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Abstract

Estimating the abundance of unmarked animal populations from acoustic

data is challenging due to the inability to identify individuals and the need to

adjust for observation biases including detectability (false negatives), species

misclassification (false positives), and sampling exposure. Acoustic surveys

conducted along mobile transects were designed to avoid counting individuals

more than once, where raw counts are commonly treated as an index of

abundance. More recently, false-positive abundance models have been devel-

oped to estimate abundance while accounting for imperfect detection and

misclassification. We adapted these methods to model summertime abundance

and trends of three species of bats at multiple spatial scales using acoustic

recordings collected along mobile transects by partners of the North American

Bat Monitoring Program (NABat) from 2012 to 2020. This multiscale modeling

spanned individual transect routes, larger NABat grid cells (10 km × 10 km),

and across the entire extent of modeled species ranges. We estimated relation-

ships between species abundances and a suite of abiotic and biotic predictors

(landcover types, climatological variables, physiographic diversity, building

density, and the impacts of white-nose syndrome [WNS]) and found varying

levels of support between species. We present clear evidence of substantial

declines in populations of tricolored bats (Perimyotis subflavus) and little

brown bats (Myotis lucifugus), declines that corresponded in space and time

with the progression of WNS, a devastating disease of hibernating bats. In

contrast, our analysis revealed that similar population-wide declines probably

have not occurred in big brown bats (Eptesicus fuscus), a species known to be

less affected by WNS. This study provides the first abundance-based species

distribution predictions and population trends for bats in their summer ranges

in North America. These models will probably be applicable to assessing
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wildlife populations in other monitoring programs where acoustic data are

used or where false-negative and false-positive detections are present. Finally,

our abundance framework (as a spatial point pattern process) can serve as a

foundation from which more sophisticated integrated species distribution

models that incorporate additional streams of monitoring data (e.g., stationary

acoustics, captures) can be developed for North American bats.
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bat conservation, disease, echolocation, Eptesicus fuscus, imperfect detection, Myotis
lucifugus, NABat, North American Bat Monitoring Program, Perimyotis subflavus,
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INTRODUCTION

Bat populations in North America are under threat from
habitat destruction, land use change, climate change, wind
energy, and the spread of invasive pathogens and diseases
such as white-nose syndrome (WNS) (Cheng et al., 2021;
Frick et al., 2020; Friedenberg & Frick, 2021; O’Shea
et al., 2016; Sherwin et al., 2013). In the face of such
threats, the North American Bat Monitoring Program
(NABat)—a partner-driven, multiagency, international
network—was developed to address historical limitations
in bat monitoring, with a mission to support collaborative
monitoring of bat species across North America and
deliver information on the status and trends of bats across
their ranges (Loeb et al., 2015; Reichert et al., 2021).
Results from NABat monitoring efforts inform conserva-
tion decision-making to support the long-term viability of
bat populations across the continent (Loeb et al., 2015).
Given the complex and varied life histories of bats in
North America, diverse monitoring techniques across
seasons are needed to understand the status and trends of
bat populations (O’Shea et al., 2004; O’Shea & Bogan, 2003).

To date, most population impact assessments for bats
have been based on abundance estimates from counts of bats
in winter roost sites (winter colony counts) or estimates of
bat occupancy and/or activity during the summer active sea-
son using acoustic sampling or live-capture data. For exam-
ple, winter colony abundance of three species of hibernating
bats (little brown bats, Myotis lucifugus; tricolored bats,
Perimyotis subflavus; and northern long-eared bats, Myotis
septentrionalis) have declined by more than 95% wherever
WNS has occurred (Cheng et al., 2021). Declines
corresponding with WNS have also been documented for
these species in analyses of summer occupancy and activity
rates derived from acoustic monitoring data (e.g., Straw
et al., 2022; Udell et al., 2022). Northern long-eared bats have
been listed as endangered in the United States (US Fish and
Wildlife Service, 2022a) and tricolored bats have been pro-
posed for listing under the US Endangered Species Act

(US Fish and Wildlife Service, 2022b). At the time of this
writing, the status of little brown bats is being reviewed for
potential listing under the US Endangered Species Act
(US Fish and Wildlife Service, 2022). All three species were
emergency listed as endangered in Canada under the fed-
eral Species at Risk Act in 2014 (Environment and Climate
Change Canada, 2018). However, little is currently known
about bat abundance in their summer distributions includ-
ing their spatial and temporal trends. Rectifying this his-
torical knowledge gap during the summer maternity
season (a critical period for bat demography) would
allow for more informed population conservation and
management decisions. Acoustic monitoring in the sum-
mer shows promise for monitoring bat population
trends across entire species ranges, as this is the season
when bats are most active and dispersed across the
diverse landscapes they inhabit.

Acoustic monitoring via automated recording units
is most often conducted at stationary points (Hayes
et al., 2009) where a “detection” is defined as a series of echo-
location pulses associated with a single pass of a bat near an
ultrasonic microphone. To date, no method exists for
distinguishing unique individuals from multiple detections at
stationary recording stations. Mobile acoustic transect sur-
veys, or acoustic sampling for bats while driving along
predetermined routes, were developed specifically to over-
come this limitation (Britzke & Herzog, 2009; Roche
et al., 2005; Roche et al., 2011). Inferences drawn frommobile
acoustic transect surveys often assume that each acoustic
detection corresponds to a single bat given the travel speed
of a vehicle (at least 32 km/h, which is faster than most spe-
cies of bats typically fly, Hayward & Davis, 1964;
Patterson & Hadin, 1969). The resulting counts of bat detec-
tions are treated as a raw index of relative abundance to
infer trends over time and are typically analyzed with the
use of generalized linear mixed models (Braun de Torrez
et al., 2017; D’Acunto et al., 2018; Evans et al., 2021; Roche
et al., 2011; Simonis et al., 2020; Whitby et al., 2014).
Whereas this approach can incorporate observation-level
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covariates to adjust expected counts for observation bias
(i.e., false negatives, Barker et al., 2018; Evans et al., 2021),
it is unlikely to adequately account for the combination of
negative and positive biases from separate processes such
as imperfect detection (false negatives) and species
misclassification (false positives). These directional biases
are likely to vary in different ways across sampling
nights, years, and locations. Thus, trends inferred from
such indices may be unreliable (e.g., Anderson, 2001;
Miller et al., 2015). However, shortcomings might be over-
come by simultaneously modeling both observation pro-
cesses (detectability and misclassification), along with the
ecological process (abundance), while accounting for
important sources of variation in each.

NABat guidance for mobile acoustic transects stresses
the importance of conducting multiple temporally
replicated surveys during the maternity season each year
to facilitate analysis and more reliable inferences using
unmarked abundance methods (Loeb et al., 2015).
Unmarked abundance models such as the N-mixture
model (Royle, 2004) allow for inference to abundance
while accounting for detectability; however, until recently,
there were no formulations of N-mixture models that were
robust to false-positive detections from species misclassi-
fication (DiRenzo et al., 2019). False-positive N-mixture
models (e.g., Clare et al., 2021; Clement et al., 2022; Doser
et al., 2021) have now been developed to overcome this
limitation by building upon the rich literature of
false-positive occupancy models for species misidenti-
fication (e.g., Banner et al., 2018; Chambert et al., 2015;
Chambert, Waddle, et al., 2018; Kéry & Royle, 2020;
Miller et al., 2011; Royle & Link, 2006; Stratton
et al., 2022; Wright et al., 2020). For example, Doser
et al. (2021) built upon the single-species methods of
Chambert, Waddle, et al. (2018) to develop a false-positive
N-mixture model for ambiguous count data by also incor-
porating a hypergeometric observation model for a subset
of manually reviewed data. Clement et al. (2022) extended
work by Chambert, Grant, et al. (2018) to develop a
false-positive N-mixture model that relies on parameter
constraints rather than a subset of manually reviewed
data to estimate parameters.

In theory, unmarked abundance models provide
inferences on absolute abundance, but only when model
assumptions (e.g., population closure, no unmodeled
heterogeneity, no sampling bias) are fully met. While
several field evaluations of N-mixture models have
reported reasonable population estimates compared
with those from more rigorous sampling methods
(e.g., Bötsch et al., 2020; Costa et al., 2020; Ficetola
et al., 2018), simulation studies have demonstrated
that estimates of absolute abundance are sensitive to
assumption violations (e.g., Link et al., 2018). Thus,

inferences from unmarked abundance models are best
treated as those pertaining to relative abundance
(i.e., covariate effects, proportional trends over time,
population growth rates, demographic rates, etc.; Barker
et al., 2018; DiRenzo et al., 2019; Farr et al., 2022; Link
et al., 2018). In this study, we adapted the false-positive
abundance methods of Doser et al. (2021) to estimate
the relative abundance of bats using data collected
during mobile acoustic transect surveys. After simplify-
ing their observation model for ambiguous counts
from a hurdle distribution to a Poisson distribution, the
resulting model was identical to the single-species
observation model described by Clement et al. (2022);
but it also retained the hypergeometric observation
model from Doser et al. (2021) which let us use a subset
of manually reviewed and confirmed observations to
estimate false-positive and average detection rates without
assuming parameter constraints.

Using this single-species approach, we analyzed
mobile acoustic data from the NABat database for three
bat species of varying levels of conservation concern. We
provide the first-ever “summer abundance status and
trends” analysis for these species at multiple spatial
resolutions (transects, 10 km × 10 km grid cells, and
across the extent of each species range for which there
are adequate monitoring data [i.e., the “modeled species
range”]). We also estimated the effects of relevant
abiotic and biotic predictors of abundance at landscape
scales (e.g., WNS impacts across the winter distribution)
and provided maps of relative abundance distributions
and trends over time for each species. These methods
are generally applicable to other systems where modeling
abundance (or relative abundance) is of primary interest,
and the observation process is prone to biases from both
imperfect detection and false positives (e.g., most moni-
toring methods that rely on automated classification
processes, such as acoustic monitoring, environmental
DNA, and camera trapping).

MATERIALS AND METHODS

Sampling methods for mobile transect
acoustics

NABat’s mobile transect sampling protocols are fully
described in Chapter 5 of Loeb et al. (2015) and the
NABat mobile transect standard operating procedures
(Martin et al., 2022a, 2022b, 2022c). Briefly, NABat grid
cells (10 km × 10 km, Talbert & Reichert, 2018) are
sampled using ultrasonic acoustic detectors while driving
along transect routes on roads. A generalized random
tessellation stratified (GRTS) sampling approach (Stevens &
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Olsen, 2004) was used to select NABat cells whenever
possible and ensured that sampled locations were
spatially balanced; however, data were accepted from all
NABat contributors including legacy monitoring programs
that predated NABat guidance (see Appendix S1 for more
information on exceptions). Spatially balanced sampling
designs help to ensure that the distribution of potential
environmental correlates at sampled grid cells are repre-
sentative of their distribution across the species’ range
(Stevens & Olsen, 2004).

Transect routes were selected based on the feasibility
and safety of maintaining a vehicle speed of 32 km/h
(20 miles/h) throughout a sampling event. Recommended
route lengths were between 25 and 48 km to ensure that
grid cells were adequately sampled; however, transects
that spanned multiple grid cells were divided between grid
cells, which produced some transect lengths shorter than
25 km. Routes were driven at least twice, typically within
1 week during maternity season (prevolancy, i.e., before
the newborn of year can fly) although sometimes partners
conducted many additional surveys throughout the
summer. The NABat Partner Portal project identifier
(project ID), detector type, and microphone type were
also recorded for each acoustic file, and consistency of
hardware types and settings among and within years
was encouraged (Loeb et al., 2015).

Acoustic files were classified to species level using
automated call-detection and call identification (auto ID)
software (e.g., several versions of “Sonobat,” “Wildlife
Acoustics Kaleidoscope,” and “Bat Call Identification,
BCID 2.7d”). Auto IDs and the software used to produce
them were then recorded. Although the NABat protocol
recommends that all auto IDs from mobile transect sur-
veys be manually reviewed (Reichert et al., 2018), practi-
cal constraints often led to only a subset of high-quality
files being reviewed. For each reviewed file, the manually
classified species identification (manual ID) was recorded
and linked with the corresponding auto ID. The full pro-
tocol for manual review of acoustic files is documented in
Reichert et al. (2018). For this analysis, we tracked the
total number of auto IDs each sampling night that were
manually reviewed, and of those, the number that was also
confirmed as the species of interest (auto ID = manual ID).

NABat database and contributors

We accessed mobile transect acoustic data through
the NABat data request process in September 2022
(https://www.nabatmonitoring.org/get-data; NABat, 2021,
2022). The compiled dataset represents contributions from
55 individual NABat Partner Portal projects. Data included
nightly summaries of the total number of auto IDs for

each species given the software type, along with the
total number of files that had been reviewed and con-
firmed as the species of interest. Individual records for
the auto ID of each acoustic file were linked to the pro-
ject ID (thereby maintaining provenance and
distinguishing efforts), NABat grid cell, route ID, route
length, software type, detector type, sampling night,
and manually reviewed information (i.e., if a file was
reviewed, to which species it was manually classified).
Data were cleaned and processed for analysis using the
workflow described in Appendix S1.

Species of interest and scope of inference

We focused our analyses on three species of hibernating
bats: tricolored bats, little brown bats, and big brown bats
(Eptesicus fuscus). These species were selected based on
conservation concerns and data availability, with ade-
quate levels of monitoring effort and species detections
dating back through 2012. Northern long-eared bats were
also considered but not included due to an insufficient
number of detections. Following Loeb et al. (2015),
the scope of inference for abundance was based
on the prevolancy of the summer season each year,
meaning the population of interest does not include bats
born in the same summer that the data were collected.
This period was defined for this analysis as 1 May to
15 July, noting the data were not uniformly distributed
between these starting and ending dates by location. In
most cases, the first mobile transects of the summer were
conducted in late May or June but monitoring sometimes
began in early May in southern regions. Although such
data were rare, we also included data from the
postvolancy period (defined as 16 July to 28 August)
but assumed the population was open between the
prevolancy and postvolancy periods by estimating a
different population abundance for the prevolancy and
postvolancy seasons each year. This was included to
account for changes in the population that would other-
wise violate the assumption of population closure, for
example, when newborns of the year become available
for sampling. Because mobile transect sampling did not
span the entire published range of any species, the
spatial scope of inference was bounded to the “modeled
species range” that we defined as the geographic region
for which there was adequate monitoring data to
support predictions. This modeled range was deter-
mined separately for each species by fitting a spatial
kernel around all locations with at least one positive
species detection and thresholding above a minimum
value. We chose the thresholding value for each species
that was as high as possible to minimize the effective
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buffer distance around the monitoring data, while
also low enough to avoid large holes in the predicted
distribution. The modeled range of the tricolored bat
(3,524,744 km2) represented ~63% of the defined geographic
range (5,623,669 km2). For little brown bats, the modeled
range of (5,163,527 km2) represented ~43% of the defined
geographic range (12,040,700 km2, National Atlas of the
United States, 2011); and for big brown bats, the
modeled range of (4,925,449 km2) represented ~40% of the
defined geographic range (12,289,473 km2, National Atlas
of the United States, 2011). For little brown bats and big
brown bats, two separate regions (East and Northwest)
were designated based on the availability/accessibility
of hibernacula and winter monitoring data (e.g., Weller
et al., 2018, which was used as a predictor of summer abun-
dance, see our Materials and methods: Predictive covariates:
Linking winter and summer populations and quantifying
WNS impacts section). For little brown bats, the inclusion
of separate regions was also considered due to potential dif-
ferences in species behavior (Blejwas et al., 2023).

Basic modeling framework for estimating
abundance

The goal of single-species, false-positive N-mixture models
(Clement et al., 2022; Doser et al., 2021) is to estimate
detection rates, false-positive rates, and animal abun-
dances (and/or occupancy; e.g., Clement et al., 2022) given
temporally replicated counts and additional information
such as a subset of counts that are manually reviewed,
parameter constraints, or strong Bayesian priors. In the
following sections, we first describe the abundance model
for NABat grid cells as an inhomogeneous point process
(e.g., Fletcher et al., 2019). Next, we describe the spatially
varying thinning process on grid cell abundance that
adjusts for the partial survey effort using a mobile transect
and accounts for differences in abundance between tran-
sects and grid cells based on the transect length in each.
Then, we present the observation model that accounts for
imperfect detection and misclassification bias. Given that
the NABat protocol includes a manual review process for
auto IDs (Reichert et al., 2018), we focused on a method
that could estimate parameters directly from auto ID
count data and a subset of manually reviewed records
(e.g., Doser et al., 2021). This approach had the addi-
tional benefits of (1) directly downgrading auto IDs in
the observation model that were classified as false posi-
tives, (2) providing further information to estimate con-
ditional latent abundance states, and (3) avoiding biases
that arise from imposing strong parameter constraints
(or priors) when they are too restrictive for the modeled
system. Last, we detail how we included covariates and

random effects to explain and account for heterogeneity
in abundance, average detection rates, and false-positive
rates; this formulation was an attempt to make our
model robust to heterogeneity in all aforementioned
parameter assumptions.

General abundance model

We modeled latent abundance in each grid cell and time
period (year × season) Nit based on a Poisson point pat-
tern process:

Nit � Poisson λitð Þ: ð1Þ

The expected abundance of individuals at each grid
cell i each time period t λitð Þ is modeled as a function of
spatial (grid cell), temporal (season, year), and spatiotem-
poral (grid cell and year) covariates:

log λitð Þ¼ β0 +
XK
k¼1

βk × xkit, ð2Þ

where β0 is the overall intercept (the average grid
cell abundance in the prevolancy season in year 1), xkit
denotes covariate k at grid cell i and time period t with βk
coefficients (i.e., covariate effects). Note that, while the
notation xkit is used for generality, purely temporal
covariates would be constant in the i’th dimension, while
purely spatial covariates are constant in the t’th dimension.

Transect abundance model

One of the primary challenges in estimating abundance is
accounting for the area that has been sampled by transects
(sampling exposure), both with respect to other transects (dif-
ferential sampling effort) and with respect to the NABat grid
cell (i.e., what proportion of animals in each grid cell were
exposed to sampling). While transect length is commonly
used as an offset or covariate on total bat activity
(i.e., expected number of detections), extending the same
logic to predict transect abundance within a grid cell is prob-
lematic. First, because the unique area sampled along a tran-
sect is bounded by the area of the grid cell (and similarly,
abundance along a transect is bounded by the grid cell abun-
dance), the relationship between transect length and transect
abundance should be increasing but saturating (e.g., Royle
et al., 2007). Second, when it comes to making predictions at
the grid cell level, because transect length is only a proxy of
sampled area, it is unknown which value for transect length
would correspond to the same area of a grid cell (100 km2).

ECOLOGICAL MONOGRAPHS 5 of 25
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Following work by Royle et al. (2007) and others
(e.g., Kéry & Royle, 2015), we used an inverse transect
length covariate to account for differential sampling
exposure and to explicitly link transect-level and
grid cell-level abundances. Using this approach, we
denote Nit as the grid cell-level abundance, Mit as the
transect-level abundance, and ϕ TLið Þ as the average sam-
pling exposure (i.e., nonrandom availability, the propor-
tion of animals in a grid cell that may be encountered
along a transect) of Mit within Nit based on the transect
length TLið Þ. We note that, because bats are highly vagile
animals, both Mit and Nit correspond to the total number
of bat home ranges intersecting each spatial extent each
time period. By assuming that

Mit �Binomial N it,ϕi TLið Þð Þ, ϕi TLið Þ¼ exp −
βTL
TLi

� �
, and

βTL > 0, the marginal distribution for μit(the expected
value of Mit) can be modeled λit ×ϕi TLið Þ. This arrange-
ment can be formulated as a single log link by adding the

expression −
βTL
TLi

to the log link in Equation (2), which

we used as our estimating equation for transect-level
abundance Mit:

Mit �Poisson μitð Þ, ð3Þ

log μitð Þ¼ β0 +
XK
k¼1

βk × xkit −
βTL
TLi

: ð4Þ

Thus, the term −
βTL
TLi

reduces the expected grid
cell-level abundance λit by the sampling exposure rate,
ϕi TLið Þ, of the transect within the grid cell when estimat-
ing μit . The estimated value for βTL determines the rate of
sampling saturation as the transect length increases
(which is determined in part by the average home range
size and habitat use of each species), and eventually μit
approaches λit as TLi !∞. This formulation allowed us
to make predictions at the grid cell level for λit and Nit by
setting the term −

βTL
TLi

equal to zero in Equation (4)
(Kéry & Royle, 2015). Because the rate of sampling
saturation is likely to vary between grid cells based on
the distribution of habitat, roads, and bat home ranges in
each, we modeled βTLi

as a random slope by transect i
(Appendix S2: Section S3). When ϕi TLið Þ is estimated
near zero, it also functionally serves as an additional pro-
cess to explain zeros in the observed data, making the
consideration of a hurdle process from Doser et al. (2021)
redundant. Finally, we dealt with missing transect
lengths by estimating a transect length proxy for all
routes in the NABat database, which was calculated as
the shortest linear distance connecting all sampled point
locations along each transect (including bat detections,
NoID files, and noise files). Then, using a submodel

within our estimating model, we estimated the error
distribution between the proxy length and true transect
length where both occurred. The latter informed
estimates of transect length given the proxy where values
for the transect length were not provided (Appendix S2:
Section S3).

Count observation model

We developed our observation model based on transect-level
abundances Mitð Þ, thus our notation differs from previous
work that uses Nit to represent abundance. However, the
observation model itself is equally applicable in systems
without this additional thinning process (i.e., Nit could
be swapped back for Mit throughout this section).
Acoustic detectors were deployed via mobile transects at
i= 1, …, R grid cells for a total of j= 1, …, J survey nights
each time period (year and season), and repeated across
time periods t= 1, …, T (where time periods are indexed
by year then season, e.g., t= 1 for the prevolancy season
in year 1, t= 2 for the postvolancy season in year 1). For
each grid cell i, visit j, and time period t, the observed
response vijt was total counts of auto IDs to the target spe-
cies of interest.

Similar to previous formulations of hypergeometric,
false-positive, occupancy models (Chambert, Waddle,
et al., 2018), Doser et al. (2021) used a hurdle approach to
model ambiguous counts. Although potentially helpful in
situations with zero inflation, the hurdle process is not
required for model identifiability and can lead to conver-
gence issues as abundance gets large (Doser et al., 2021).
Furthermore, the hurdle specification results in two sets
of false-positive rates and detection rates (one for the
detection/nondetection data and one set for the nonzero
count data), which complicates the interpretation of
these parameters and any effects their covariates might
have on the observation process. Thus, we specified an
observation model without the hurdle process and
instead used a single Poisson regression to model the
auto IDs vijt as:

vijt � Poisson Mit × δijt +ωijt
� �

: ð5Þ

In Equation (5), there are two rates of observation
bias: δijt , which is the average detection rate per individ-
ual, and ωijt, which is the average number of
false-positive detections per survey based on an implicit
source of false positives (i.e., without an explicit term for
the presence or abundance of other species). In our appli-
cation, the average detection rate per individual δijt at
each location i, night j, and time period t is a product of
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the: (1) encounter rate of individual bats with the
“cone-of-detection” of the mobile detector, (2) the echoloca-
tion rate, and (3) the probabilities of successfully recording
and correctly classifying the echolocation sequence. The
false-positive rate ωijt could vary by the type of acoustic
monitoring hardware and software used or by differences
in the abundance and activity of other bat species. Our
formulation for the total count of auto IDs vijt

� �
in

Equation (3) (before including heterogeneity on δ and ω)
was identical to the auto ID count model described
by Clement et al. (2022) for their single-species,
false-positive N-mixture model. However, our modeling
framework differed from Clement et al. (2022) in several
important ways including: (1) we modeled heterogeneity
in δ and ω in space and time, (2) we did not rely on
parameter constraints δ>ωð Þ for identifiability, and (3)
we used a hypergeometric observation model (Doser
et al., 2021) to estimate observation rates and latent
abundance states directly from a subset of manually
reviewed data.

Manual review observation model

A subset of species auto IDs vijt
� �

was manually reviewed by
NABat partners (Reichert et al., 2018) and the total that was
reviewed nijt and confirmed kijt as the species of interest
was recorded for each sampling night. Following Doser et al.
(2021), we used a hypergeometric observation model for the
manually reviewed data (e.g., Chambert, Waddle,
et al., 2018; Kéry & Royle, 2020). The latent number of
true-positive detections Kijt came from a binomial distri-
bution given the total count of species auto IDs vijt

� �
and

the true-positive rate pijt
� �

; where pijt was defined as a
function of the transect-level abundance Mitð Þ, the aver-
age detection rate δijt

� �
, and the false-positive rate ωijt

� �
:

Kijt �Binomial pijt,vijt
� �

, ð6Þ

pijt ¼
Mit × δijt
� �

Mit × δijt +ωijt
� � : ð7Þ

The latent number of false positives was estimated as
Qijt ¼ vijt −Kijt. The number of confirmed acoustic files
kijy was modeled based on a hypergeometric function
given Kijt ,Qijt, and nijt as:

kijt �Hypergeometric Kijt ,Qijt,nijt
� �

: ð8Þ

Thus, this model supported instances where only a
subset of files was manually reviewed within any given
sampling night.

Application to modeling bat abundance
from mobile transect acoustics

We made several modifications to the model that estimates
bat abundance and population trends over time at land-
scape scales. Full details are documented in Appendix S2:
Sections S1–S3.

Modeling heterogeneity in δ and ω

If models do not account for systemic heterogeneity in
either average detection rates δð Þ or false-positive rates
ωð Þ, trend estimates of occupancy and abundance will be
biased (Clare et al., 2021; Miller et al., 2015; Wright
et al., 2020). Rather than using a zero-truncated negative
binomial sampling distribution to account for unmodeled
heterogeneity in both δ and ω in the expected count (e.g.,
Doser et al., 2021), we modeled separate covariates and
random effects distributions for each source of observa-
tion bias (δijt and ωijt). In general, bat activity tends to be
low at the start of the year in temperate parts of
North America where the study species occur; it
increases as temperatures warm, as female behavior
changes postparturition (after birth), and as young
become volant. It declines as temperatures cool, bats
eventually move to their fall and winter ranges, and
many species enter hibernation (Gorman et al., 2021).
These life history considerations on bat activity are
commonly modeled using day-of-year effects, which
often explain a large portion of the temporal variance
(e.g., Cole et al., 2022; Gorman et al., 2021; Whitby
et al., 2014). To explain differences in detection by year,
sampling night, and location, we included a random
effect of year, in addition to linear and quadratic
day-of-year effects with random slopes by location
(Appendix S2: Section S1). To account for an increase in
activity and abundance each year after young become
volant, we estimated different abundances λit,Nit,μit,Mitð Þ
prevolancy and postvolancy and included a postvolancy
covariate effect in Equations (1) and (4).

Next, we accounted for spatiotemporal heterogeneity
in the false-positive rate using observation-level random
effects (i.e., sampling night by transect) nested within
NABat project random effects (Appendix S2: Section S2).
These project random effects helped control for differ-
ences in detector types, classification software, and
manual vetting protocols used among data contributors;
the observation-level random effects helped account
for heterogeneity in the false-positive rate due to high
variability in sources of false positives (e.g., co-occurring
bats, background noise, cluttered environments) between
sampling nights and locations (e.g., Kéry & Royle, 2015).

ECOLOGICAL MONOGRAPHS 7 of 25
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Predictive covariates

We included a suite of abiotic and biotic predictors
summarized at the NABat grid cell level to model
abundance (Equation 1). These predictors were measures
of climate (average annual temperature, average annual
precipitation, WorldClim 2.0, Fick & Hijmans, 2017),
landcover (proportion of forest cover of any kind, pro-
portion of wetlands, NALC, 2010), building density
(Microsoft, Bing Maps Team, 2019), elevation (Maximum
elevation, USGS GTOPO30, USGS, 1999), physiographic
diversity (Theobald et al., 2015), and seasonal migratory
population connectivity (Appendix S2: Section S4.2, using
data from Weins et al., 2023); see Appendix S2, and
Appendix S2: Table S1 for more details on covariates.
Based on previously hypothesized relationships between
bat roosting and foraging preferences in areas of diverse
habitats and topologies (e.g., Humphrey, 1975) (especially
those with trees, insects, plants, water, rocky crevices,
and talus slopes), we expected positive relationships
for proportion forest cover, proportion wetlands cover,
and physiographic diversity. Physiographic diversity is a
measure of landscape complexity that considers multiple
factors (multiscale topographic position, slope, aspect,
parent material, continuous heat load) and is correlated
with plant diversity (Theobald et al., 2015). Next, the
importance of buildings as maternity colony habitat for
big brown bats and little brown bats is also well known
(e.g., Barbour & Davis, 1969); however, because urban
areas may generally lack foraging habitat, we included
linear and quadratic effects to allow the relationship
between abundance and building density to saturate or
even decline at very high building densities. We also
modeled linear and quadratic effects of maximum eleva-
tion and average annual temperature given that extremes
in both variables occur across North America, and the
optimal range for many species may fall at intermediate
values.

Linking winter and summer populations and
quantifying WNS impacts

We included a winter-to-summer (i.e., migratory) connec-
tivity metric as a spatiotemporal predictor of abundance
for each grid cell and year. This connectivity metric linked
summer and winter populations based on the seasonal
migration behavior of each species. Specifically, they link
the population abundance in known winter roosts
(i.e., locations in the NABat database with “winter colony
counts”) each year from a separate status and trends
analysis (Wiens et al., 2023) with expected abundance in
the summer distribution each year. We calculated a

“potential metapopulation connectivity metric” (Moilanen &
Hanski, 2001) that predicted the relative number of migrants
each summer to each grid cell based on: (1) the abundance
of bats in the prior winter each year in each known
hibernaculum, and (2) the probability that winter and
summer locations were connected, which was calculated
based on seasonal migration kernels for each species
(with one parameter − average seasonal migration distance)
and the distance between each documented hibernacu-
lum and grid cell. In addition to serving as a potentially
useful spatial predictor of bat summer populations, this
approach also provided us a way of linking regional
trends over time in winter populations with those in
summer populations. For example, winter abundances
for little brown bats and tricolored bats have declined
drastically because the arrival of WNS, with regional
differences depending on the timing of WNS arrival
(Cheng et al., 2021). Thus, this metric captured the
potential spatiotemporal influence of WNS impacts on
known winter populations and the summer abundance
distribution.

Using the approach described in Appendix S2:
Section S4.2, we calculated the potential winter-to-summer
connectivity for each grid cell each year using the weighted
average of the seasonal migration distance for each species
based on data reported in the literature (see Appendix S2:
Tables S2 and S3 for more details). R code for deriving
the winter-to-summer connectivity covariate for each
species has been made publicly available on Gitlab as
part of a USGS software release (Udell et al., 2024a).
Because of the low availability of winter colony count
data in the western USA and Canada, we only used
these metrics as predictors of abundance in the eastern
portion of the range for little brown bats and big
brown bats. In contrast, winter-to-summer connectiv-
ity was used as a predictor throughout the modeled
species range for tricolored bat (a predominantly east-
ern species).

Model specification and regularization for
each species

Year was included as a time-varying intercept (i.e., factor
effect) and was applied to species differently. For tricolored
bats, a single time-varying intercept was included through-
out the entire modeled range of the species. For little
brown bats and big brown bats, a separate, time-varying
intercept was included for each of two regions given
observed differences in monitoring data sets and the
progression of the cold-growing fungus that causes WNS
(Pseudogymnoascus destructans, Pd): an East region with
monitoring data dating back through 2012, where the
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winter-to-summer population connectivity metric was
relevant given the number of known hibernacula; and a
Northwest region with monitoring data dating back
through 2016, where the connectivity metric was not
relevant due to limited information on the whereabouts
of hibernacula. An autoregressive (AR1) process was
also modeled on the time-varying intercept of each
region to share information across years (Appendix S2:
Section S5).

A base model with all covariates was initially consid-
ered for each species (except for building density, which
was only included for little brown bats and big brown
bats based on known regular use of buildings by each
species). Separate covariate effects by region were also
included for little brown bats to allow for potential dif-
ferences in species behavior (e.g., Blejwas et al., 2023;
Weller et al., 2018). Covariates were removed from
the final model of each species based on model fit
(i.e., posterior predictive checks) and uncertainty of
covariate effects (e.g., large variances with credible
intervals overlapping zero). We used Laplace priors
for covariate effects on species abundance to provide
model regularization, minimizing the effects of
covariates that provided little information while also
limiting the issues of moderate correlations among
some predictors (Hooten & Hobbs, 2015). For these
priors, we used a scale parameter of √2, which resulted
in a variance of 1.

Model fitting and criticism

We fitted models in a Bayesian framework using JAGS
(Plummer, 2003) and the JagsUI package (Kellner
et al., 2019) in program R (R Core Team, 2020)
(see Appendix S2: Section S6 for Markov Chain Monte
Carlo [MCMC] settings). Models were assessed for
convergence by visually assessing chains and using the
r-hat statistic of Gelman and Rubin (1992) that indicates con-
vergence when values are near 1. Model fit was assessed with
posterior predictive checks on the counts of auto IDs each
night vijt by calculating the Bayesian p-values (values near
zero or one indicate poor fit while 0.5 indicates a perfect
fit) and c-hat (the overdispersion statistic, or “lack-of-fit
ratio,” where a value of 1 suggests a perfect fit, and
values much larger than 1 suggest poor fit
and overdispersion) based on chi-squared residuals
(Kéry & Royle, 2015). R code for formatting data,
setting up and running each species’ model, making
predictions, and calculating status and trends—in addi-
tion to simplified model vignettes—have been made
publicly available on Gitlab as a USGS software release
(Udell et al., 2024a).

Status and trends estimates at multiple
scales

For the purposes of these analyses, we treated relative
abundance estimates at each spatial scale (transect, grid
cell, state/province, modeled species range) as the
measure of population status, and changes in these
estimates over time as a measure of trend. At the transect
level, for each year we estimated the expected value μit and
abundance state Mit; at the grid cell level, we predicted
the expected value λit of the abundance state Nit .

We made predictions for all grid cells in the modeled
species range using 10,000 MCMC samples from the
fitted model. Given that the prevolancy season is
the primary season of interest for status and trends (Loeb
et al., 2015), we only made predictions for the prevolancy
season each year. Thus, for all prediction and trend calcu-
lations, the index t corresponds to year instead of “time
period” (season and year). Because bats are highly mobile,
these abundances correspond with the total (or in our
application, relative) number of bat home ranges (i.e., the
superpopulation abundance) intersecting each spatial
extent. For inferences across larger spatial extents
(e.g., states, range-wide), we calculated the average rela-
tive abundance bλt each year across all grid cells in the
region of interest as a derived parameter over all MCMC
samples k, where bλkt denotes all samples for each bλt as:

bλkt ¼
P

iλ
k
it

Ncells
ð9Þ

We then summarized the posterior distributions by
taking the means, medians, standard deviations, and 95%
credible intervals (95% CRIs) for each region and year.
Although the sum across relative abundances

P
iλit

� �
can be calculated in given regions, we caution against
using this sum as an absolute population estimate
because (1) bats are mobile and home ranges of individ-
ual bats can occur across several grid cells and (2) if all
assumptions of the modeling framework (e.g., saturation
sampling) were not met, or if there were sampling biases
(e.g., likely road bias), then we would be making inferences
to relative abundance rather than absolute abundance
(Barker et al., 2018; DiRenzo et al., 2019; Link et al., 2018).
Furthermore, because we did not make predictions for the
entire range of each species, status, and trend estimates
correspond with the portion of the population that occurs
in the modeled species range.

We derived three different measures of population
trend over two different time periods (2017–2020 and
2012–2020), first as the ratio of population change

Δt ¼ bλtcλt− 1

� �
(i.e., population growth rate where values of

ECOLOGICAL MONOGRAPHS 9 of 25
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1 indicate no growth) for calculation purposes, then as
the proportional rate of change (by subtracting 1 from
the final values), which we report for a more natural
interpretation (i.e., −0.10 indicates the population declined
by 10%). To avoid confusion with the expected relative
abundance estimate λitð Þ, we denoted the annual change
from year t− 1 to year t as Δt, the geometric average as
ΔGavg, and the total rate of change as Δtot. We calculated

regional-level trends using bλt, and grid cell-level trends
using λit . We derived samples of the posterior distribution

for the geometric average as Δk
Gavg ¼

QT
t¼2Δ

k
t

� � 1
T − 1

, not-

ing that it yields the same results as Δk
Gavg ¼ Δk

tot

� � 1
T − 1

using Δk
tot as the total ratio of change Δk

tot ¼
bλtcλt¼1

� �
(before

subtracting one). For each derived trend variable, we
summarized their respective posterior distributions by
calculating the means, medians, standard deviations, 95%
credible intervals, and the probability that the trend
parameter was negative. For tricolored bats, we did not
provide trend estimates at the grid cell level for Florida
and portions of Texas because of data limitations (sampled
only in later years).

RESULTS

Species detections

We detected big brown bats most by auto ID (29,387),
with an overall manual review rate of 0.162 (4787 files
reviewed), and an overall confirmation rate of 0.583
(2793 files confirmed). Tricolored bats were detected a
total of 23,517 times by auto ID, with an overall manual
review rate of 0.195 (4576 files reviewed) and an overall
confirmation rate of 0.615 (2813 files confirmed). Little
brown bats were detected the least (9784 auto IDs), with
an overall manual review rate of 0.603 (5902 files
reviewed) and an overall confirmation rate of 0.196 (1157
files confirmed). Survey effort for each species is reported
in Appendix S3: Figures S1–S3.

Final models for each species

The final model used for each species is reported in
Table 1. The model for tricolored bats retained all predic-
tors of abundance at the grid cell level. For big brown
bats and little brown bats, maximum elevation was
dropped due to high correlations with physiographic
diversity (0.85) and uncertain estimated effects
(i.e., overlapping zero) when it was included. All other

predictors were retained for big brown bats. For little
brown bats, average annual temperature, average annual
precipitation, and the proportion of wetlands were
dropped as predictors in the Northwest region due to
highly uncertain effects (large standard errors and credible
intervals overlapping zero). The model fit for each species,
as measured by Bayesian p-values and overdispersion sta-
tistics (c-hat), showed no evidence for lack-of-fit and we
observed negligible overdispersion (i.e., c-hat values, were
very close to one for all models, Table 1). Full tables of
parameter estimates for each species model are available
in Appendix S3: Tables S1–S3. Comprehensive population
status and trends inferences for each species have also
been provided at the transect, grid cell, state/province,
and range-wide scales as a USGS data release (Udell
et al., 2024b).

Sampling exposure and detection by
species

Sampling exposure (e.g., the proportion of bats in a grid
cell that may be encountered along a transect) is an
increasing and saturating function of transect length,
and this relationship was strongest for tricolored bats,
followed by big brown bats and little brown bats
(Figure 1A). The relationships between average detec-
tion rates and the day of the year for tricolored bats
and little brown bats were positive and log–linear, and
rates of detection were higher for tricolored bats than for
little brown bats (Figure 1B). This relationship for big
brown bats was best fit by a concave quadratic relationship
peaking around the cut-off date of prevolancy (15 July,
day 196), and was lower than the other species until
approximately day 150 when the average detection rate of
big brown bats equaled that of little brown bats, and by
day 190 it was nearly the same as tricolored bats.

Relative abundance of tricolored bats

For tricolored bats, we found positive log–linear effects
on abundance for winter-to-summer connectivity, physio-
graphic diversity, wetlands, and forest cover; whereas we
found a negative effect of average precipitation (Figure 2).
The average temperature had a concave quadratic relation-
ship (highest at intermediate values) with abundance but
shifted strongly toward higher temperatures due to a
strong positive effect on the linear term. Maximum
elevation had the opposite pattern, with a negative
linear term and a very weak positive quadratic term. The
factor effects of year on relative abundance (with respect
to the intercept in 2012) had increasingly negative point
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estimates from 2013 to 2020, with probabilities greater
than 0.9 for all years but 2014 (Appendix S3: Table S1).
The random intercepts for the average detection rate each
year (on the log scale) varied from −1.084 (−1.661 to
−0.636) in 2020 to −0.309 (−0.580 to 0.067) in 2012. For
additional parameter estimates for tricolored bats, see
Appendix S3: Table S1.

Maps of the predicted relative abundance distribution
at the 100 km2 grid cell level for tricolored bats each year
λit are depicted in Figure 3A (2012) and Figure 3B (2020).
Predictions were made across the modeled range for each
species (i.e., the geographic extent within the confines
of the monitoring data). To aid visualization, a log trans-
formation was used for the color scale, but the
corresponding numbers in the legend are provided on a
natural scale. The median point estimates for λit ranged
from nearly zero to as high as 175 individuals, with the
highest relative abundances in year 2012. The total rate
of change in λit for each grid cell between 2012 and 2020
is depicted in Figure 3C, along with the WNS spread map

by county and year. Median estimates of tricolored bats
ranged from around −0.50 (−50%) to −0.78 (−78%), with
the strongest declines estimated in regions that have been
impacted by WNS during the years of monitoring
(2012–2020). The timeseries of the average grid cell-level
relative abundance across the modeled species range
each year bλt is depicted in Figure 3D, which shows the
marked decline in tricolored bats from 2012 to 2020.
Across the modeled species range, the population declined
a total of 61.5% (95% CRI: 21.7%–77.5%) at an annual rate
of decline of 11.2% each year (95% CRI: 3.0%–17.0%,
Table 2).

Relative abundance of little brown bats

We found positive effects of forest cover, winter-to-summer
connectivity, wetlands, and physiographic diversity on the
abundance of little brown bats in the East region, and a
negative effect of precipitation (Figure 2). We also found

TAB L E 1 Model description for each species including the specification of the time-varying intercept, covariate predictors, and model

fit statistics (Bayesian p-value and c-hat) of each.

Species Intercept

Covariates
Bayesian
p-value c-hatRange-wide Both regions East only

Tricolored bat
(Perimyotis
subflavus)

Range-wide,
time-varying
intercept

Elevation, elevation2,
average annual
temperature, average
annual temperature2,
physiographic diversity,
average annual
precipitation, proportion
forest cover, proportion
wetlands cover,
winter-to-summer
connectivity

0.315 1.034

Little brown bat
(Myotis lucifugus)

Time-varying
intercept for each
region (East and
Northwest) with an
autoregressive AR1
process

Proportion forest cover,
physiographic diversity,
building density, building
density2

Average annual
temperature, average
annual temperature2,
average annual
precipitation,
proportion wetlands
cover,
winter-to-summer
connectivity

0.430 1.019

Big brown bat
(Eptesicus fuscus)

Time-varying
intercept for each
region (East and
Northwest) with an
autoregressive AR1
process

Average annual
temperature, average
annual temperature2,
physiographic diversity,
average annual
precipitation, proportion
forest cover, proportion
wetlands cover, building
density, building density2

Winter-to-summer
connectivity

0.359 1.018
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a positive effect with average temperature (the quadratic
term was near zero). In the Northwest region, covariate
effects trended in the same direction as the East region
for physiographic diversity and forest cover, although
the 95% credible intervals for these effects overlapped
zero. In the Northwest region, the effect of building den-
sity was positive and log–linear, whereas the relation-
ship in the East region was best fitted by a concave
quadratic relationship with the highest expected abun-
dance at intermediate values (Figures 2 and 4). The
random intercept of year on expected relative abundance
of little brown bats was mostly stable from 2012 to 2020
in the Northwest region but declined steadily from
2012 to 2020 in the East region (2012: mean = 1.707,
95% CRI = 1.320–2.072; 2020: mean = 1.301, 95%
CRI = 0.899–1.668) (Appendix S3: Table S2). The ran-
dom intercepts for the average detection rate each year

(on the log scale) varied from −1.518 (95% CRI =
−1.761 to −1.237) in 2012 to −1.621 (95% CRI = −1.883
to −1.399) in 2013. For additional parameter estimates
for little brown bats, see Appendix S3: Table S2.

Maps of the predicted relative abundance distribution
at the 100 km2 grid cell level for little brown bats each
year λit are depicted in Figure 5A (2012) and Figure 5B
(2020). The median point estimates for λit ranged from
nearly zero to as high as 32 individuals, with the highest
relative abundances in year 2012. The total rate of change
in λit for each grid cell between 2012 and 2020 is depicted
in Figure 5C along with the WNS spread map by county
and year. Values for the grid cell-level estimates of the
total rate of change from 2012 to 2020 ranged from
around −0.029 (−0.3%) to −0.741 (−74%), with the stron-
gest declines estimated in regions that have been impacted
by WNS during the years of monitoring (2012–2020). The
timeseries of the average grid cell-level relative abundance
across the modeled range each year bλt is depicted in
Figure 5D, which shows the marked decline from 2012 to
2020. Across the modeled species range, the population
declined a total of 38.6% (95% CRI: 16.2%–59.5%) at an
annual rate of decline of 5.9% each year (95% CRI:
2.2%–10.7%, Table 2). In the East region, the population
decline was 50.7% (95% CRI: 26.6%–68.2%) at an annual
rate of decline of 8.5% each year (95% CRI: 3.8%–13.3%).

Relative abundance of big brown bats

For big brown bats, we found positive log–linear effects
for forest cover, wetlands (across the modeled range),
and winter-to-summer connectivity (East region only);
and we found effects near zero of physiographic diversity
and average precipitation (Figure 2). Average tempera-
ture had a concave quadratic relationship (highest at
intermediate values) with abundance. The effect of build-
ings on the abundance of big brown bats was linear and
positive with greater than a 95% certainty (Figures 2 and
3). The random intercept of year on expected relative
abundance fluctuated over time in both regions and
increased from 2012 to 2020 (Appendix S3: Table S3).
Random intercepts for the average detection rate each
year (on the log scale) varied from −0.815 (−1.046 to
−0.646) in 2015 to −0.689 (−0.864 to −0.476) in 2012. For
additional parameter estimates for big brown bats, see
Appendix S3: Table S3.

Maps of the predicted relative abundance distribution
at the 100 km2 grid cell level for big brown bats each year
λit are depicted in Figure 6A (2012) and Figure 6B (2020).
The median point estimates for λit ranged from lows of
nearly zero to highs near 52 individuals (in 2019). The
total rate of change in λit for each grid cell between 2012

F I GURE 1 Estimated relationships of the average sampling

exposure ϕi (i.e., using the mean of the random effects distribution)

given mobile acoustic transect length, and the average detection

rate per individual given day of year for each species. Species

shown are big brown bat (Eptesicus fuscus), little brown bat (Myotis

lucifugus), and tricolored bat (Perimyotis subflavus). (A) The

estimated relationship between average sampling exposure and

transect length for each species. The dashed vertical reference lines

denote the recommended North American Bat Monitoring Program

(NABat) transect length between 25 and 48 km. (B) Estimated

relationship between detectability and day of year for each species.

The dashed vertical line denotes 15 July, the threshold used to

define prevolancy and postvolancy.
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and 2020 is depicted in Figure 6C along with the WNS
spread map by county and year. Values ranged from 0.24
(24%) to −0.13 (−13%) with a mix of increases and
declines in regions impacted by WNS. The timeseries of
the average relative abundance (at grid cell level) across
the modeled species range each year bλt is depicted in
Figure 6D, which shows an increasing (11.5%) but uncer-
tain (Pr >0= 0.84) population trend from 2012 to 2020.

DISCUSSION

We adapted recent formulations of false-positive
N-mixture models to produce the first estimates of bat
relative abundances in the summer maternity season
from mobile transect acoustic monitoring and found
major declines of two widespread bat species. Providing

information on population abundance and trends during
this critical period for life history overcomes critical
knowledge gaps in the ecology and conservation of
North American bats. Our models advance the current
paradigm of analyzing bat populations by explicitly
incorporating imperfect detection, misclassification, and
abundance processes in space and time. This modeling
strategy isolates inference of population status and
trends on the ecological variable of interest (abundance)
and attempts to provide an unbiased means of esti-
mating trends by accounting for spatiotemporal het-
erogeneities in each process. Failing to account for
such systemic errors will bias trend estimates in space
and time (e.g., Anderson, 2001; Clare et al., 2021;
Miller et al., 2015; Wright et al., 2020). In addition to
accounting for false-positive biases from misclassi-
fication error, as a “Poisson–Poisson N-mixture model”

F I GURE 2 Grid cell-level covariate effects (means and 95% credible intervals) on the relative abundance of each species and region

(where applicable). A reference line at zero denotes no effect. Species are big brown bat (Eptesicus fuscus), little brown bat (Myotis lucifugus),

and tricolored bat (Perimyotis subflavus).
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F I GURE 3 Relative abundance predictions for tricolored bats (Perimyotis subflavus) for each 100 km2 grid cell in the modeled species

range over time (2012 and 2020), the total change in grid cell abundances between 2012 and 2020, and the timeseries of the average relative

abundance across the modeled species range. (A) Relative abundance predictions in each grid cell in 2012 (color bar on a log scale, relative

abundance labels on natural scale). (B) Relative abundance predictions in each grid cell in 2020 (color bar on a log scale, relative abundance

labels on natural scale). (C) Total proportional rate of change in the relative abundance of each grid cell between 2012 and 2020. Pd = the

species name of the fungus that causes WNS, Pseudogymnoascus destructans. Pd year indicates the first year of Pd arrival (confirmed or

suspected). (D) Timeseries of the average relative abundance across the modeled species range each year depicts the estimated declines from

2012 to 2020. Predictions are depicted against a reference range map (blue polygon; range from US Fish and Wildlife Service) and borders of

US states (A–C) for illustrative purposes. Predictions are limited to the geographic scope of available monitoring data.

TAB L E 2 Trends from 2012 to 2020 across the entire modeled range of each species. Species listed are big brown bat (Eptesicus fuscus),

little brown bat (Myotis lucifugus), and tricolored bat (Perimyotis subflavus). Trend types include: Δtot, the total proportional rate of change

from 2012 to 2020, and ΔGavg, the geometric average of the annual rate of change (displayed as proportional change) from 2012 to 2020.

Standard deviation is denoted SD, the lower and upper bounds of the 95% credible intervals as LCI and UCI, respectively, and the

probability that the trend is negative as Pr(x<0).

Species Period Trend type Median SD LCI UCI Pr(x < 0)

Tricolored bat 2012–2020 Δtot −0.615 0.142 −0.775 −0.217 0.996

Tricolored bat 2012–2020 ΔGavg −0.112 0.035 −0.170 −0.030 0.996

Little brown bat 2012–2020 Δtot −0.386 0.115 −0.595 −0.162 0.999

Little brown bat 2012–2020 ΔGavg −0.059 0.023 −0.107 −0.022 0.999

Big brown bat 2012–2020 Δtot 0.115 0.130 −0.109 0.396 0.160

Big brown bat 2012–2020 ΔGavg 0.014 0.014 −0.014 0.043 0.160
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(Kéry & Royle, 2015; Nakashima, 2020; or more generally,
an N-mixture model with a Poisson distribution for
the observation process), our method is also robust to
false-positive detections that arise from counting indi-
viduals more than once (Kéry & Royle, 2015;
Nakashima, 2020). Therefore, this model could also
estimate relative abundance from acoustic mobile tran-
sects conducted at slower speeds (e.g., transects conducted
by bicycle, watercraft, or along winding mountain roads),
or for faster flying species such as the Brazilian free-tailed
bat (Tadarida brasiliensis). Our model might even produce
useful relative abundance estimates from acoustic data
gathered at stationary monitoring sites (e.g., Clement
et al., 2022; Doser et al., 2021), yet more research is
warranted to explore its efficacy in situations where
average detection rates greatly exceed 1.0 (e.g., when
individuals are typically encountered multiple times per
visit at a stationary location), and detections can be
highly clustered among individuals. Also, if integrated

with additional data sets that improve temporal coverage
across the entire summer (i.e., prevolancy and postvolancy
of young), our methods might provide a means for
estimating bat reproductive rates (i.e., apparent birth rates)
at macro scales for the first time.

We applied these newly developed models to determine
the status and trends in summer abundance of three
temperate North American bat species. Our approach
allowed the first assessment of summertime bat relative
abundance at multiple spatial scales (transect, grid cell,
region, modeled species range). Using monitoring data
collected and collated through the NABat monitoring
program (including data collected under the NABat
representative monitoring protocol), we provide a new
analytical approach that allows (relative) abundance
estimation and thus multiscale population inference
ranging from local landscapes to entire continental
ranges of bat species. We provide the first maps of relative
abundance for these three species of bats that can inform

F I GURE 4 The estimated relationship between the log of building density and the log of expected relative abundance λð Þ at the
100 km2 grid cell level for little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). A separate relationship was estimated for

the East region and Northwest region for little brown bats, while a single relationship was estimated across both regions for big brown bats.
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conservation management actions. Finally, using our
winter-to-summer migratory connectivity approach, we
linked spatiotemporal population changes in winter
populations (reflecting primarily WNS impacts, in addition
to natural interannual variation and any other unobserved
population drivers) to spatiotemporal trends in relative
abundance in the summer ranges of each species.

Overall trends in species relative
abundances

From 2012 to 2020, we found strong evidence for precipi-
tous declines (with probabilities >0.99) in the relative
abundance of tricolored bats and little brown bats across

their modeled species ranges. The estimated total popula-
tion decline was greater for tricolored bats than for little
brown bats; however, our first year of monitoring began
6 years after the arrival of WNS in North America and
after severe declines (>95% population losses) in the
winter colonies of little brown bats in portions of the
northeastern United States (e.g., Cheng et al., 2021;
Turner et al., 2011; Wiens et al., 2023). Also, the estimated
population decline for little brown bats in the East region
was greater than that across the entire modeled species
range. A separate analysis of mobile transect data from
National Wildlife Refuges in the Southeast and Midwest
United States (a subset of the data used here) over a
similar timeframe (from 2012 to 2017) reported similar
trends in activity for these species, where declines for

F I GURE 5 Relative abundance predictions for little brown bats (Myotis lucifugus) for each 100 km2 grid cell in the modeled species

range over time (2012 and 2020), the total change in grid cell abundances between 2012 and 2020, and the timeseries of the average relative

abundance across the modeled species range. (A) Relative abundance predictions in each grid cell in 2012, on a natural scale. (B) Relative

abundance predictions in each grid cell in 2020, on a natural scale. (C) Total proportional rate of change in the relative abundance of each

grid cell between 2012 and 2020. Pd = the species name of the fungus that causes white-nose syndrome, Pseudogymnoascus destructans. Pd

year indicates the first year of Pd arrival (confirmed or suspected). (D) Timeseries of the average relative abundance across the modeled

species range each year depicts the estimated declines from 2012 to 2020. Predictions are depicted against a reference range map (blue

polygon; National Atlas of the United States, 2011) and borders of US states (A–C) for illustrative purposes. Predictions are limited to the

geographic scope of available monitoring data.
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tricolored bats were larger than for little brown bats
(Evans et al., 2021). Our work found that the estimated
declines in relative abundance for tricolored bats and
little brown bats were also larger than the estimated
declines in occupancy probabilities from another recent
analysis (Udell et al., 2022). These results are consistent
with those from simulation studies (e.g., Ellis et al.,
2014) that indicate that trends occupancy might be less
sensitive to population declines when counts are greater
than one because of the information reduction as a
binary representation (e.g., Steen et al., 2023).

In contrast with inferred declines in populations of
tricolored and little brown bats, annual trends in relative
abundance for big brown bats over the same period
showed a mix of regional increases and decreases across

the modeled species range (Figure 6), as well as a some-
what uncertain increase when aggregated across the
entire modeled species range (Table 2). Previous work on
big brown bat populations revealed a mix of decreases
(e.g., Simonis et al., 2020) and increases (Pettit &
O’Keefe, 2017) in detection rates because the emergence
of WNS, which may be driven by a combination of minor
WNS population impacts for big brown bats paired with
larger WNS impacts to competitor species such as little
brown bats and tricolored bats (i.e., competitive release,
Jachowski et al., 2014; Johnson et al., 2021). From 2017
to 2020, the estimated trend for big brown bats in the
Northwest region was near zero without strong support
for an increase or decrease, which is consistent with a
recent analysis of mobile transect data from British

F I GURE 6 Relative abundance predictions for big brown bats (Eptesicus fuscus) for each 100 km2 grid cell in the modeled species range

in 2012 and 2020, the total change in relative abundance between 2012 and 2020, and the timeseries of the average relative abundance across

the modeled species range. (A) Relative abundance predictions in each grid cell in 2012, on a natural scale. (B) Relative abundance

predictions in each grid cell in 2020, on a natural scale. (C) Total proportional rate of change in the relative abundance of each grid cell

between 2012 and 2020. Pd = the species name of the fungus that causes WNS, Pseudogymnoascus destructans. Pd year indicates the first

year of Pd arrival (confirmed or suspected). (D) Timeseries of the average relative abundance across the modeled species range each year

from 2012 to 2020. Predictions are depicted against a reference range map (blue polygon; National Atlas of the United States, 2011) and

borders of US states (A–C) for illustrative purposes. Predictions are limited to the geographic scope of available monitoring data.
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Columbia (Rae et al., 2022). Less evidence for consistent
population declines in big brown bats compared with the
other species included in our analysis reflects observations
over the past decade that this species seems less suscep-
tible to the ravaging effects of the fungus that causes
WNS than other hibernating bats in North America
(Cheng et al., 2021).

Our approach for calculating trends over time differs
from previous analyses of mobile transect data for bats.
Prior efforts typically modeled trends while limiting
spatial inference to the monitored transects (e.g., Britzke &
Herzog, 2009; Roche et al., 2011) rather than expanding
it to encompass larger landscapes. Although our new
approach allowed spatial inference at the monitored
transect scale (by estimating abundance Mit for each
transect and time period), we were able to scale inference
to much larger landscapes by integrating data from
NABat’s collective monitoring program with Bayesian
hierarchical models. Not only did this upscaling allow us
to infer population status and trends across spatially
definable regions of interest, but it extended our ability to
infer relative abundance in unsampled places.

Additional correlates of species abundance

We found that the abundance of all three bat species
included in this study was positively influenced by the
proportion of forest cover and wetlands. These associa-
tions were expected because bat roosts and foraging
grounds are often associated with forested areas or are
close to open water (O’Shea, Neubaum, et al., 2011).
Previously, Evans et al. (2021) found that the proportion
of woody cover near roads positively influenced the
acoustic activity of little brown bats and big brown bats
along mobile transects, but the woody cover was not
an important predictor of tricolored bat activity in that
study. Different results for tricolored bats in the latter
study could be attributable to the smaller landscape con-
text in which their analysis modeled forest cover, further
indicating that our multiscale approach that quantified
abundance predictors in a larger spatial context (i.e., at
the 10 km × 10 km grid cell level) provides additional
insight into bat populations.

The importance of habitat diversity and topographic
diversity, given their relationship with the availability
of roosting sites, has long been discussed in the litera-
ture as an important driver of bat distributions (e.g.,
Humphrey, 1975). We hypothesized a positive relation-
ship between bat abundance and physiographic diversity
because it was a measure of landscape complexity and
potential niche diversity that is based on several factors
(multiscale topographic position, aspect, slope, latitude,

parent material, and continuous heat index) and is posi-
tively correlated with plant diversity (Theobald et al., 2015).
Indeed, we found a positive association between physio-
graphic diversity and the abundance of tricolored bats and
little brown bats, but no effect for big brown bats (Figure 2).
Perhaps, not surprisingly, big brown bats may be among
the most opportunistic of the species studied in terms of
their ability to flourish by exploiting many different types of
roost structures, both natural and human-made (Barbour &
Davis, 1969).

We found building density had a positive log–linear
relationship with the abundance of big brown bats across
their entire modeled species range and for little brown
bats in the Northwest region (Figure 4). Building density
had a different effect on the modeled abundance of little
brown bats in the East region, where the relationship
was quadratic, suggesting the highest abundance at inter-
mediate building densities and the lowest abundance
at very high densities (Figure 4). In summer, both big
brown bats and little brown bats are known to roost in
human structures across a gradient of building densities
from very rural areas (wildlands with few human struc-
tures) to urban areas (Barbour & Davis, 1969; Coleman &
Barclay, 2011; Frick et al., 2009; Johnson et al., 2019;
Neubaum et al., 2006; Tessler & Snively, 2014). While
both species can be found in cities, big brown bats are
especially common in urban areas during Nearctic
summers (Neubaum et al., 2006; O’Shea, Ellison, &
Stanley, 2011). For little brown bats, buildings are
especially important as maternity roosts in regions
without natural roosting habitat; for example, in prairies
(Coleman & Barclay, 2011), or in regions with shorter
summers and colder temperatures that pose energetic
challenges to reproduction, such as at high elevations
(e.g., Cryan et al., 2000; Johnson et al., 2019; Micalizzi
et al., 2023) or higher latitudes such as Alaska
(e.g., Tessler & Snively, 2014). Thus, buildings may provide
suitable habitat for reproduction and allow for larger
populations than would otherwise be supported (Johnson
et al., 2019) and may even have allowed for range
expansion into areas with otherwise unsuitable habitat
(e.g., prairies and colder climates) as the number of build-
ings increased in North America (Kunz & Reynolds, 2003;
Tessler & Snively, 2014).

Differences in the effects of building density on the
abundance of little brown bats between the Northwest
(consistent increase with building density) and East
regions (increase at middle density and decrease at
higher density) might be explained by generally higher
latitudes and elevations (Johnson et al., 2019) found
across the Northwest. Another plausible explanation for
lower densities of little brown bats in urbanized areas of
the East is that the species is competitively excluded
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from building roosts by big brown bats that often exploit
urban habitats (Whitaker & Gummer, 2000). In higher
density urban centers, water bodies might be less accessi-
ble to foraging little brown bats or perhaps foraging oppor-
tunities in urban areas are compromised by lights, traffic,
and/or other human disturbances. A study in Alberta,
Canada (Coleman & Barclay, 2011) found that, while the
abundance of little brown bats was higher in urban areas
than in rural or urban-to-rural transition areas, body
condition and individual fitness were highest in the
urban-to-rural transition areas, which was attributed in
part to intraspecific competition and lack of foraging
habitat in urban areas. Our models indicated that aver-
age annual temperature influenced the abundance of all
three species investigated, with the strongest positive
effect for tricolored bats, and weaker positive effects for
little brown bats and big brown bats. This conforms to
theoretical expectations for small mammals and for
smaller bats with high surface-area-to-volume ratios on
tight energy budgets (Henshaw, 1970; Speakman &
Thomas, 2003). We speculate that little brown bats and
big brown bats may buffer themselves from the effects
of outside temperature by roosting in buildings, perhaps
explaining the weaker effects of average temperature
than we observed with tricolored bats, which roost in
buildings far less regularly (Barbour & Davis, 1969).
Further research into the influence of urbanization on
bat abundance using methods developed in this study
could help explain why certain bat species are able to
exploit human development and the presence, and thus
potentially cope with population stressors, more than
others.

Linking spatiotemporal trends in
abundance of winter and summer
populations

White-nose syndrome primarily infects and kills bats
during hibernation while they are at their winter roosts or
soon after they emerge from hibernation (Hoyt et al., 2021;
Langwig et al., 2015). However, these impacts affect
year-round spatiotemporal distributions of populations,
likely including locations where Pd has not been
detected. Inspired by metapopulation connectivity
theory (e.g., Moilanen & Hanski, 2001), we calculated
a winter-summer migratory connectivity metric that
serves as a proxy for the relative number of bats migrating
each year to each NABat grid cell given the spatial configu-
ration of winter and summer habitats, species abundances
at all known winter hibernacula, and average seasonal
migration distance of each species. Our metric reflects
biologically based hypotheses (seasonal life cycle and

migration behavior of each species) linking WNS-related
population impacts in the winter range of each species
with abundance in their summer range. Winter-to-summer
connectivity based on available monitoring data played an
important role in allowing us to quantitatively link bat
populations across their winter and summer ranges.
Given the strength of estimated covariate effects for
winter-to-summer connectivity (Figure 2), modeling
these seasonal population connections undoubtedly
improved our ability to estimate spatiotemporal trends
for each species, as well as let us predict regional
declines (or in the case of big brown bats some regional
increases) associated with WNS spread (Figures 2, 5, and 6).

A major limitation to modeling the effects of seasonally
biased impacts like winter WNS mortality on bat
populations, particularly when relying on summer
survey data, is our inconsistent and incomplete under-
standing of bat hibernation habitat across North America.
We modeled the winter distributions of each species based
only on known hibernacula documented in the NABat
database. Although coverage was good for these species in
eastern and midwestern portions of North America, most
hibernacula in western areas of the continent have not
been found and described, probably because of inaccessi-
bility, inconspicuousness, dispersion, and structural
variability (Weller et al., 2018). Thus, low values for
winter-to-summer connectivity for little brown bats and
big brown bats observed in northwestern North America
likely reflect data limitations rather than biologically low
population connectivity (Appendix S2: Section S4.2).
Furthermore, given the logistic difficulties of studying bat
migration (e.g., weight limits of GPS tags, challenges in
relocating migrating individuals in radio-tag studies),
migration reports in the literature are rare, and band
recoveries make up most of the verifiable reports
(e.g., Cryan & Diehl, 2009). Given that some band recov-
eries may only reflect snapshots in a longer distance
movement process, it is possible that some may underes-
timate the true migration distance. Future work could
investigate how larger assumed migration distances
influence estimates of relative abundance and trends.
Additional discussion of modeling considerations, limita-
tions, and future directions are provided in Appendix S2:
Section S4.2.

Detection and sampling exposure
(nonrandom availability)

In general, we found that average detection and sampling
exposure rates were highest for tricolored bats, followed
by big brown bats and little brown bats (Figure 1).
Differences in sampling exposure between species were
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likely to have been influenced by the distribution of
habitat within a grid cell relative to roads, the distribution
of bat roosts within a grid cell, movement distances of
individual bats, and habitat selection of bats within their
summer home ranges. Because these factors likely vary
between grid cells and transects, we included a random
effect distribution for the inverse transect length on
sampling exposure for each species and transect to avoid
potential biases. The higher average sampling exposure
of tricolored bats could have been caused by larger
movements of individuals and/or a higher likelihood of
roosting or foraging in habitats near, over, or under
roads (e.g., roosts in culverts). In this study and others
(e.g., Whitby et al., 2014), tricolored bats and big brown
bats were detected at much higher rates than species of
Myotis, and possibly due to road bias (e.g., Braun de
Torrez et al., 2017). Distribution of bat foraging and
roosting habitat relative to roads within a grid cell is
nonrandom and, unlike tricolored bats, the activity of
little brown bats and big brown bats can be strongly tied
to the amount of woody vegetation adjacent to roads
(e.g., Evans et al., 2021).

We were able to scale population inference of abun-
dance from the transect to the grid cell through satura-
tion sampling (e.g., Royle et al., 2007). If road sampling
bias was pervasive due to species avoidance of habitat
near roads, abundance at the grid cell level would likely
be underestimated. Our highest estimates of grid cell
abundance for little brown bats (~32 bats) were much
lower than the maximum number of bats reported in
summer roosts; for example, before the arrival of WNS,
maternity colonies were often hundreds to thousands of
individuals (Anthony et al., 1981), or at higher latitudes
in the tens to hundreds of individuals (Tessler &
Snively, 2014). We were therefore likely to underestimate
the absolute abundance of little brown bats due to road
bias. The low confirmation rates of reviewed auto IDs for
little brown bats could have also contributed to
underestimating abundance, for which lack of confirma-
tion due to uncertainty (e.g., downgrading a species
detection to more general groupings such as Myotis) was
currently treated as false positives.

Limitations and future work

Our estimates of abundance are best interpreted as rela-
tive abundance, rather than absolute abundance, at least
until our models can be integrated with additional
sources of monitoring data or their assumptions (such as
saturation sampling) can be verified through field studies
or informed via ancillary information. This is a conserva-
tive approach, because in general when assumptions of

N-mixture models are violated, inference shifts from
absolute abundance to relative abundance (DiRenzo
et al., 2019; Link et al., 2018). Extending our models to
include habitat covariates for transects (e.g., kernel
methods from Evans et al., 2021; fine-scale point pattern
process approximations from Kéry & Royle, 2020) in
addition to the habitat covariates of grid cells that we
modeled, may help to correct for any availability biases
and provide additional information to inform the
multiscale abundance process. Formal integration of
our abundance estimation methods with monitoring data
that were not gathered along roads (e.g., stationary acous-
tics, captures, or roost counts) could also help to vet our
model assumptions and overcome some of these limita-
tions. For example, the inclusion of capture/recapture data
could help to overcome the limitations of unmarked abun-
dance methods in general (e.g., Link et al., 2018), the
inclusion of stationary acoustic data could help to over-
come road bias and improve geographic coverage, and the
inclusion of summer roost counts could “ground truth”
the otherwise relative estimates of abundance in sampled
grid cells.

We used data from a manual review process based on
confirmation/rejection of auto IDs (Reichert et al., 2018)
to estimate false-positive rates by assuming they were
true; however, manual review is prone to human limita-
tions including the possibility of being wrong, potential
differences in acceptance probabilities between observers
and, in the case of little brown bats and other species of
Myotis, the tendency to downgrade auto IDs when uncer-
tain. Regardless, manually reviewing data remained the
best approach for estimating false-positive rates given our
data sets, especially considering the alternatives. For
example, for tricolored bats our posterior estimates for
detection rates δijt

� �
were only greater than the expected

number of false positives (ωijt) for ~82% of observations,
meaning that a significant proportion of our estimates
would be biased on the parameter constraints of Clement
et al. (2022) (i.e., that δ>ω). Future work may seek to
overcome these limitations by including software confu-
sion matrices as informed priors (e.g., Stratton
et al., 2022) or by using classification probability scores
(rather than discrete values; e.g., Kéry & Royle, 2020).

Despite the robust representative sampling protocol
for NABat, clear geographic biases exist in data from
mobile acoustic transects across the ranges of some spe-
cies that restricted population inferences from the entire
range to the “modeled species range.” For example, much
of western North America remains unsampled due to
challenges accessing many areas by road, or where sinu-
ous mountain roads require slower speeds for safety
reasons. Such roads were initially discouraged for mobile
transects to minimize the chances of double-counting
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individuals (Loeb et al., 2015). However, recent work
suggests that mobile transects may be more appropriate
in these regions than previously assumed (Rojas et al., 2022)
and conducting more mobile transects in such regions would
rectify geographic biases and could allow for more com-
prehensive inference across the range of each species.
Furthermore, as a Poisson–Poisson N-mixture model, our
methods can reliably estimate abundance even when animals
are detected more than once (e.g., Nakashima, 2020),
addressing concerns when ideal speeds (i.e., less than
32 km/h) cannot be accommodated by available roads.

CONCLUSION

We estimated the first status and trends in the summer
abundance of bat populations across large portions of
their ranges using new formulations of unmarked
abundance methods and acoustic recordings of bats
along driving transects. For the first time, acoustic data
gathered by mobile transect protocols and collated
through the NABat program were used to monitor bat
populations across spatial scales ranging from local
landscapes to large portions of species ranges. Patterns
detected by this research are more ecologically informative
than those based on less direct proxies of abundance
(e.g., occupancy, activity) and are likely to be more robust
than patterns based on statistical methods that do not
attempt to control for biases from detection and misclassi-
fication processes that vary in space and time. Using this
approach, we found precipitous declines in two widespread
bat species linked to WNS. Our approach is applicable to
many species of bats in North America that can be moni-
tored using acoustic detectors or are amenable to other
monitoring systems in which biases from imperfect detec-
tion and misclassification processes are common. Indeed,
modest false-positive rates are likely to be common across
many wildlife monitoring programs that use visual or
auditory point counts (e.g., McClintock et al., 2010;
Miller et al., 2015). Finally, by providing a means to
estimate abundance using a point pattern process
model, the expected abundance predicted by our mobile
acoustic transect model can serve as a scaffolding for a
single, integrated status and trends model that also links
relative abundance estimates with bat occupancy from
stationary acoustic data and capture data (e.g., Miller
et al., 2019).
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