Tidal Current Power Development in Korea November 24, 2009 Kwang Soo Lee, Ki-Dai Yum, Jin-Soon Park and Jung Woo Park **Coastal Engineering & Ocean Energy Research Department Korea Ocean Research and Development Institute** #### **Contents** - 1. Background - 2. R&D Projects - 3. Uldolmok Tidal Current Power Pilot Plant - 4. Future RD&D&D Plan # I. Background # Ocean Energy Resources in Korea - Ocean energy resources are abundant in Korea - Korea is recognized as one of the most appropriate places for harnessing ocean energy - ➤ Estimated ocean energy resources in Korea : | Tidal | Tidal | Wave | |---------|---------|---------| | Barrage | Current | Energy | | 6,500MW | 1,000MW | 6,500MW | # Necessities & Objectives - Development of Basic Technology for Commercialization of Ocean Energy - Development of Environment Friendly Tidal Current Power Generation System for Commercialization -Preparation of ESSD Model of Coastal Zone - Contribution to Expansion of National Green Growth Engine - Contribution to International Society by Technological Support for Mitigation of Climate Change # II. R&D Projects # National RD&D&D Project - ❖ 1st Phase R&D Project Period : 2001 2005 (5 years) - Purpose: Development of System Engineering Technology for Tidal Current Power Generation System - Funded by Ministry of Land, Transport and Maritime Affairs (MLTM) - ❖ 2nd Phase R&D Project Period : 2006 2010 (5 years) - Purpose: - + Development of Tidal Current Power System for Commercialization - + Construction & Operation of Tidal Current Power Pilot Plant - Funded by Ministry of Land, Transport and Maritime Affairs (MLTM) - Project Partners : Korea East West Power Co. Ltd. # Project Contents | Phase I-1 Design & Implementation | | Phase I-2
Modeling & Analysis | | Phase I-3
Development | |--|-------------------|--|------|---| | 2001 | 2002 | 2003 | 2004 | 2005 | | Project planning and Initiation Tidal Current Energy Conversion
Technology Design Field Measurement & Analysis Basic Design & Deployment of
10kW Experimental Power
Conversion Unit | | Field Measurement & Analysis Hydrodynamic Modeling on Tidal
Regime Change Analysis of Environmental Change Development of Power Converter Design of Turbine using CFD Design of 1MW Pilot Station | | Starting Pilot Plant Construction Development of Current Power
Conversion System Engineering Development of 500kW Power
Converter Analysis of Performance
Characteristics of 500kW Turbine | | | | | | | | Phas
Full-Sca | e II-1
le Demo | Phas
Full-Sca | | Phase II-3
Pre-Commercial | | | | | | | #### > Field Measurements in 2002 & 2003 ### > Helical Turbine Helical Turbine Lab. Experiment Numerical Analysis ### > Field Experiment # III. Uldolmok Tidal Current Power Pilot Plant - ✓ Construction of 1MW Uldolmok tidal current power pilot plant - Completion : 2009. 5. - Field verification tests for tidal current power generation system is in progress - ✓ Technique of electricity quality improvement - ✓ Smart monitoring system for plant structure 600kW Doubly-fed Induction Generator 600kW Synchronous Generator ### Concept of Uldolmok Pilot Plant Tidal current power plant with a 500kW DFIG **DFIG: Doubly-fed Induction Generator** **SG**: Synchronous Generator Tidal current power plant with a 500kW SG **Tidal Current Power Generation System** ## > Supporting Structure of Pilot TCPP #### • Dimension - $16.0 \text{m} \times 36.0 \text{m} \times 48.0 \text{m}$ #### Weight Jacket: 790 tonDeck: 100 tonHouse: 130 tonCatwalk: 112 ton # > Supporting Structure #### **EAS2009** Synchronous Generator Cage Supporter **Doubly-fed Induction Generator** **Bearing Spider** #### • Installation of Supporting Structure at 26-27 May, 2008 ## **❖ Completion of Uldolmok TCPP in May 2009** ### > Structural Health Monitoring System | Measurement
Type | Number of
Sensors | | |-------------------------|-------------------------|--| | Acceleration | 10EA
(X-4, Y-4, Z-2) | | | Strain | 8EA | | | Strain | 10EA | | | Incline | 2EA (Rx, Ry) | | | Torque | 4EA (2EA/Axis) | | | RPM | 2EA (1EA/Axis) | | | Impedance | 6EA | | | Temperature | 2EA (Air/Water) | | | Current Speed | 1EA (H-ADCP) | | | No. of Total
Sensors | 45 EA | | # IV. Future RD&D&D Plan - Mid-Term RD&D&D Plan for Tidal Current Power Development (2011 – 2015) - ✓ Basic Design of Commercial Plant at Jangjuk channel and Feasibility Study - ✓ Development of Floating Type Supporting Structure - ✓ Development of Various Horizontal Axis Turbine - ✓ Design and Operation of Environmental Monitoring System - ✓ Analysis of Environmental Impact - ✓ Standardization of Tidal Current Power System and Dissemination # Thank you