atmospheric pollution, tend to bolster support for RE de-
ployments, attachments to local landscapes and places have been the 
source of much controversy and opposition to RE deployments and their 
supporting infrastructure. Multiple studies show that the less RE projects 
encroach over the landscape, the more likely they are to be approved 
[107,108]. For instance, a study in the Swiss Alps revealed that PV 
installation would not be seen as a major landscape encroachment 
because the view was already affected by avalanche barriers [109]. In a 
study in the United Kingdom, Roddis et al. showed that the major 
concern regarding development of solar farms was the potential impact 
on wildlife and habitats [110].

Place attachment, regional authenticity, and historical heritage are 
also important factors for social acceptance of RE projects [111–114,
255]. Buchmayr et al. point out that place attachment should also be 
investigated rather than just pure visibility impacts of RE projects [115]. 
In a study in Cumbria United Kingdom, the population showed strong 
preference for hydropower due to the historic heritage and historic use 
of water power within the community [116]. These findings further 
emphasise the need for greater engagement with First Nations’ com-
munities who have profound connections to place.

Views and attachments to landscapes and places are often subjective, 
subtle, and varied throughout a society [45]. Multiple studies have 
found people to have a higher preference for RE implementation in 
urban areas or intensive agriculture as opposed to near natural land-
scapes [117,118]. However, a study in Southern Spain shown that 
people expressed reluctance for RE implementation in old, historical 
towns and agricultural areas as they would negatively interfere with the 
landscape and impact tourism and agriculture [119]. A study of wind 
farms and solar farms in Portugal found some people mourning the 
destruction of natural beauty, while others viewed them as symbols of 
progress, modernity and positive aesthetic contribution which could 
benefit tourism in the area [120]. It is also critical to note the finding of 
Enserink et al. that there are substantive differences “in factors 
emphasised in peer-reviewed literature and by laypersons” [353].

3.1.4. Trust
This and the following two subsections review the impacts of project 

procedures on social acceptance of RE deployments. These all highlight 
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the agency and influence of the people driving current developments, for 
as Krohn and Damborg put it “people in areas with significant public 
resistance to wind projects are not against wind turbines per se, but they 
are against the people who want to build them” [255].

Trust – in promoters, developers and local utilities and authorities – 
is consistently described in the literature as foundational to the suc-
cessful implementation of RE projects. Trust, however, is something 
which is difficult to gain [238] but easy to lose [121]. It is therefore 
critical that trust is maintained throughout the project’s lifetime. This 
requires trust in both the project itself and the ongoing decision-making 
processes. Numerous studies highlight that continuous access to con-
crete information is essential to this process [46,122–124,286]. For 
example, a study in the United States of America investigated the pub-
lic’s opinions regarding an OWF and found that opinions changed over 
time. A negative shift of opinion towards the project was found to be 
influenced by feelings of broken trust and being left behind by de-
velopers [47]. The potency of a lack of transparency or the dissemina-
tion of misinformation on social acceptance of a project and on 
associated institutions is not to be underestimated [125]. For instance, a 
study in a rural Indian community showed that the population expressed 
concerns about the exploitative business practices of solar energy de-
velopers, which could result in project oppositions [287].

These dynamics led Azarova et al. to suggest that the push for new RE 
developments would be best lead by political entities in which the public 
has high confidence [126]. This is highly context specific. For example, 
Ma et al. [288] state that “the information that is issued by the gov-
ernment is viewed as a guarantee for the safety of relevant technologies, 
particularly in rural China”, while Mercer et al. [48] state that in 
North-east Canada “government actors … are typically the least trusted 
source of energy-related information”.

Building and maintaining trust is a central goal for the following two 
aspects: community participation and community ownership and ben-
efits. Simultaneously, these processes require a reasonable level of trust 
to be in place before they can be pursued effective.

3.1.5. Community engagement
The communities surrounding RE projects have the potential to be 

powerful project supporters or to be persistent hinderers [127]. The 
consistent finding across studies is that early inclusion in 
decision-making processes is vital to engaging communities and 
informing their perspective on project risks and benefits [128,129,354].

Where this is done well and early, “public participation in decision- 
making regarding deployment infrastructure projects creates an 
enabling environment for successful implementation” [256]. Where this 
is not done early and well, for example in Devine-Wright’s study of tidal 
energy in the UK, communities can become cynical about consultation 
procedures leading to low levels of engagement and feelings of being 
ignored throughout the project [130].

Studies on community engagement have elicited numerous aspects 
of successful processes. These include ensuring community cohesion, 
seeking fairness, and managing expectations [257,289]; understanding 
the local context [239] and attending to the affective component of the 
local community [131]; fostering a local champion [240] or targeting 
the most influential members of the local community before addressing 
other stakeholders [290]; and frequent direct communication that mit-
igates against uncertainties and engages with perceived problems [132,
355]. Where these aspects are attended to, the public can serve as fa-
cilitators of RE project development [132,355].

Moving beyond communities accepting projects into their sur-
roundings, several projects have sought to facilitate active community 
participation in RE deployments through a variety of mechanism. Eu-
ropean projects have favoured involving communities in decision 
making. In Germany, Langer et al. found that local stakeholders 
preferred involvement in projects through cooperation and consultation 
over financial participation [133]. Similarly, participants in a German 
and Polish survey mentioned that they were willing to accept new wind 

turbines in their vicinity, provided they could participate in the 
decision-making process [134], and a study in Switzerland found that 
support for local RE projects increased when citizens were allowed to 
decide on the projects through a popular vote [135]. In Australia, Hall 
found that enhanced engagement and provision of a platform to consider 
concerns and trade-offs, could result in increased acceptance of wind 
farms [241]. In contrast, a case study in rural Midwest United States of 
America, found that the social acceptance of wind farms was predomi-
nantly based on financial benefits community, not on community 
participation [49].

These studies suggest that active community participation is better 
than merely seeking community acceptance and that, once again, local 
contexts and preferences need to be understood by developers so that 
engagements can be tailored to the needs and expectations of the local 
community [50,136,356].

3.1.6. Community ownership and benefits
In addition to participating in project decision-making, or potentially 

even as an alternative to decision-making participation, communities 
can be incorporated into the ownership structure of projects or their 
benefit flows. Studies have generally found that social acceptance in-
creases in response to a degree of community co-ownership [51,137]. 
Studies in Norway, Scotland, Belgium, Denmark and Germany have 
found that where local co-ownership has been implemented, the eco-
nomic impacts on the local community were considerable, with wealth 
circulating in the local economy rather than flowing to far removed 
owners [138–141]. Use of the deployed RE within the community is 
another form of local benefit. Eaton, for example, found that land-
owners’ likelihood to support local bioenergy crop production was 
linked not only to the symbolic meaning they assigned to their land, but 
also to whether they saw bioenergy crops benefiting their community 
[52].

The effects of community co-ownership can extend beyond any in-
dividual project, with one study in Austria finding that ownership of RE 
projects increased trust in local and national policymakers [142]. Yet, 
national economic impacts may not carry much weight for local com-
munities, who Sharpton et al. emphasise may be more focused on pos-
itive impacts on the local economy [53]. While the broad conclusion 
from studies of community co-ownership are very supportive, such ini-
tiatives are relatively new to the energy sector and Walker et al. 
emphasise that ongoing research is required to refine how community 
benefits are designed, portrayed and perceived [143].

3.1.7. Type of renewable energy technology
In the remaining three subsections this study reviews the more 

granular aspects of RE deployment projects and their contexts. The first 
aspect, which has been the subject of widespread study on social 
acceptance [137], is the type of technology deployed and, to a lesser 
degree the type of energy source being harvested.

As may be expected from the diversity of contexts and societies, 
studies have not identified a consistent preference for a certain RE 
technology. In Iran, Hosseini et al. found that wind energy has a better 
social acceptance compared to solar and geothermal [291]. A study in 
Rwanda found that locals prefer small hydro over solar PV [279]. Re-
sults of a large-scale survey in Germany revealed that people showed 
stronger acceptance, more positive attitudes, and less protest intentions 
towards solar energy followed by wind, biomass and natural gas [144]. 
A study of an Indigenous off-grid community in Labrador, Canada, 
revealed that conventional RE such as wind and solar are preferred over 
biomass, tidal and wave energy [54]. Investors also have preference for 
certain RE technologies. For instance, a study in South Africa found that 
investors were more inclined to pay for solar PV and wind technologies, 
due to their maturity, technological advances, and lower associated risks 
[282]. From the results of a national Canadian survey, Donald et al. 
found that the drivers of support for solar and wind energy differed from 
hydro, where hydro supporters were less concerned about climate 
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change [55], which could be linked to hydro being long established as a 
major part of the Canadian energy system in various provinces [55].

An important consideration, raised by Murombo, is that such relative 
technology assessments may create “an unfair advantage for fossil fuels 
given the social acceptance of fossil sources” [258], at least in some 
communities in South Africa.

3.1.8. Proximity to renewable energy installations
Another well-studied aspect of social acceptance is the relative 

proximity of RE installations to stakeholders. In general, the closer 
proximity is found to correlate with lower acceptance.

Results from a Japanese study showed that residents are less willing 
to pay for visible solar PV plants located within 3 km of the community, 
while less visible plants at higher elevation did not negatively impact 
social acceptance [236]. Similarly, a South Korean study revealed that 
although people were generally favourably inclined towards RE assets, 
they may show opposition to the construction of RE plants within their 
own communities [292]. Other studies have also shown that greater 
proximity of wind turbines to households can negatively impact life 
satisfaction and increase opposition [56,145,146]. A study of the South 
Korean public’s perceptions of OWFs by Kim et al. found that the dis-
tance from shore was the most important of the five considered aspects 
[293]. Meanwhile, a survey of tourists in Europe conducted by West-
erberg et al. found that while increasing the distance between a wind 
farm and the shores of the Mediterranean Sea did improve respondents’ 
attitudes, it did not nullify their concerns about visual intrusion, noise 
pollution or damage to wildlife [147]. This is independent of the scale of 
deployments as well, as Oh et al. found that small-scale OWFs installed 
2 km away from the coast still impacted the visual amenity of the 
landscape [338].

3.1.9. Knowledge of, and past exposure to, renewable energy technologies
Lastly, lack of knowledge about a RE technology can lead people to 

rely more on their values and beliefs when forming attitudes toward RE 
projects [57]. Often, this tends to hinder progress on otherwise 
economically and technically feasible projects [51]. However, there are 
also exceptions, with one study in Morocco finding that very low 
knowledge about a large-scale solar farm project correlated positively 
with support for the project [259].

Many studies emphasise the importance of proactive engagements by 

policymakers and industry stakeholders to raise awareness and under-
standing in the communities in which they operate (or would like to 
operate), regardless of the project scale [148,149,357]. Flacke and De 
Boer illustrate one example of how this can be done through their 
development of a planning support tool, which increased community 
members’ awareness on the benefits and need for RE [150].

In addition to assisting with a license to operate, knowledge about RE 
has been found to increase people’s willingness to pay for RE electricity 
[148] and their association of RE with positive emotions [151]. In 
Shanghai, China, Vand et al. [294] found that “increasing the re-
spondent’s awareness about the issues of non-green energy products 
convinced 97 % of them to change their electricity sources completely or 
partly, in line with their monthly income.”

Past exposure to RE infrastructure has been found to have mixed 
effects on social acceptance of new RE developments [152]. For 
example, a study in Rogaland Switzerland found that people who 
frequently encounter wind farms had lower acceptance of additional 
wind farms development [153]. In contrast, a comparative study in the 
French, German and Swiss Upper Rhine region, found that respondents 
with previous experiences with RE infrastructure showed higher 
acceptance of RE on average [137]. A study of Polish farmers found that 
those who already have RE infrastructure on their land and had received 
grants were more likely to express interest in further RE infrastructure 
installations [154]. These mixed findings could have many origins, 
including the specific values, identities, economic conditions of different 
communities, as well as the histories of how RE projects have been 
developed in these communities. As noted by Simpson, these variations 
greatly constrain the generalisability of studies on the social acceptance 
of RE [240].

3.1.10. Summary and critical analysis of social aspects
In terms of demographics, this review found broad agreement across 

countries that younger people are more willing to pay for RE. Higher 
education levels, better knowledge about RE technologies and their 
benefits, awareness about climate change and the need to reduce reli-
ance on fossil fuels, were also found to correlate with higher social 
acceptance of RE. Trust was a recurrent theme in the review with 
numerous studies identifying trust – in promoters, developers and local 
authorities – as essential for successful deployment of RE with a com-
munity. Studies highlighted that trust must be established and 

Fig. 2. Trends of social topics in reviewed literature.
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maintained throughout the whole course of RE deployment and beyond 
by involving the local community in the decision-making process, 
attending to their affective component and specific needs, seeking to 
understand the local context, opening clear, timely communications 
platforms where concerns and trade-offs can be discussed.

The “not in my backyard” phenomenon was also found to be prev-
alent across countries, multiple studies finding that people are more 
likely to support RE deployments if they are located further away from 
residences with the sense of landscape encroachment not limited to pure 
visibility impacts but extending to place attachment, regional authen-
ticity, historical heritage and personal connections to place. Another 
common trend is that maturity of a RE technology in the country, 
geographical features of a country favouring one form of energy over the 
over, all support social acceptance. The review highlights multiple 
further points of disagreement across studies and/or local contexts. 
These include local communities’ preferences for certain RE technology 
and whether strong attachment to place blocked or bolstered support for 
RE deployments.

One of the gaps revealed by the review is the underrepresentation 
and consideration of First Nations peoples. Indeed, only four of the three 
hundred and sixty-nine reviewed studies commented on First Nations 
peoples, and none were authored by First Nations representatives. This 
demonstrates a problematic lack of attention paid to the unique per-
spectives, interests and impacts of and on First Nations peoples.

Although environmental concerns were found to be drivers for social 
acceptance of RE, the review found that this is predominantly the case 
for developed economies. The public in developing economies, on the 
other hand, might be more concerned about reliable access to energy 
and energy justice.

Fig. 2 presents the trends of the social topics in the reviewed litera-
ture from 2010 to 2022. The results show that trust has been receiving 
significant stable attention throughout the past decade, which further 
highlights its crucial aspect for RE deployment. Topics such as envi-
ronmental concerns, place attachment and knowledge of RE technolo-
gies have been receiving increasing attention suggesting that as more RE 
are deployed in upcoming years, RE developers and policymakers need 
to expand their impact assessment to just pure visibility impacts of RE 
projects on landscape. The latter need to pay particular attention to 
place attachment, regional authenticity, historical heritage and con-
nections to place.

3.2. Economic impacts of, and on, renewable energy deployments

This section reviews the economic aspects of RE deployments. These 
are arranged in terms of RE specific costs and cost mitigation options, 
the relative effects of fossil fuel subsidies, and the macro influences of 
institutional governance and economic growth.

3.2.1. Cost of renewable energy technologies
The cost of deploying RE technologies has historically been signifi-

cantly greater than the cost of deploying fossil fuel technologies, and far 
greater still than running existing fossil fuel plants. For instance, a case 
study in Nigeria found that due to the limited cost reduction that RE 
systems have experienced in Sub-Saharan Africa, conventional energy 
generation systems are preferred over decentralised RE systems [280]. 
Cost is one of, or arguably the biggest barrier to RE adoption. Still, the 
last four decades have seen dramatic reductions in the costs for RE de-
ployments, including the technologies themselves – particularly for 
wind and solar – and the cost of project financing. In many regions RE is 
now the cheapest form of new build generation, and in certain regions 
such as the Group of Twenty countries (G20), the new build cost of RE is 
lower than running costs of existing fossil and nuclear power plants 
[358]. However, for continued progress and decrease in cost of RE 
technologies, continued public policy support is needed [277]. As cap-
ital cost of RE keep decreasing and improvements in efficiency are 
achieved, RE deployments will become cheaper and offer opportunities 

for energy independence.
Regarding technology costs, the most remarkable changes have 

occurred for solar PV [231] and wind [334]. In contrast, wave and tidal 
energy technologies have remained less mature and uncompetitive on 
cost [359]. The cost of hydropower meanwhile has been competitive for 
decades, in well-endowed locations such as Canada, despite not expe-
riencing substantive cost reductions [58].

The reduction in capital costs, combined with the characteristic zero 
fuel costs of RE generation technologies, places a great emphasis on 
upfront project development costs and the cost of capital. These are 
lively issues in all contexts, but are particularly pronounced in devel-
oping countries [260,295,296,360], where upfront costs place solar 
“beyond the reach of the poor rural populations in Ghana [261]” and 
“strict lending measures restrict access to financing even when funding 
is available for traditional energy projects” [361].

3.2.2. Economic advantages of co-location
The ability to co-locate with other economic activities is a competi-

tive advantage for RE technologies because co-location is generally not 
attractive for fossil fuel extraction or combustion facilities due to their 
pollution. Interestingly, existing fossil fuel infrastructures, such as 
decommissioned oil and gas platforms, are prime candidates for RE 
deployments [155].

For landowners, co-location can deliver substantial revenue. Loomis 
showed that in Illinois United States of America, landowners who leased 
their land to wind farm developers earned $13 million annually in extra 
income [59]. However, co-location can also be the source of tensions 
between economic growth, indigenous rights at sea, historic injustices 
and access to natural coastal resources [60]. Therefore, early, compre-
hensive, genuine consultation and engagement are pre-requisites for the 
successful implementation and co-location of marine and land RE pro-
jects [60].

In this review, co-location featured particularly prominently in ma-
rine settings. This appears to be due to logistical costs and geopolitical 
dimensions [61] of building and servicing infrastructure in these con-
texts and due to “environmental and economic synergies generated by 
the joint deployment of offshore renewable facilities and activities such 
as fishing, aquaculture and even the conservation of natural areas” 
[156]. Offshore wind turbines have, for instance, long been co-located in 
the North Sea with other marine activities such as fisheries, which in-
creases the utilization of limited maritime space [157]. Co-location can 
also “reduce conflicts” [156], including between nations, such as 
through “Maritime Spatial Planning [which] can balance maritime ac-
tivities and foster cross border cooperation while developing a new 
scheme of multilevel governance” [158].

3.2.3. Fossil fuel subsidies
A prominent barrier to RE adoptions, identified in studies around the 

world, is the ongoing support and subsidisation of fossil fuel use by 
national governments. While these must be assessed in relation to sub-
sidies for RE technologies, the general conclusion in the literature is that 
the subsidies allocated to fossil fuel sources is much higher than what is 
provided to the renewable energies [298] which is overshadowing [296,
339] “the use of RE and the development of the energy sector [262] and 
national economy” [263].

Unsurprisingly, studies find opposition to removing these subsidies is 
particularly pronounced in fossil fuel producing countries such as South 
Africa, where the fossil fuel industry has a blocking influence [276,299], 
and Gulf States and Kazakhstan, which have a “political economy of 
rentier states” [300], with “50 % of the government budget in 
Kazakhstan coming from the oil energy sector” [249].

Another way in which fossil fuels are advantaged is through the 
absence of taxes or environmental prices on their negative externalities – 
particularly pollution – which causes great harms and costs to human 
and environmental health [264,301].
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3.2.4. Renewable energy subsidies
In addition to RE technology costs and capability improvements, the 

last four decades have seen extensive experimentation and innovation in 
subsidies and incentives for RE deployments across global contexts 
[62–66,159,160,265,302,303,340].

A common approach has been to sure up project revenues by fixing 
the feed-in tariff paid for energy generated by RE [67,161–163,304,
305]. Taxation approaches have also risen to prominence. These include 
traditional approaches of tax deductions for RE projects and developers 
[164,266,306], as well as the emergence of taxes on environmentally 
destructive activities, such as emitting carbon pollution [68,242]. 
Studies have generally found environmental taxes to be highly effective 
[69,165,166], particularly if the raised revenues are directed towards 
subsidising environmentally beneficial activities [70]. However, taxa-
tion approaches are not universally applicable. As mentioned by Baba-
jide, tax is not a major source of government revenue for many countries 
in Africa, limiting the options for government subsidies in those coun-
tries [281].

As with social and environmental aspects, coherency and context 
specificity in design and implementation are critical to the impact of all 
RE policies [167,307]. Going forward, multiple studies emphasise that 
the design of policies and subsidies will need to evolve as the proportion 
of RE generation increases, for instance by becoming technology specific 
[159] or more focused on the correlation of RE generation and elec-
tricity demand [308]. Otherwise, excessive RE subsidies can reduce 
country’s fiscal stability and budget position [71,309]. Moreover, as Sun 
et al. argue, decarbonisation paths should be tailored according to the 
country’s own local circumstances, avoiding generalisation and arbi-
trarily adopting and applying a policy just because it worked in another 
country [275].

Another aspect of RE support identified for further study is the role 
and behavioural context of investors, including their decision-making 
processes and calculation of investment risks – given that risk pre-
miums have been a major burden for RE deployments [168,169].

It is also important to point out that funding mechanisms and 
financing requirements are often different for large-scale and small-scale 
RE projects [362]. As mentioned by Sareen, not properly addressing 
scalar biases could lead to historical injustices of the energy sector being 
reproduced, benefiting only select few centralised large-scale RE actors 
[234].

3.2.5. Quality of institutional governance
The review revealed a strong theme of quality institutional gover-

nance – across governments and economic and market-supporting in-
stitutions – being foundational to successful transitions to RE [72–74,
250,267].

In most of the literature this issue was identified through short-
comings in governance. Dulal et al. describe complicated and confusing 
arrangements across almost all governments in developing Asia [296] as 
a critical barrier to investor confidence. Guerreiro et al. [310] and 
Sambodo et al. [311] examine this in detail in Indonesia, concluding that 
“governance needs to be treated as the most critical barrier” [311]. 
Similarly, the lack of coordination and cooperation among various au-
thorities such as energy institutes, ministries, and other stakeholders 
restricts and delays the progress and development of RE in Pakistan 
[312,363], India [313], and Bangladesh [314]. In China, a particular 
dynamic appears to be the “rent-seeking behaviour of local governments 
and state-owned enterprises” [315].

In Africa, studies highlight the role of public-private partnerships to 
bring in private capital [364], as well as general collaborations between 
governments and the corporates and communities wishing to develop 
RE deployments [255,365–368]. Here again, uncertainty is “the most 
dominant institutional barrier” [362]. In a Ghanaian study, Asante et al. 
mention that to counteract economic and financial impediments to RE 
deployment, adequate financial support must be established to cushion 
investors and private RE adopters [278]. The importance of financing 

risk is further highlighted by the study from Labordena et al. who 
showed that in Sub-Saharan Africa, it is generally cheaper to use lower 
solar resources in a low-risk country, than to exploit better solar re-
sources in a high-risk country [369]. In the Middle East, the messy 
economic situation of Iran [370] and the bureaucratic inefficiencies of 
Gulf States [300] and add to the barriers of fossil fuel subsidies.

These challenges are not limited to the developing world, with 
studies in North America and Europe [371–374] raising similar concerns 
of lack of coordination [75] and competences scattered over different 
ministerial departments, resulting in dispersed and complex schemes 
[372]. The additional governance layer of the European Union adds 
complexities of aligning the approaches and interest of the union and 
individual member states [373]. Sweidan notes that this is particularly 
challenging given the geopolitics of energy and incentives to secure 
independent energy supplies [374].

3.2.6. Economic growth
Some studies have concluded that RE deployments have a positive 

impact on the economic growth of a country [76,170]. This is evidenced 
in studies of twenty-eight European Union countries, where economic 
growth varies according to the technology [171], and of twenty devel-
oped and developing countries, where the positive impact is greater in 
developing economies as compared to developed ones [77]. Studies on 
China, India and Russia furthermore indicate that increase in RE con-
sumption positively contributes to foreign direct investment flows as 
well as economic growth [251,252,316].

Any effect appears to require a critical mass of RE deployments 
[172], particularly in relation to a nation’s fossil fuel economy [317], 
which may explain why no significant impact has been found on Iran’s 
economic growth [318]. Yet, a study of another twenty-eight countries 
over the period 1995–2013 are more convinced that “renewable energy 
has not contributed to economic growth, while non-renewable energy 
has contributed” [78] with similar results in low-income countries [268,
375].

Research has also investigated how economic growth impacts RE 
deployments. Economic growth has been reported to be a direct driver 
for increases in RE in South Korea [319] and in Africa [269–271]. In 
these African studies, and further studies in Belt and Road initiative 
contexts [253], economic growth and RE are tightly entwined with 
private and foreign investments [269,270] industrialisation [271] and 
globalisation [253].

However, a narrow focus on economic growth can also be detri-
mental to the proportion of RE generation in countries’ energy mixes. A 
study on the Group of Seven (G7) economies – being the most developed 
and industrialised economies in the world – found that economic growth 
had a significant negative effect on the proportion of energy derived 
from RE technologies over the thirty year period to 2020 [68]. Another 
study on the wider thirty-six Organisation for Economic Co-operation 
and Development (OECD) countries over the period 2001–2015, simi-
larly produced a negative correlation between the wealth of the country 
and the percentage of RE generation [79]. In both cases the studies 
suggest that this is due to these countries favouring economic growth 
through expanded production and innovation in fossil fuels over RE 
investments [68,79]. This is despite geopolitical incentives to secure 
access to independent energy sources, which has been shown to have a 
significant positive effect on RE deployments, particularly in higher 
income countries [80,374].

3.2.7. Summary and critical analysis of economic aspects
The disparity in cost of RE across countries illustrates the signifi-

cance of sustained government support, industry experience and 
financing risk in RE deployments. For instance, the review finds that RE 
has become cost competitive in some developed economies where 
governments have implemented financial incentives, such as providing 
subsidies to shore up revenues, alleviating taxation costs, feed-in tariffs 
and environmental taxes, to encourage RE adoption throughout the last 
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decade. In some developing economies however, the deployment cost of 
RE is still burdensome and policy and decarbonisation paths are con-
strained, requiring different approaches.

A common thread identified by the review is the pervasiveness and 
importance of the quality of institutional governance in facilitating RE 
deployments. Independent of the economic status of the countries, lack 
of coordination, cooperation and collaboration between authorities 
creates major structural barriers to RE deployment. In developed 
economies, the review found that excessive layers of bureaucracy results 
in dispersed and complex schemes that slow down the adoption of RE.

While there have been multiple expansive studies on the relation-
ships between economic growth and RE deployments – which have been 
hypothesised to be either correlated or anticorrelated– the review found 
conflicting results with ambiguity in interpretation. The review did 
however find that, irrespective of the type of economy, economic growth 
is often preferentially pursued through expanded production and inno-
vation in fossil fuels. This reveals that, although reducing reliance on 
fossil fuels, minimising increase in global temperatures, and achieving 
energy independence, are pressing concerns, many countries still tend to 
rely on fossil fuels for their economic growth. Many studies observed a 
disproportionate weighting of subsidies towards fossil fuels over RE 
technologies – including through the omission of levies on environ-
mental and human health damages. This is particularly true for fossil 
fuels producing states. This hinders not only RE deployments but also 
research, innovation, experimentation and development of RE.

The review also found that co-locating RE with other activities could 
present economic advantages and enhance RE acceptance. However, all 
the cited studies were in developed economies. This suggests an 
important gap in the literature and in industry practises, where co- 
location of RE with other economic activities could support RE de-
ployments in developing economies.

Fig. 3 illustrates the trends of the economic topics in the reviewed 
literature from 2010 to 2022. The cost of RE technologies has been a 
well-known and highly studied issue throughout the period. RE sub-
sidies and quality of institutional governance, meanwhile, are topics 
receiving increasing attention. Economic advantages of co-location have 
not received much attention, which is a particular oversight as the scale 
of future RE deployments coupled with land-scarcity, will result in more 
co-locations of RE and other economic activities.

3.3. Environmental impacts of renewable energy deployments

This section reviews the variety of impacts that RE projects may have 

on the environment. The discussion focuses on the local impacts of RE 
deployments, including terrestrial habitat alterations, marine habitat 
alterations, hydrodynamic impacts, and the potential for cascading 
tropic impacts. It then comments the global positive impacts of RE.

3.3.1. Terrestrial habitat alteration
RE deployments in terrestrial settings tend to garner particular 

attention as they are more visible than deployments offshore or in rivers. 
The two most widely deployed and most studied RE technologies in 
terrestrial habitats are wind and solar PV.

The impacts of wind farms have particularly focused on birds and 
bats, for the intuitive reason that they can collide with wind turbines 
[320,376]. This can result in animal deaths, habitat loss, obstructed 
migration paths, and can negatively impacting breeding conditions 
[173,174,341,377].

Many studies have examined the variables influencing the impacts of 
wind turbines on bird mortality. Studies of turbine height and blade 
length have recorded mixed results, with some studies finding bird 
mortality to be greatest for tall wind turbines [81], while others 
concluded that higher wind turbines represent an opportunity to reduce 
collision risk for other bird species [175,378]. Furthermore, the results 
of Miao et al. reveal that the taller the turbine towers, the smaller the 
negative impact on overall birds breeding, but the longer the blade 
length, the greater the negative impacts [82]. Other studies have 
investigated the effects of flying conditions, bird movements, turbine 
sitting and surrounding terrain, habitat disruption, wind speed, season, 
proximity to feeding and breeding habitats, migration paths [83–85,
176–178,321,322,342–344,379].

The conclusion of these is that there are no straight-forward collision 
mitigation techniques that could be applied at every site [379]. One 
mitigation strategy for reducing the impacts of wind turbines on birds 
and bats is to identify, and avoid, areas of particular significance [86,
380]. Such measures to appropriately sit wind farms have been shown to 
significantly aid species preservation [179,180,381].

Bats face a similar predicament. While Hartmann et al. have shown 
that bats are able to avoid moving rotor blades, casualties at sites of high 
bat activity can reach or exceed expected threshold levels [181]. 
Furthermore, Millon et al. showed that bats can lose substantial foraging 
habitat through wind farm deployments, which must be taken into 
consideration when assessing offset measures [182].

Land based animals are also affected by wind farms deployments. A 
study on the behaviour of four terrestrial animals near a wind farm, 
found that herbivorous mammals tend to avoid the wind farm proximity 

Fig. 3. Trends of economic topics in reviewed literature.

D. Virah-Sawmy and B. Sturmberg                                                                                                                                                                                                          Renewable and Sustainable Energy Reviews 207 (2025) 114956 

9 



and interior [183]. A Swedish study found that reindeer tend to avoid 
areas in proximity of wind farms, and mention that using topography 
and land cover information, together with positions of wind turbines, 
can help identify sensitive habitats and improve the planning and 
placement of wind farms [382]. Avoidance behaviours might be due to 
physiological effects of excessive noise and impaired ability to hear 
predator approaching [183]. Anoop et al. revealed that the abundance 
of Indian Hares was significantly higher in wind farms than in sur-
rounding forest area without wind turbines [323]. These findings are not 
uniform, with some studies of wind farms finding no significant impacts 
on terrestrial animals [87,184].

Solar farm development can also have negative impacts on land and 
habitat through the clearing and levelling of land and the use of heavy 
machinery to lay concrete and cables [383]. PV farms have been found 
to block movement of migratory wildlife species, thereby causing 
migration disruption between different species [384]. Devitt et al. put 
forward that high-density placement of PV system in Mojave desert, 
United States of America, could lead to severe ecosystem fragmentation 
and have potential negative impact on desert tortoise and other 
threatened species [88]. Strict regulation in conservation areas and 
implementation of PVs in urban areas can help reduce natural habitat 
loss and mitigate negative ecological impacts [244]. The degree of 
negative environmental impacts of RE deployments also depends on the 
size of the infrastructure. Interestingly, a study in Japan and South Korea 
found that compared to large-scale deployments, medium solar PV fa-
cilities resulted in higher area loss of semi-natural habitats [244]. As a 
solution against land scarcity and land use conflicts, FPVs provide ave-
nues for alternative construction methods and could be installed on 
reservoirs, lakes, wetlands and other water bodies [244].

3.3.2. Marine habitat alteration
RE technologies deployed in marine environments can also have 

significant impacts. As in terrestrial deployments, OWFs can affect bird 
and bat life through collisions. Bai et al. found that the abundance of one 
waterbird species decreased during the construction of an OWF but has 
since recovered [324].

Additionally, the foundations of OWFs introduce hard substrates into 
the marine environment, which can become colonised by a wide variety 
of ocean bottom (“benthic”) organisms [89,185,186]. Mooring lines can 
similarly adversely affect benthic habitats and cause sediment erosions 
[385]. Similarly, WECs and tidal turbines have been found to impact the 
benthic zone. Langhamer reported that WECs could lead to the accu-
mulation of organic matter [187]. Similarly, tidal turbines have been 
found to decrease sediment suspension and create new bottom features 
[188]. As preventive and precautionary measures, small-scale pilot 
studies can be useful in understanding whether large-scale deployments 
will have negative impacts on benthic communities and introduce alien 
species [204].

While multiple studies have found negligible negative impacts from 
the construction and operation of OWF on specific species – for example 
flatfish in North America [90] and viviparous eelpout in Sweden [189] – 
such findings are highly case specific. Lloret et al. emphasise that well 
developed models of OWF deployment cannot simply be transferred 
from northern European seas to other seas [190] and furthermore pro-
pose that OWFs should be forbidden in the vicinity of marine protected 
areas and should be excluded from areas of high biodiversity [190]. The 
latter is further supported by Lüdeke, who mentions that OWFs should 
be excluded in hotspot areas of sensitive species [386]. Huang also 
mentions that OWFs should avoid areas subject to strong ocean currents 
[326].

The issue of collisions also arises with WECs and tidal energy sys-
tems. In these cases, collisions can occur with diving seabirds or with 
underwater animals. Furness found that diving seabird species are the 
most prone to collision with WEC and tidal turbines [191]. Further 
studies indicate that, despite the moving components of tidal turbines 
being located upon or near the seabed, some bird species, such as the 

Auks Alcidae and Cormorants, can reach these depths and are prone to 
collision [192]. In contrast, other studies have found that none of the 
four studied seabird species showed avoidance or extreme change in 
distribution in the presence of the WEC [193]. These studies further 
accentuate the complexities of generalising potential impacts of marine 
RE infrastructures on seabirds. As Waggitt et al. mention, species’ 
vulnerability can differ greatly among development sites [387]. As a 
further complicating factor, marine RE devices can act as prey aggre-
gators, attracting foraging birds, which can affect the likelihood of 
collisions [194].

Fish, seals, and other marine animals can also collide with RE de-
vices. Overall, these animals appear to effectively avoid RE devices. 
Yoshida et al. conducted an experiment to study fish behaviour near a 
rotating turbine and found that 71 % of the fish avoided the turbine 
during bright conditions and 91 % avoided the turbine in dark condi-
tions [388]. Studies conducted on seals have found that collision risks 
with tidal turbines are reduced due to the avoidance behaviour of seals 
[195,196]. A study of harbour porpoise also indicated that tidal turbines 
would have low collision impact [197]. However, collision risks depend 
on various factors such as device array configuration [389], number of 
devices installed [91] or type of species present at the location [390]. 
Furthermore, Malinka et al. stress that avoidance behaviour of cetaceans 
around tidal turbines cannot be generalised to other sites [391].

Some marine creatures are sensitive to underwater sounds. Intense 
introduced noises can cause behavioural changes, injury, acute stress or 
even death from concussion [325,326]. The effect of underwater noise 
depends on various parameters such as type of device, species present, 
season and location [198–200]. For instance, Tougaard studied the 
impact of a WEC and showed that the noise levels were so low that the 
marine mammals would barely be affected [201] - however the impacts 
may differ for other WEC designs [201]. Meanwhile, Haxel et al. studied 
underwater acoustic emissions from a tidal turbine near a busy port and 
found that the turbine did not have a significant impact on noise levels 
[92]. Noise levels can vary considerably between construction and 
operation. Pile driving during the construction of OWFs for instance can 
create a lot of noise and disturb marine mammals [202,389]. Best and 
Halpin mention that cetaceans are mostly impacted during pile driving 
and the latter should be limited to times when species of conservations 
are least present in order to minimise negative impacts [93]. To reduce 
underwater noise during pile driving, hydro sound dampers such as 
bubble curtains, pile sleeves or cofferdams can be used [386].

Another set of impacts arise from the underwater cables that deliver 
the energy harvested in marine environments onshore. Several marine 
species such as elasmobranchs, crustaceans, cetacean, bony fish and 
turtles have been demonstrated to be sensitive to electric and/or mag-
netic fields emitted from underwater cables [203,389]. Magnetic fields 
could influence geomagnetic patterns used for navigation by migratory 
marine species [204]. While Cresci et al. concluded that the behaviour of 
Sand eel larvae during their early life would not be impacted by elec-
tromagnetic fields from OWF [205], they do not exclude that the larvae 
might be affected later in their life stage. The scale of the impact of 
electromagnetic fields depends on the number of cables used, their 
orientation and cable type [392].

The impacts of in river hydropower plants are well known and quite 
blunt, disrupting migration routes of fish species [206,327,393,394] and 
negatively affecting riverine and riparian species [207,328]. This could 
have repercussion on food security, with Alsaleh and Abdul-Rahim 
showing that continued growth of hydropower production in the Euro-
pean Union would reduce fish supply [208]. Deployment scale can also 
have varying environmental impacts. For instance, a comparison be-
tween large-scale and small-scale hydropower plants in Norway found 
that small-scale hydropower had greater negative impacts on red-listed 
species [235]. This could be due to the fragmented nature of small-scale 
hydropower plants development [235].

In an interesting corollary to the economic benefits of co-location, 
marine RE structures can restrict the use of certain fishing methods, 
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such as bottom-trawling, thereby presenting opportunities for seabed 
protection and recovery [209,210,395]. Offshore RE infrastructures 
may also function as artificial reefs, acting as fish aggregation devices 
[211,389]. The level of fish aggregation depends on flow velocities. 
Fraser found that during reduced flow velocities fish schools tend to 
aggregate near the marine RE structure but during peak flow velocities 
they tend to avoid the structure [212]. One disadvantage of fish ag-
gregation near marine RE structures is that they draw top-level preda-
tors such as marine mammals and seabirds [396]. Van Hal et al. found 
that fish aggregation near OWF was only temporary [213] while Lan-
ghamer’s et al. result indicate that there was no obvious artificial reef 
effect from an OWF in Sweden [214]. These further highlights that the 
effect of marine RE are not obvious and cannot be standardised.

3.3.3. Hydrodynamics alteration and impacts on water quality
In addition to direct impacts on marine animals, marine RE devices 

can substantially alter water movements. WECs for instance, can act as 
physical obstacles, absorb wave, attenuate wave height, cause wave 
scattering and wave radiation [215–217,245,397]. Abanades et al. 
investigated the impact of WECs on beach profile and found that they 
could, to some degree, act as coastal protection, reducing beach erosion 
[218]. Other studies have shown that the presence of WEC farm strongly 
influence immediate down-wave conditions, but that influence de-
creases at the level of the coastline [398,399]. Posner et al. have 
demonstrated that careful arrangements can reduce the degree to which 
arrays of WEC reduce wave height [219].

Tidal turbines can also have an impact on hydrodynamics. A study 
along the east coast of the United Kingdom revealed that tidal elevation 
increases upstream of a tidal array, while a reduction is observed 
downstream [220]. Complex currents can be created in the immediate 
wake of tidal turbines [400]. It was also found that siting tidal turbines 
in the vicinity of a headland could lead to distinct changes to the hy-
drodynamic flow field [221]. Deployment of turbines can disturb water 
velocity, thereby impacting sediment and larval dispersion [222]. 
However, sedimentary processes are controlled by waves, tide, sediment 
type and morphology and thus impacts of energy extraction are always 
site specific [223].

Hydropower plants also alter hydrological cycle and water quality 
[246,248,329]. Studies have shown that hydropower plants can cause 
changes in biodiversity and physical features of rivers [330,345]. In 

some cases, hydropower plants have been implicated in exacerbating 
droughts [208,331] and in other cases flooding [272]. Rapid flow var-
iations can affect both physical and chemical characteristics of water, 
changing water ecosystems and threatening various fish species [224] 
and challenges the livelihood of small riverside communities [346]. 
However, the scale of deployment also plays a crucial role on potential 
negative environmental impacts. For instance, small hydropower plants 
do not cause emission of dirty substances in the air, have low noise levels 
and do not affect the change in physical conditions due to low water 
accumulation [248]. They also tend to use run-of-the-river designs, 
which may only require a small, less obstructive dam [224]. These ad-
vantages have made small-scale hydropower plants very popular. 
However, the cumulative negative landscape impact of many small-scale 
hydropower plants could exceed that of a singular large-scale plant, with 
similar power output [224].

FPVs meanwhile can be beneficial for reservoir by decreasing light 
penetration and hence reducing algae growth [225,401,402]. They can 
also have a positive impact in regions prone to drought, by reducing 
evaporation rates in lakes or reservoirs [332,403]. However, shading 
from FPVs can also have negative impact on coral reefs and seagrass 
which require sunlight for growth [404]. This could have significant 
ecological effects for the aquatic fauna and flora, but also for the sur-
rounding terrestrial ecology [94,405]. Nevertheless, the environmental 
impact of FPV on water will also depend on the dimensions and design of 
the system, as well as water system characteristics and climatic condi-
tions [226,406].

Wang et al. studied tidal extraction in an estuary and found that 
energy extraction would decrease flushing rates and increase vertical 
mixing in the channel, directly affecting water quality [95]. Crop 
cultivation for bioenergy production could also have negative impact on 
water quality [407], increase water scarcity [96,347,408,409], and 
cause excessive algal growth [227,247,273].

3.3.4. Cascading trophic impacts
The preceding sections identified many direct impacts of RE de-

ployments. The interwoven nature of ecosystems means that these often 
catalyse flow on effects throughout the ecosystem. This includes 
cascading effects across the trophic levels of the food chain.

For wind turbines, Raoux et al. showed that higher trophic levels 
species positively responded to biomass aggregation on piles and turbine 

Fig. 4. Trends of environmental topics in reviewed literature.
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scour protections [228]. Thaker et al. meanwhile found that wind farms 
reduce abundance and activity of predatory birds and consequently in-
creases the density of small reptiles [333]. We note that the literature 
did not include any studies on the trophic impacts of solar farms.

In marine environments, FPVs have been found to reduce solar ra-
diation and thereby impede visual predation [410]. FPV can also lead to 
reduction in oxygen-flux into the water due to reduced air-water con-
nectivity and wind speed over the water body [410,411]. WECs were 
found to alter oceanographic processes and food availability, thereby 
indirectly impacting marine birds with cascaded trophic implications 
[412]. In addition, WECs reduce surface water turbulence, which affects 
phytoplankton species and zooplankton grazes, providing favourable 
environment for harmful alga blooms, with implications for fish species 
[203].

The deployment of hydropower plants causes loss of unique flood-
plain habitats, impacting planktonic communities, benthic organism, 
food webs and fish communities [348]. Water level regulation from 
hydropower plants can change littoral and pelagic resource availability, 
affecting the competitive and predatory interaction between fish species 
[229]. Moreover, the practice of hydropeaking - suddenly releasing 
turbine water due to peak energy demands - can affect fish behaviour 
and cause decreases in abundance and species richness of macro-
invertebrates [230].

3.3.5. Positive environmental impacts
The literature reviewed in this study focuses on the local impacts of 

RE deployments. Interestingly, there is a strong trend for these studies to 
not mention the positive, macro-scale impacts of RE. Only eight of the 
three hundred and sixty-nine reviewed studies comment on the positive 
impacts of RE reducing greenhouse gas and particulate emissions [3,97,
232,233,335–337,413].

This suggests that the term “environmental impact” is synonymous in 
the literature with “negative environmental impacts”, while the general 
benefits of RE may be taken to be self-evident by most studies. It also 
indicates a strong disconnect between the literature on RE deployments 
and the literature on the significant positive benefits of RE in fields of 
“life cycle assessment” and “climate change mitigation” and technology 
specific studies.

3.3.6. Summary and critical analysis of environmental aspects
Studies agree that large-scale deployment of RE on land and in ma-

rine environments could lead to negative environmental consequences 
such as animal deaths, habitat destruction and modification, obstruction 
of migration paths, loss of breeding sites and ecosystem fragmentation. 
Another point of agreement, whether on land or in marine environ-
ments, is the importance of conducting sound environmental impact 
assessments, implementing strict regulation in conservation areas, 
avoiding breeding habitats and migration paths, and avoiding areas of 
high biodiversity and threaten species.

One subject of controversy in the literature is the impact of wind 
turbines design on bird collisions. These discrepancies foreground the 
importance of local contexts, and that local species will have different 
avoidance behaviours towards RE infrastructures. Discrepancies were 
also found while assessing offshore RE infrastructures. In some loca-
tions, the RE technology was beneficial in acting as an artificial reef, 
while in other locations no obvious artificial reef effect could be 
observed.

Very few papers mention the well-known global benefits of RE, such 
as reduction in carbon emission and particulate matter. This reflects 
both the constraints of this review and the designed search methodol-
ogy, as well as indicating that the term “impacts” is generally perceived 
as negative influences in the environmental literature. The review also 
revealed an underrepresentation of developing economies. Among the 
three hundred and sixty-nine studies reviewed, only twenty-seven 
covered environmental impacts of RE deployments in developing 
countries. This may be partially due to fewer deployments of RE in those 

Table 3 
Summary of the studies talking about or mentioning the listed subtopics.

Number of 
papers

References

Social
 Trust 44 [46–48,51,54,55,98,104,106,

108,121–130,132,133,141,
142,149,151,163,238–241,
255–259,286–289,291,353,
355,356]

 Community engagement 41 [46–51,108,112,122,123,
127–136,138,142,146,150,
156,238–241,255–257,283,
288–290,353–357].

 Community ownership and 
benefits

19 [46,50–53,108,120,124,132,
137–143,238,291,356]

 Proximity to RE installations 16 [45,47,48,54,56,99,101,133,
144–147,236,292,293,338]

 Type of RE technology 20 [54,55,98,100,101,106,115,
131,132,134,137,144,152,
258,279,282,287,288,291,
292]

 Knowledge of, and past 
exposure to, renewable 
energy technologies

42 [48,51,54,55,57,75,98–100,
106,107,112,117,124,131,
133,134,137,142,144,
147–154,156,241,254,258,
259,283,288,290,291,294,
295,298,357,363]

 Demographics 15 [44,98–103,105,106,126,148,
151,236,254,283]

 Environmental concerns 25 [47,55,98–100,102–106,142,
144,147,149,153,237,241,
255,274,283–285,288,312,
353]

 Impact on landscape and 
place attachment

28 [45,47,57,99,107–120,124,
126,128,129,131,153,254,
255,288,353]

Economics
 Economic growth 32 [53,58,64,67–71,76–80,165,

170–172,251–253,266,
268–271,275,316–319,374,
375]

 Fossil fuel subsidies 13 [48,249,258,262–264,296,
298–301,313,339]

 Renewable energy subsidies 38 [62–71,159–169,234,242,261,
265,266,278,281,296,
302–309,340]

 Cost of renewable energy 
technologies

34 [48,58,64,66,76,159,
162–165,167,231,258,260,
261,263,266,280,295–298,
302,304,307,310,313,314,
334,358–361,370]

 Quality of institutional 
governance

47 [48,69,72–74,79,160,162,
169,234,249–251,255,258,
266–268,276–278,280,
295–298,300,307,310–315,
362–374]

 Economic advantages of co- 
location

9 [53,59–61,140,155–158]

Environmental
 Terrestrial habitat alteration 45 [81–88,96,173–184,204,208,

224,235,244,320–323,327,
341–345,348,376–379,381,
383,384,409]

 Marine habitat alteration 58 [89–93,185–214,220,229,230,
235,321,324–329,338,348,
385,388–390,392,393,396,
404,406,412]

 Hydrodynamics alteration & 
impacts on water quality

56 [94–96,177,188,203,208,211,
212,215–227,229,235,
245–248,272,327–332,338,
345–347,389,390,393,
397–399,401–409,411,412]

 Cascading trophic impacts 15 [194,203,204,211,214,220,
228–230,333,345,348,
410–412]

 Positive environmental 
impacts

8 [3,97,232,233,335–337,413]
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countries, while it may also reveal lower levels of environmental pro-
tection or the prioritisation of more pressing needs in developing 
economies, such as attracting funding for RE, developing the economic 
growth and aiming at reliable energy access.

Fig. 4 illustrates the trends of the environmental topics from 2010 to 
2022. Topics such as marine habitat alteration and impact on water 
quality have been receiving increasing attention. This could be due to 
the increase in deployments of offshore RE technologies and the emer-
gence of new technologies such as FPVs.

4. Summary of the literature review

This section summarises the review and provides a visual represen-
tation of the subtopics covered. Summary of the main findings is also 
provided in tabulated form.

4.1. Categorisation of the subtopics

Fig. 5 summarises the prominence of the themes identified in the 
review by scaling the size and brightness of each segment based on how 
often a topic was mentioned in the reviewed literature. The data is also 
presented in tabulated form in Table 3. This could provide insight on the 
relative importance of these topics. For instance, under the social driver 
segment, trust was the most mentioned driving factor reflecting its 
importance, independent of the type of economy.

When it comes to economic drivers, high quality of institutional 
governance was the most mentioned factor highlighting that in any 
context, cooperation, collaboration and coordination between author-
ities are essential for successful RE deployments. Segments labelled 
“flexible” represent factors which have been shown to have both positive 

or negative impacts in different studies (and contexts) such that their 
role remains ambiguous. While some factors, such as co-location, were 
less prominent in the literature, this by no means indicates that they 
should receive less attention while deploying RE. As more RE technol-
ogies are deployed in the future, co-locating RE activities with other 
economic activities will become more prominent and, in some cases, 
inevitable. When it comes to environmental impacts, habitat alterations, 
hydrodynamics alterations and impact on water quality have received 
most attention, while cascading trophic impacts are the least studied, 
suggesting that investigations of environmental impacts of RE are often 
limited to the direct impacts. Fig. 5 also illustrates the limitation of the 
review and its search methodology, where only few studies addressed 
the positive environmental impacts of RE deployment.

While this sub-section shines light on the prominence of the various 
social, economic and environmental topics within the reviewed litera-
ture, it is important to acknowledge that the funding of studies, and thus 
vested interests, can impact the number of times a topic is mentioned. 
Studies funded by industries or organisations, can prioritise specific 
areas of interest, skewing the distribution of research focus. As 
mentioned by Fabbri et al. industry sponsorship is a key source of bias 
and can influence the design, conduct, and publication of research 
[414]. Industry, research and development, and financial development 
are inextricably linked [415], and vested interests may play a prominent 
role in determining which countries will prosper within RE and those 
which will not [416].

4.2. Summary of main findings

Table 4 provides a summary of the main findings from the analysis of 
the evidence in this review and addresses the research questions.

Fig. 5. Categorisation of the literature review.
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Table 4 
Summary of the research questions and the main findings of the review.

Research questions Summary of main findings

RQ1. How do RE deployments impact, 
and how are they impacted by, local 
social conditions?

− Social acceptance of RE deployments 
can be impacted by the local 
demography. For instance, numerous 
studies found that younger people are 
more willing to pay for RE. Higher 
education levels also correlate with 
greater acceptance of RE.

− The more people are concerned about 
environmental issues, such as climate 
change, the more they are to support RE 
projects. Also, the use of RE can increase 
people’s awareness to protect the 
environment and increase their 
environmental behaviour.
− The less RE projects encroach over the 
landscape, the more likely they are to be 
approved by local communities.
− As illustrated by the disparities in 
multiple studies, attachment to landscapes 
and places is subjective, and has a direct 
impact on the social acceptance or 
opposition to RE deployment.
− Maintaining trust between promoters, 
developer, local utilities and authorities, 
throughout the project’s lifetime is 
essential for the successful 
implementation of RE.
− Engaging with the local community, 
involving them in decision making 
processes, and informing them of project 
risks and benefits, can create the right 
environment for successful RE 
implementation.
− A degree of community co-ownership of 
RE projects can increase social accep-
tance, but also increase trust in decision 
makers.
− Some RE technologies receive greater 
social acceptance compared to others, 
depending on the communities, historical 
heritage, geographical location, past 
exposure to the technology or awareness 
of the technology.
− Proximity of RE installations to 
stakeholders correlates with lower social 
acceptance.
− Increasing people’s awareness and 
knowledge of RE technologies can 
increase their willingness to pay for RE 
projects, but also induce positive 
emotions.
− Past exposures to RE infrastructure have 
mixed effects on social acceptance of new 
RE developments. In some cases, past 
exposure resulted in lower acceptance, 
while in other cases it resulted in higher 
acceptance. This further emphasise the 
fact that no set-recipe to determine social 
acceptance exists.

RQ2. How do RE deployments impact, 
and how are they impacted by, local 
economic conditions?

− High upfront cost of RE technologies can 
be a major deterrent to their deployment.
− Co-location of RE deployments and 
other economic activities can deliver 
substantial revenue for landowners. 
However, co-location can also be the 
source of tensions between economic 
growth, indigenous rights at sea, historic 
injustices and access to natural coastal 
resources.
− Fossil fuel subsidies is a major obstacle 
to RE deployment, research and 
innovation.
− Subsidies and incentives towards RE, 
such as feed-in tariff and environmental  

Table 4 (continued )

Research questions Summary of main findings

taxes can be highly effective in promoting 
RE technology deployments, research and 
development.
− Complex governance structures, and the 
lack of coordination and cooperation 
between various authorities are critical 
barriers to RE deployment.
− In some countries, increase in RE 
consumption can result in economic 
growth, while in some other countries 
results showed that RE did not contribute 
to economic growth.
− Some countries favour economic growth 
through expanded production and 
innovation in fossil fuels over RE 
investments.

RQ3. What impacts do RE deployments 
have on the environment?

− Bird collisions is a major disadvantage of 
wind turbines. However, bird collisions 
depend on various factors which are 
location and technology specific such as 
migration paths, surrounding terrain, type 
of species present, turbine height, blade 
length, turbine sitting, wind speeds and 
habitat disruption.
− High noise intensity within the vicinity 
of land-based wind turbines can cause 
some animals to avoid RE deployment 
sites.
− Solar farms can block movement of 
migratory species.
− Foundations and structure of marine RE 
technologies can alter marine habitats and 
introduce hard substrates, adversely affect 
benthic habitats or cause sediment 
erosions.
− Collisions of diving birds and 
underwater animals with WECs and tidal 
energy systems can also occur.
− Pile driving during the construction of 
OWFs can create a lot of noise and disturb 
marine mammals.
− Electric or magnetic fields emitted from 
underwater cables can also affect several 
sensitive marine species such as 
elasmobranchs, crustaceans, cetaceans, 
bony fish, turtles and even influence the 
geomagnetic patterns of migratory marine 
species.
− Construction of hydropower plants can 
disrupt migration routes of fish species, 
negatively affect riverine and riparian 
species and have repercussions on food 
security.
− Co-location of RE marine structures can 
restrict the use of some harmful fishing 
methods such as bottom trawling, thereby 
presenting opportunities for seabed 
protection and recovery.
− In some cases, RE marine structure can 
also function as artificial reefs and act as 
fish aggregating devices.
− Marine RE devices can alter water 
movements. For instance, WECs can act as 
physical obstacles, absorb wave, attenuate 
wave height, cause wave scattering and 
wave radiation.
− Deployment of tidal turbines can disturb 
water velocity thereby impacting 
sediment and larval dispersion.
− Hydropower plants can alter 
hydrological cycles, cause change in 
biodiversity and physical features of 
rivers, affecting local communities.
− FPVs installed on reservoirs can reduce 
evaporation, decrease light penetration 
and hence reduce algae growth.

(continued on next page)
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5. Limitations and future research

While taking a global lens on the issues of RE deployment across 
social, economic and environmental domains, this review necessarily 
has limitations. The foundational limitation on this study was the re-
striction to journal articles in English and the use of a single database, 
Scopus. Expanding the search to other languages, governmental and 
industry reports and other databases would significantly expand the 
reviewed perspectives. The size of these alternative studies makes them 
very challenging to include here but worthy of their own dedicated 
reviews.

This review also does not consider systemic issues of energy systems 
or energy transitions, such as the different social, economic and envi-
ronmental impacts of large-scale centralised or small-scale decentralised 
RE systems, nor the politics of energy transitions past or present. 
Furthermore, while the study found trust to be a major driver of RE 
deployment and disinformation to be a barrier to RE deployment and a 
factor that deepens mistrust, the review does not investigate the funding 
of studies and how vested interests could lead to disinformation. Yet, it is 
crucial to acknowledge the broader context in which research is con-
ducted and published, as sponsorship from industries with vested in-
terests can lead to bias and influence RE discourse and research. 
Combinations of these aspects would serve as valuable future work in 
the field of RE.

This study is also limited to certain RE technologies, does not 
consider energy storage system, alternative fuels or hydrogen. More-
over, it does not consider the technical aspects of RE deployment. 
Incorporating these limitations into future work would help in providing 
a more detailed and broader view on the social, economic and envi-
ronmental impacts of RE deployments.

6. Conclusions and recommendations

This study presents a review of the social, economic and environ-
mental impacts involved in the deployment of RE technologies. It syn-
thesises vital information from three hundred and sixty-nine studies and 
provides an overview of points of agreement, controversies and gaps in 
literature and analyses geographic and temporal research trends.

Regarding social aspects, the review found that younger people in 
many studied nations are more willing to pay for RE, and that public 
support could be improved through increasing awareness about RE 
technologies and their benefits and encouraging better environmental 
habits. Trust, before and throughout RE deployments, was found to be 
the most prominent social. The review found that environmental con-
cerns are mainly drivers for social acceptance of RE in developed 
economies, but less so in developing economies. Visual encroachments 
and close proximity were found to universally be barriers to RE 
deployment. One of the gaps revealed by the review is the underrepre-
sentation and consideration of First Nations peoples, despite a growing 
body of work on the role of attachment to place. The review thus rec-
ommends that more attention be given to First Nations peoples, and how 
to value their knowledge, perspectives, and land rights in the deploy-
ment of RE. Ensuring that their cultural, environmental and economic 
perspectives are respected and integrated into decision-making 

processes.
Regarding economic aspects, a strong common thread was quality of 

institutional governance, with an increasing number of studies uncov-
ering how a lack of coordination, cooperation and collaboration be-
tween various authorities are systemic barriers to the deployment of RE. 
The review also found that many countries, across developed and 
developing economies, continue to rely on fossil fuels for economic 
growth. Subsidies towards fossil fuels, particularly in fossil fuels pro-
ducing states, were found to slow down development and deployment of 
RE. The review highlights a growing interest in co-locating RE with 
other economic activities for symbiotic benefits. However, it revealed a 
lack of such research in developing economies. The review thus rec-
ommends the need to investigate RE co-location in developing econo-
mies and how they could benefit local communities.

Regarding environmental aspects, the review emphasised that there 
is no one-size-fits-all approach to assess the potential impacts of RE 
deployment on the flora, fauna and ecosystems. Still, there are points of 
consensus, such as that, whether on land or in marine environments, RE 
deployment should avoid breeding habitats and migration paths, 
foraging sites, areas of high biodiversity and threaten species. The re-
view found increasing prevalence of studies on marine habitat alteration 
and impact on water quality, suggesting a shift in RE deployments to 
offshore settings. This emerging literature contains mixed results from 
impact assessments in various locations, which accentuates the 
complexity of these projects. The review revealed an underrepresenta-
tion of developing economies when it comes to environmental impacts 
of RE deployments. This could be a result of the more pressing needs in 
those economies, such as providing reliable access to energy and energy 
justice. In assessing the environmental impacts, the review recommends 
that local impacts of RE deployments must be weighted in relation to the 
positive impacts from displacing fossil fuel use, which often occur at a 
distant location as well as in the shared atmosphere and oceans.
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[172] Armeanu DŞ, Gherghina ŞC, Pasmangiu G. Exploring the causal nexus between 
energy consumption, environmental pollution and economic growth: empirical 
evidence from central and eastern Europe. Energies Jan. 2019;12(19). https:// 
doi.org/10.3390/en12193704. 19.

[173] Peschko V, Mendel B, Müller S, Markones N, Mercker M, Garthe S. Effects of 
offshore windfarms on seabird abundance: strong effects in spring and in the 
breeding season. Mar Environ Res Dec. 2020;162:105157. https://doi.org/ 
10.1016/j.marenvres.2020.105157.

[174] Fernández-Bellon D, Wilson MW, Irwin S, O’Halloran J. Effects of development of 
wind energy and associated changes in land use on bird densities in upland areas. 
Conserv. Biol. J. Soc. Conserv. Biol. Apr. 2019;33(2):413–22. https://doi.org/ 
10.1111/cobi.13239.

[175] Schaub T, Klaassen RHG, Bouten W, Schlaich AE, Koks BJ. Collision risk of 
Montagu’s Harriers Circus pygargus with wind turbines derived from high- 
resolution GPS tracking. Ibis 2020;162(2):520–34. https://doi.org/10.1111/ 
ibi.12788.

[176] Balotari-Chiebao F, Villers A, Ijäs A, Ovaskainen O, Repka S, Laaksonen T. Post- 
fledging movements of white-tailed eagles: conservation implications for wind- 
energy development. Ambio Nov. 2016;45(7):831–40. https://doi.org/10.1007/ 
s13280-016-0783-8.

[177] Grilli G, Balest J, De Meo I, Garegnani G, Paletto A. Experts’ opinions on the 
effects of renewable energy development on ecosystem services in the Alpine 
region. J Renew Sustain Energy 2016;8(1):013115.

[178] Richardson SM, Lintott PR, Hosken DJ, Economou T, Mathews F. Peaks in bat 
activity at turbines and the implications for mitigating the impact of wind energy 
developments on bats. Sci Rep Feb. 2021;11(1). https://doi.org/10.1038/s41598- 
021-82014-9. 1.
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