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Abstract: With the expansion of green energy, more and more data show that wind turbines can pose
a significant threat to some endangered bird species. The birds of prey are more frequently exposed
to collision risk with the wind turbine blades due to their unique flight path patterns. This paper
shows how data from a stereovision system can be used for an efficient classification of detected
objects. A method for distinguishing endangered birds from common birds and other flying objects
has been developed and tested. The research focused on the selection of a suitable feature extraction
methodology. Both motion and visual features are extracted from the Bioseco BPS system and retested
using a correlation-based and a wrapper-type approach with genetic algorithms (GAs). With optimal
features and fine-tuned classifiers, birds can be distinguished from aeroplanes with a 98.6% recall
and 97% accuracy, whereas endangered birds are delimited from common ones with 93.5% recall and
77.2% accuracy.

Keywords: avifauna classification; æms; feature extraction; IoT; nature conservation; smart sensing;
wildlife hazard management; wind farms

1. Introduction

In the wake of expanding human infrastructures, birds are more and more frequently
exposed to collision risk with wind turbines [1–6] and aeroplanes [7]. Much effort has been
recently made to develop solutions that ensure comprehensive protection of birds and
meet the challenging requirements of environmental authorities [8,9]. The bird protection
system (BPS) uses stereovision that provides precise 3D localisation to prevent collisions
with wind turbine blades [10,11]. However, reliable species classification can improve
deterrence systems and reduce wind turbine stoppages [12,13]. Hence, a reliable real-time
bird species/genus/family classification algorithm recently became an emerging research
topic [11].

Safety applications implicate the requirement of a high classification accuracy, which,
according to the German Competence Center for Nature Conservation and Energy Transi-
tion (Kompetenzzentrum Naturschutz und Energiewende, KNE), needs to exceed 90% in
sensitive areas [14]. This, combined with the required detection range, as far as 500 meters
in 360◦ around the wind turbine and the harsh environmental impact on the measurement
data, makes the development of a robust classification algorithm a nontrivial task.

We propose to apply a two-stage binary classification approach. In the first stage,
birds are distinguished from other flying objects, such as aeroplanes. In the second stage,
protected big birds of prey are distinguished from other birds. In this paper, we investigate
how to optimise the selection of the features to ensure accurate classification. We test
state-of-the-art classifiers such as neural network (NN), decision tree (DT), random forest
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(RF), and support vector machine (SVM). The optimisation is based on two approaches:
the correlation coefficient method and genetic algorithms (GAs).

2. Background Knowledge and Related Works

The works that are most relevant to the presented interdisciplinary research are those
related to using machine learning methods for flying object classification with a main focus
on feature extraction.

2.1. Flying Object Features

Flying objects’ feature extraction can be approached from ornithological and techno-
logical perspectives, while our interest is in the latter. Three common classes of features are
used in flying object classification.

1. Sound: The analysis of frequency, duration, and volume of bird vocalizations collected
by microphones through passive acoustic monitoring [15,16].

2. Morphology: The analysis of the size of a bird, its shape (beak, wings, etc.), or plumage
colour based on the video or image recordings of optical sensors [16].

3. Motion and behavioural patterns: The analysis of a bird’s (or other object’s) flight
trajectories and their features, including turning angle, curvature, velocity, acceler-
ation, or periodic oscillation due to wing flapping. The data can be gathered using
various types of sensors: optical [17], radar [18], or accelerometer [19].

Since the wind farm and airport environments (in terms of sound) are noise-contaminated,
this study focuses on morphological, motion, and behavioural patterns.

2.2. Optimal Feature Selection Methods

The extracted features must be evaluated to create their optimal set for classification.
For this purpose, when researching the literature, two basic approaches can be found,
i.e., statistical and wrapper methods.

Correlation between features and class variables as a criterion for feature selection is a
statistical approach that uses features with higher correlation for classification. In a study
by Atanbori et al. [20], this selection method was used for an RF classifier, and it improved
the bird classification accuracy from 83% to 90%.

The wrapper method for optimal feature selection uses a machine learning model
to evaluate the selection and adjust the selected features to improve the classification
performance, and the GA belongs to this category. It randomly generates a set of input
features and then iteratively evaluates solutions to converge to the optimal feature set.
Qian [21] used a GA method combined with mutual information measures to select optimal
features from audio and image databases. The classification scores were higher than those of
other selection methods. Putrada and Prabowo [22] proved that GA is suitable for selecting
optimal features to enhance the performance of the aeroplane-bird classifier. The area under
the curve AUC score improved from 87.8% to 88.9%, and the recall improved from 77.3%
to 80%.

2.3. Flying Object Classifiers

The comprehensive review of machine learning methods by Principato et al. [16]
includes updated information on bird-related classification approaches: preprocessing
techniques (image augmentation and audio signal transforms), classification algorithms
(convolutional neural network, CNN; K-nearest neighbours, kNN; RF), or classifier evalua-
tion metrics (accuracy and precision). We supplemented the overview with a few scientific
papers that were not mentioned in the survey. We focus on four classifiers used in this study:
NN, DT, RF, and SVM. We also analyse evaluation metrics suitable for bird classification.

In [23,24], a NN was used for bird recognition based on birds’ voices. In [18], based
on micro-Doppler spectrogram images, a CNN was used to classify drones, birds, clutter,
and noise, with a 94% accuracy. A hybrid CNN-RNN model ensured an accuracy of
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99% in classifying birds and drones based on synthetically generated (emulated) flight
trajectories [25].

A DT is a transparent model that selects classification features and is efficient for
queries. Qiao et al. [26] used a hybrid of the DT and SVM classifiers to recognise 15 species
of birds based on their morphological features, with an 84% accuracy. A DT was also
accurate in 95% of cases in identifying the type of kestrel flight behaviour, such as hovering,
flapping, etc., based on features gathered by accelerometers placed on birds [19].

An RF is an ensemble classifier consisting of a collection of trees that vote on the class
of the given sample, and it is considered a robust model that does not overfit easily. RF
was used to classify 13 species of birds based on their motion features and was the best
of the tested classifiers (SVM, DT, naive Bayes), with an accuracy of 90% [20]. RF also
outperformed the K-nearest neighbour (KNN) method and logistic boost classifiers in the
identification of seven seabird species using images reaching 86% in precision, recall and F1
measure [27]. It was used to classify 14 Australian birds according to their sound recordings
with 89% accuracy [28].

SVMs are classifiers that find the hyperplane that best separates different classes in
the feature space, maximising the margin between the closest points of the classes. They
are solid classifiers that are commonly used in flying object recognition. Atanbori et al. [29]
classified seven species of birds based on their colour and motion features using SVMs
and the naive Bayes method, with an accuracy of 89% and 92%, respectively. For binary
classification of toucan and snowy owl based on colour features, SVMs performed with an
accuracy of 98% [30]. SVMs were also tested for bird, drone, and kite recognition based on
flight trajectory features with an accuracy of 85% [17].

Based on the given task and end-user requirements, the classifying model not only has
to be reliable but also tested with appropriate measures. The accuracy as a separate score
does not capture some problem intricacies, such as different error weights of type I (false
positive, FP) and II (false negative, FN). Therefore, many studies apply other methods:
AUC, precision, recall, or F1 measure [10,22,27]. Apart from accuracy, this study uses recall as
a crucial measure. This minimises the FN errors (endangered birds misclassified as other
types of birds or birds misclassified as aeroplanes).

3. Problem Statement, Objectives, and Main Contributions

As the overview of related works shows, the classification of flying objects, especially
birds, is of interest to researchers in different fields for diverse applications. We focus on
bird classification systems based on stereovision for long-distance observations. The data
from such systems can be challenging due to different types of interference and quantization
errors [7,10].

This paper mainly aims to analyse different methods for optimal feature selection.
We seek to determine whether the correlation coefficients method or GA provides a more
efficient subset of features in terms of classification performance than the whole set of
features. The performance was measured using accuracy and recall scores. The selection
methods were examined based on four different classifiers: multi-layer perceptrons NN,
DT, RF, and SVM.

Moreover, we investigated if a two-stage classification method has a performance
that is sufficient for recognising a specific group of objects, as shown in Figure 1. In the
first stage, the system separates avifauna from aeroplanes, and the hypothesis is that the
classifiers can reach an accuracy of 95% and a recall of 97%. In the second stage, endangered
birds (big raptors from Accipitriformes order: Buteo buteo, Milvus milvus, Haliaeetus albicilla)
are distinguished from common birds. This classification should have at least 75% accuracy
and 90% recall to be of practical use [8,9].



Sensors 2024, 24, 3941 4 of 15

Figure 1. A block diagram of a real-time system for classifying aeroplanes, rare birds, and com-
mon birds.

Finally, the study gives insights into feature selection. We investigate whether prese-
lected features are sufficient for accurate classification and which optimal features selected
by the algorithms are most useful for classification.

As a case study, we use data from the long-base stereovision Bioseco BPS [10]. The raw
data from the system are preprocessed, and then the basic features, such as 3D positions,
velocity, distance, and object size, are extracted. In order to reduce the number of fea-
tures, the basic features are fused, e.g., size/distance or velocity/distance. All features
are normalised using statistical representations such as histograms and the distribution
parameters, including average value, variance, etc.

4. Data Preparation and Feature Preselection

The data handling process of the applied classification system consists of two stages.
The first step is related to data acquisition and preprocessing. Then, preselected features
are extracted and normalised from enhanced data.

4.1. Data Gathering and Preprocessing

The test data used for feature extraction originate from the BPS system. By processing
this data, birds’ flight trajectories can be defined. An example of flight trajectory in Cartesian
and spherical co-ordinate systems is presented in Figure 2.
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Figure 2. A white-tailed eagle’s flight trajectory, with a typical soaring pattern in Cartesian co-
ordinates and two projections of spherical co-ordinates.

The database used comes from BPS installed at one of the wind farms located in
Northern Germany. Each record includes the co-ordinates of a 3D flight path, 4k video,
and cropped images of the detected objects [31]. A complete long-range BPS comprises
eight detection modules installed around a wind turbine tower. Each module is equipped
with four cameras coupled in two pairs of stereovision. The system simultaneously detects
and localises multiple objects in the observation zone [10].

The retrieved data of species labelled by experts involves a set of the following:
timestamp, image size, and the co-ordinates of the object’s centre of gravity pixel posi-
tion on the images of both cameras: [x_top_camera, y_top _camera], and [x_bottom_camera,
y_bottom_camera]. Pixel positions are denoised by Friedman’s super smoother [32] and
were used to estimate an object’s spatial position [x, y, z], as in [10]. However, in this work,
spherical co-ordinates (phi, theta, radius) are used to reduce the propagation of quantisation
uncertainty of distance estimation [7,10].

For monitoring purposes, all detected items are divided into reports/paths and la-
belled by ornithologists into three classes of objects: aeroplanes, big raptors, and other birds.
The birds of prey we were interested in are Accipitriformes—raptors with a wingspan over
1.1 m, such as Buteo buteo, Milvus milvus, Haliaeetus albicilla.

4.2. Features Extraction and Normalisation

In order to reduce the system’s computational complexity without compromising
accuracy, only the features relevant to the classification task must be selected and extracted
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from the database. In this study, the parameters were chosen in such a way that they are
descriptive enough to capture an object’s behaviour but are also easy to compute. There
are four physical characteristics extracted from the data of flight trajectory, which form the
base of the features:

1. Polar angle, φ, of object localisation in spherical co-ordinates, in radian.
2. Object angular velocity, calculated for the polar and azimuth angles, ωφ and ωθ , re-

spectively, in radian/second.
3. Object size extracted from the image, calculated as the number of an object’s pixels,

sizepx, in pixels.
4. Arc path lengths, calculated for polar and azimuth angles, arcφ and arcθ , respectively,

as the path lengths in the polar and azimuth spherical co-ordinates, in meters.

All these features, apart from object size, are defined in spherical co-ordinates because
of their robustness and resistance to possible distortions, allowing for a reduction in the
propagation of quantisation uncertainty in distance estimation. However, despite these
measures, quantisation errors in distance measurements by a stereovision system can still
cause even large objects detected from afar to be inaccurately localised in closer proximity
and falsely labelled as medium-sized, potentially creating problems in distinguishing
aeroplanes from birds.

The ωφ, ωθ , arcφ, and arcθ are measured within a 2-s window, while the φ and sizepx
are sampled at 1/16 s. The reduction of computational complexity can be achieved by
structuring the data from the monitoring system. It can be carried out by using the statistical
properties of the data and relating them to relevant variables, e.g., distance. In Table 1,
the features defined in three columns represent the following structures:

1. The histograms of the angular velocities ωφ and ωθ depict the characteristics of the
detected object’s flight. The histograms use nine bins for ωφ ⟨−0.01, 0.01⟩ and ωθ

⟨−0.03, 0.03⟩ values; see Figure 3a,b.
2. The bar diagram of average angular velocities for distance intervals. The features depict

changes in flight characteristics with distance, e.g., angular velocities are lower at
large distances; see Figure 3c.

3. The bar diagram of average polar angle, φ, with respect to distance intervals; see
Figure 3f.

4. The bar diagram of average size, sizepx, concerning distance intervals, which strongly
depend on the distance, grows as the distance decreases; see Figure 3e.

5. The bar diagram of average arc path lengths, arcφ, and arcθ ; see Figures 3e.
6. The variances of each physical quantity were computed to depict their statistical

characteristics.

Table 1. Pre-selected features, grouped by physical characteristics.

Quantity Symbol Physical Unit
Features

Histogram with n-th
Distance Interval

Average Value within n-th
Distance Intervals Variance

Angular velocity
ωφ radian

second

hist(ωφ, ∆distn) avgωφ (∆distn) var(ωφ)

ωθ hist(ωθ , ∆distn) avgωθ (∆distn) var(ωθ)

Polar angle φ radian avgφ(∆distn) var(φ)

Size sizepx pixel avgsizepx (∆distn) var(sizepx)

Arc path length
arcφ

meter
avgarcφ (∆distn) var(arcφ)

arcθ avgarcθ (∆distn) var(arcθ)



Sensors 2024, 24, 3941 7 of 15

(a) (b)

(c) (d)

(e) (f)

Figure 3. An example of feature extraction from preprocessed data, based on flight trajectory from
Figure 2. (a) Histogram for angular velocity ωφ. (b) Histogram for angular velocity ωθ . (c) Average
angular velocity ωφ per distance. (d) Average arc path lengths in arcφ per distance. (e) Average
number of image pixels (sizepx) of the detected object per distance. (f) Average polar angle φ

per distance.

Therefore, for each classification stage, six feature groups based on four physical
quantities are used. If we apply nine-bin histograms and nine-bin average value struc-
tures relative to nine distance intervals, then 78 numerical variables are used. However,
because of extreme values in the dataset, z-score normalisation has to be used for all variance
parameters and most of the average values relative to distance intervals. Furthermore,
the values for sizepx are logarithmised and min-max normalised. The histograms of ωφ

and ωθ are processed as percentages.

5. Optimal Feature Selection for Classification

Two feature selection methods have been evaluated: the correlation coefficients filter
(CCF) and GAs. The features are then used by DT, RF, NN, and SVM classifiers for object
recognition. In the following subsections, we explain the methods used, and then the
results are presented.

5.1. Ga- and CCF-Based Optimal Feature Selection Methodology

The experiments were performed in Python 3.10 with the aid of scikit-learn v.1.2.0
package [33], which includes all mentioned classifiers. Some configurations of the classifiers’
hyperparameters were tested in a few preliminary experiments, but these adjustments did
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not improve the classification scores. Therefore, default settings on scikit-learn classifiers
were used, which can be viewed in the online documentation. For example, by default, RF
uses 100 trees with no maximal depth restrictions and Gini impurity as a splitting measure.

Moreover, some modifications within these classifiers were also considered, and the
class threshold could be adjusted according to the following:

predict_class(sample) =

{
1, if probability(1|sample) ≥ threshold,
0, otherwise.

(1)

Binary classifiers calculate the probability of both classes (predict_proba method in
scikit-learn), and the sample admits the class with the higher probability, so the default
threshold is 0.5. Lowering the threshold gives more weight to class 1, thus ensuring that
it is more frequently detected. For example, if the sample had the following predicted
class probabilities: (aeroplane/0 : 0.55, bird/1 : 0.45) and the threshold is set to 0.4, then
the observation has a ’bird’ class assigned. It must be noted that this method itself is not
involved in the training process and is only used for testing.

The dataset is checked for class balance, and it is modified if a significant class bias
is detected. The training set contains 75% randomly chosen samples from the dataset.
The remaining samples are used for validation. The confusion matrix is computed for
all the classification models, as shown in Figure 4. Two measures are used to evaluate
their performance: accuracy and recall, as defined by Equation (2). Accuracy prescribes
the overall performance quality in terms of the percentage of correct predictions. Recall
describes the probability of a correct positive answer. If the positive class is considered more
important, then maximising recall ensures that we have fewer false negative detections (FN).
This is crucial in this study, which prioritises nature conservation over energy production
efficiency. False negatives occur when a bird is misclassified as an aeroplane or a big raptor
is misclassified as a common bird. This leads to the potential danger of a wind turbine not
stopping and a fatal clash with an endangered bird; this risk should be minimised. On the
other hand, false positives (false alarms) stop the wind turbine unnecessarily, leading to
energy production loss. This error is, however, of lesser concern.

Bird/Aeroplane Confusion Matrix
Predictions

0 1
Aeroplane Bird

R
ea

lv
al

ue
s 0 TN FP

Aeroplane Aeroplane→Bird

1 FN TP
Bird Bird→Aeroplane

Big_Raptor/Other_Bird Confusion Matrix
Predictions

0 1
Other_Bird Big_Raptor

R
ea

lv
al

ue
s 0 TN FP

Other_Bird Other_Bird→Big_Raptor

1 FN TP
Big_Raptor Big_Raptor→Other_Bird

Figure 4. Confusion matrices for classification tasks where True_Negative = TN, True_Positive = TP,
False_Positive = FP, and False_Negative = FN.

Accuracy =
TP + TN

TP + FP + TN + FN
, Recall =

TP
TP + FN

(2)

The first method used for feature selection is based on a correlation matrix. Pear-
son’s correlation coefficients between each of the 78 feature variables and binary classes
are computed. Assuming that the features with correlations close to zero are the least
discriminative, the feature selection algorithm works as follows:

1. Select n features with the highest absolute correlation coefficient to the class;
2. Use the selected features to train and evaluate a classifier five times with differently

split training and test sets;
3. Return the average accuracy and recall on the test set from the five iterations.
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This CCF was run for all the investigated classifiers, and the best global result
was chosen.

The second method of feature selection is a GA, which is based on and developed by
using the Python PyGAD package (v. 3.3.1) [34]. The GA is classifier-dependent; therefore,
each classifier must be used separately as a fitness evaluator.

GA-based feature selections are encoded as binary chromosomes of length equal to
the number of variables, which, in our case, is 78. A gene 1 in the chromosome is a flag that
selects the feature, and a gene 0 is a flag discarding the feature. The population size is 400,
with 200 parents chosen using a tournament selection of size 5. The offspring are created
with a single point crossover and a 2.5% chance mutation, and only the offspring are added
to the new population. The algorithm runs for between 50 and 70 generations.

The single fitness measure is calculated and returned. The algorithm can be described
as follows:

• Set minimal thresholds tha and thr for the accuracy and recall, respectively. These
thresholds define our goal performance. For the Aeroplane/Bird classification, they
are set to 95 and 97, respectively, and for Big_Raptor/Other_Bird classification, they
are 75 and 90, respectively, as is stated in Section 3.

• Use the thresholds to define the two variables: modified accuracy A = 100 ×
Accuracy − tha, and modified recall R = 100 × Recall − thr.

• Use A and R to define Acc_Component and Rec_Component, as shown in (3), (4).
If A or R is negative, Acc_Component or Rec_Component admit negative values that
decrease rapidly, decreasing the accuracy and recall to reach below the goal thresholds.

Acc_Component =

{
A, if A ≥ 0,

−1.3 · |A| 3
2 , if A < 0.

(3)

Rec_Component =

{
R, if R ≥ 0,

−1.3 · |R| 3
2 , if R < 0.

(4)

• Calculate the fitness value from the following:

Fitness_Value = Acc_Component + Rec_Component (5)

Firstly, the classification performance was evaluated using the correlation method
and all four classifiers with different class thresholds were included. For the Aeroplane
vs. Bird classification, 11 thresholds were considered: 0, 0.1, · · · , 1.0. For the Big_Raptor vs.
Common_Bird task, the thresholds were selected with higher decimal precision. For both
classifiers, the best ones with optimally chosen thresholds were chosen and then used as
fitness evaluators in the GA feature selection method. The results for best classifiers with
optimal thresholds are then displayed for both selection methods. The features chosen for
classification in the case of both methods and both tasks are also presented.

Correlation coefficients for both classification tasks are presented in Figure 5. It is worth
noting that the values for the Aeroplane/Bird dataset are moderately high, meaning that
distinguishing aeroplanes from birds should be more accurate. The correlation coefficients
for the Big_Raptor/Other_Bird classification are relatively low, indicating that using them
for classification may result in low scores.
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Figure 5. Correlation coefficients for numerical features: (a) the Aeroplane/Bird classes in the whole
dataset; (b) the Big_Raptor/Other_Bird classes in the bird-only dataset. Positive correlation: orange,
negative correlation: blue. Note: the scales on the y axis are different for both charts.

5.2. Validation of the Optimal Feature Selection for Different Classifiers

The dataset used for validation comprises 3536 aeroplanes and 8748 birds, including
1325 big raptors. Both classification tasks, Aeroplane/Bird and Rare/Common Birds, were
balanced in manageable proportions, 1:2.5 and 1:5.5, respectively, and did not require
balancing techniques.

Classifiers for each classification task were trained and tested for different numbers
of features selected by the CCF. In the case of Aeroplane/Bird classification, the overall
performance of all classifiers is very high. All classifiers with default thresholds have an
accuracy of over 90% and a recall of over 95% if we consider at least the 12-highest correlated
features. However, the RF-based classifier outperforms other classifiers from 1% to 3%. It
is the only classifier that has reached the desired accuracy and recall goal performance of
95% and 97%, as stated in Section 3. After changing the threshold from the default value
of 0.5 to a new value of 0.4, recall increases by 0.6–0.7%, and the required performance
goal is still met, so we admit the adjusted value for further study. For 60 features, the RF
classifier with th = 0.4 reached the peak performance of an accuracy and recall of 95.7% and
98.6%, respectively.

For the Big_Raptor vs. Other_Bird classification, all models except RF yielded poor
or moderately good results. The NN performed best for 20–30 features, with the accuracy
and recall ratios ranging from 62% to 80% for lower thresholds of 0.075 and 68% to 74% for
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higher thresholds of 0.125. The DT failed to define a good compromise between the two
measures, returning 45% and 83% for most feature selections and thresholds. SVM worked
best with around 70 selected features, with the most balanced result of 63% and 73% for a
threshold of 0.125. Minimal changes in threshold led to very imbalanced results, such as
accuracy = 27% and recall = 95% or accuracy = 80% and recall = 51%.

RF performs best, reaching an accuracy and recall ratio of 75% and 90%, respectively,
for 66 features at a threshold of 0.125. With higher thresholds between 0.18 and 0.2, its per-
formance is more balanced, ranging from accuracy = 80% and recall = 85% to accuracy = 82%
and recall = 82%. The scores plotted as surfaces with respect to the number of features and
thresholds are presented in Figure 6. Line plots for the metrics values vs. threshold for
66 features and the metrics values vs. the number of features for threshold 0.125 can be
seen in Figure 7. From the plots, one can see how selecting an optimal threshold is crucial
for obtaining high classification scores, especially for recall, which is more sensitive to the
thresholds than accuracy. For clarification, recall’s variability comes from the fact that it
relies on minority classes (big raptors represent only 15% of all the birds), while accuracy
depends on the whole dataset and is more stable.

Figure 6. Big_Raptor/Other_Bird classification performance of RF; accuracy and recall scores for the
number of features and thresholds.

Figure 7. Big_Raptor/Other_Bird classification performance of RF; accuracy and recall scores for a
fixed number of features (66 (left)) and for a fixed threshold (0.125 (right)).

The second feature selection approach using the GA is classifier-reliant because a
certain classifier is used as a fitness evaluator. Therefore, we only employ this method for
the best two classifiers:

• RF (th = 0.4) for Aeroplane/Bird classification;
• RF (th = 0.125) for Big_Raptor/Other_Bird Classification.

This experiment investigated whether the performance scores could be improved for
some other feature subset not indicated by CCF. The GA runs twice for 50 to 70 generations
for both classification tasks, and the outputs with better results were chosen. The scores
from the first generation of GA already outperformed those from CCF. The accuracy and
recall measures stabilise after about 10 generations of a quick increase. The features selected
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for the Aeroplane/Bird classification resulted in only a 1.3% increase in accuracy, with no
change to recall compared to CCF. The features selected for the Big_Raptor/Other_Bird
classification resulted in a substantial increase in recall of 3.1%. The complete results are
shown in Table 2.

Table 2. Performance metrics of RF-based two binary classifiers with the threshold of 0.4 and 0.125,
for all features and two feature selection methods: CCF and GA.

Airplanes vs. Birds (RF, th = 0.4) Big_Raptors vs. Other_Birds (RF, th = 0.125)
Full Features CCF GA Full Features CCF GA

(78 Features) (60 Features) (39 Features) (78 Features) (66 Features) (38 Features)

Accuracy 95.5% 95.7% 97% 73.7% 74.6% 77.2%
Recall 98.6 % 98.6% 98.6% 89.8% 90.4% 93.5%

In Figure 8, the feature sets from the CCF and GA selection methods for both binary
classification tasks using an RF-based classifier are presented. It can be seen that GA selects
fewer features, and they are more discriminative for each classification task, while for the
correlation method, most of the selected features are the same for both tasks.

Figure 8. Optimal feature selections for both binary classification tasks, Aeroplane/Bird and
Big_Raptor/Other_Bird, and two selection methods: CCF and GA. In green : features selected
for both classification tasks by the given selection methods; In yellow : features selected only for
the Aeroplane/Bird classification; In blue : features selected only for hte Big_Raptor/Other_Bird
classification task; In white: nonselected features.

6. Discussion

An attempt has been made to develop a methodology for optimal feature selection for
flying object classification. The results were sufficient enough to consider implementing
the system in challenging real-time applications such as bird protection on wind farms or
airports. A cascade classification approach with GA feature selection and RF classifiers
allowed for the distinction of endangered birds of prey from common birds, with a recall of
93.5%, and birds from other flying objects, with a recall of 98.6%, while still maintaining a
high accuracy of 77.2% and 97%, respectively.

Like other tree-based classifiers, the random forest algorithm is quick and is suitable
for real-time applications. However, RF can only parse numerical or categorical data, not
images or videos. Therefore, in future research, features extracted from images using
convolutional NNs, and videos or trajectories with recurrent NNs, transformers, or other
deep-learning models could be applied. More advanced machine learning methods involv-
ing cost-sensitive training and loss function manipulation could yield even better results.

In the scope of the research, we quantitatively evaluated the contribution of different
features provided by the Bioseco BPS to enhance classification performance. Features such
as histogram-like structures coupled in different distance ranges allowed for the develop-
ment of high-performance classification models. This idea could be used jointly with other
3D features, as mentioned in Section 2, such as turning angle, curvature, or acceleration,
potentially leading to even more powerful models.

Feature selection and its impact on classifier scores were tested in this study. Two
feature selection techniques were employed: simple correlation-based filtering and a more
sophisticated wrapper-type GA method. Selecting features highly correlated with the class
improved the scores only by a fraction of a percentage. However, the genetic algorithm
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was shown to be the most efficient selection tool, and the scores increased by up to 3%
compared to scores with no feature selection.

The presented methodology helped to determine which features are most distinguish-
able and can be used to classify birds from aeroplanes and big raptors from other birds.
The feature avgdist(sizepx, ·) was the most useful for both classification tasks. This indicates
that the correct size estimation and object distance provided by the BPS are crucial for
constructing reliable machine-learning-based classifiers. Additionally, Figure 8 reveals
that using the correlation method for selection applies much less diversity of features.
In contrast, the GA-based approach is most adaptable to the given tasks, and the selected
features for both tasks do not overlap with each other.

However, GA is rather slow and stochastic in nature. Other wrapper-type approaches,
such as recursive feature elimination (RFE), could be more efficient in feature selection and
could be considered in future research.

Furthermore, a larger and more representative database, including additional records
from different locations, is required to provide real-time performance for developed algo-
rithms. The authors continue their co-operation with ornithologists to acquire more data.

Finally, the authors wish to mention that this study is part of a broader research project
focusing on a collision risk assessment system.
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