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Abstract 13 

1. Tracking animal movement patterns using videography is an important tool in many biological 14 

disciplines ranging from biomechanics to conservation. Reduced costs of technology such as 15 

thermal videography and unmanned aerial vehicles has made video-based animal tracking more 16 

accessible, however existing software for processing acquired video limits the application of 17 

these methods. 18 

2. Here, we present a novel software program for high-throughput 2-D and 3-D animal tracking. 19 

ThruTracker provides tools to allow video tracking under a variety of conditions with minimal 20 

technical expertise or coding background and without the need for paid licenses. Notable 21 

capabilities include calibrating the intrinsic properties of thermal cameras; tracking and counting 22 

hundreds of animals at a time; and the ability to make 3-D calibrations without dedicated 23 

calibration objects. Automated 2-D and 3-D workflows are integrated to allow for analysis of 24 

largescale datasets. 25 

3. We tested ThruTracker with two case studies. The 2-D workflow is demonstrated by counting 26 

bats emerging from bridges and caves using thermal Videography. Tests show that ThruTracker 27 

has a similar accuracy compared to humans under a variety of conditions. The 3-D workflow is 28 

shown for making accurate calibrations for tracking bats and birds at wind turbines using only 29 

the wind turbine itself as a calibration object.  30 

4. ThruTracker is a robust software program for tracking moving animals in 2-D and 3-D. Major 31 

applications include counting animals such as bats, birds, and fish that form large aggregations, 32 

and documenting movement trajectories over medium spatial scales (~100,000 m3). When 33 

combined with emerging technologies, we expect videographic techniques to continue to see 34 

widespread adoption for an increasing range of biological applications. 35 
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1. Introduction 38 

Video-based animal tracking is a widely used tool in fields as diverse as biomechanics, animal behavior, 39 

ecology, and population monitoring (Dell et al., 2014). The reduced price of thermal video cameras, 40 

high-speed cameras, and other technologies such as unmanned aerial vehicles (UAVs) has expanded 41 

dramatically the capabilities of investigators studying animal movement in the lab and in the field 42 

(Jackson, Evangelista, Ray, & Hedrick, 2016). This has placed great demand for video processing 43 

software.  44 

Various video tracking tools are available for two-dimensional (2-D), and three-dimensional (3-D) animal 45 

tracking. Two-dimensional tracking is often used for studies of one or multiple individuals under 46 

controlled laboratory settings. Two-dimensional tracking can also be useful for surveying animal 47 

populations such as bats or birds and for monitoring their migratory behavior (Kunz et al., 2009). 48 

Algorithms differ in how they detect animals and how they connect detections between frames to form 49 

spatiotemporal tracks. For example, some software uses background subtraction for detection 50 

(Rodriguez et al., 2018) while other programs use adaptive thresholding (Sridhar et al., 2019). One 51 

popular program uses image recognition to help track individuals (Pérez-Escudero et al. 2014). Deep 52 

learning based approaches have recently become popular, particularly for marker-less tracking of animal 53 

body parts (Mathis et al., 2018; Pereira et al., 2019).  54 

Three-dimensional animal tracking uses two or more cameras to triangulate animal positions. This 55 

requires synchronized video acquisition, careful calibration of the optical properties of cameras 56 

[i.e.2camera extrinsics). Several software programs are available for generating 3-D calibrations and 57 

tracking animals in 3-D (Noldus et al., 2001; Hedrick, 2008; Theriault et al., 2014; Jackson et al., 2016; 58 

Knorlein et al., 2016; Nath et al., 2019).  59 
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Originally, 3-D calibrations required that an object with several markers at known 3-D positions be 60 

placed within the field of view of each camera (Abdel-Aziz & Karara, 1971). More recent workflows 61 

produce calibrations by moving an object with a recognizable 2-D pattern [“checkerboard calibration” 62 

(Zhang, 2000)] or with two markers at a fixed distance (“wand calibration”) through the calibration 63 

volume (Theriault et al., 2014). This allows one to set the scale of the scene using the wand length or 64 

pattern scale and to estimate the accuracy of the calibration based on the variation of reconstructed 65 

wand lengths. However, researchers are increasingly interested in studying animals within large volumes 66 

in the natural environment where it is difficult to deploy calibration objects or where doing so might 67 

disturb the animals under study (Evangelista, Ray, Raja, & Hedrick, 2017; Corcoran & Hedrick, 2019). In 68 

addition, much of the currently available 3-D tracking software requires manual digitization of objects in 69 

the videos, which limits the amount of data that can be processed. Finally, calibration procedures are 70 

not widely available for determining the intrinsic properties of thermal cameras, preventing their 71 

widespread use for 3-D tracking applications. 72 

Here we present ThruTracker, a free and open-source software package for high-throughput 2-D and 3-73 

D animal tracking. ThruTracker provides an app-based environment (i.e., no coding required) with all the 74 

tools necessary to track animals under a variety of conditions with light-based or thermal cameras. 75 

ThruTracker is coded in MATLAB v2020b (Natick, MA, USA) and compiled versions of the software are 76 

provided so that it can be installed and run for free without any licenses. We provide source code under 77 

a 3-clause BSD license for those who may want to customize the software for their own purposes. 78 

ThruTracker is also compatible with any tracking software that outputs 2-D coordinates, and it exports 79 

data in standard text formats that can be imported into other software for further processing or 80 

statistical analysis. 81 

We first provide an overview of the 2-D and 3-D track generation process, before demonstrating the use 82 

of ThruTracker with two test cases—tracking bats at wind turbines and counting bat emergences from 83 
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bridges and caves using a thermal camera flown with an Unmanned Aerial Vehicle (UAV) or recording 84 

from the ground. We conclude by discussing applications of 3-D tracking and current limitations. A step-85 

by-step manual for ThruTracker along with additional recommendations for camera setups and use of 86 

the software is available on our website (www.sonarjamming.com/thrutracker). 87 

2. Materials and Methods 88 

2.1 Workflow for 2-D and 3-D Tracking 89 

ThruTracker can be used either for 2-D or 3-D video tracking. Two-dimensional tracking does not require 90 

that the videos be calibrated and is therefore a much simpler procedure. Three-dimensional tracking 91 

requires calibration of the camera properties such as focal length and lens distortion (intrinsic 92 

calibration) and determination of the positions and orientations of the cameras for each scene where 93 

they are deployed (extrinsic calibration). The workflow for 3-D track generation is shown in Figure 1.  94 

 95 

Step 1: Video Acquisition. Synchronized videos are acquired using two or more cameras. Some cameras, 96 

such as FLIR A65 thermal video cameras (FLIR Systems, Inc., Wilsonville, OR) used in our testing, have 97 

dedicated electronic inputs that allow digital signals to synchronize the shutters of each camera. An 98 

Figure 1. Overview of 3-D track generation 

procedure. Two or more cameras acquire 

synchronized video, which are each 

processed to generate 2-D (UV) detections. 

Intrinsic and extrinsic camera calibrations are 

used to generate direct linear transformation 

(DLT) equations that transform UV 

coordinates into real-world 3-D or XYZ points 

for each detection. XYZ points are then 

stitched together across frames to generate 

3-D tracks. 
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alternative for cameras without sync ports is to use audio signals that are broadcast to each camera 99 

(Jackson et al., 2016). Audio synchronization of cameras does not allow for shutter synchronization, 100 

therefore there will be a time offset of up to half the frame rate even after synchronization. Recording 101 

at 30 Hz, a half-frame synchronization accuracy has been sufficient to achieve highly accurate 102 

calibrations for animals moving at low to moderate pixel speeds (Corcoran & Hedrick, 2019). Audio 103 

synchronization may also require fine-tuning since some camera models may not keep the audio and 104 

video outputs in perfect alignment. 105 

Step 2: Object detection. After videos are acquired, videos from each camera are processed to detect 106 

moving objects in each frame. ThruTracker uses a Gaussian mixture-based background subtraction 107 

algorithm implemented in OpenCV [“BackgroundSubtractorMOG2”, (Zivkovic, 2004; Zivkovic & Van Der 108 

Heijden, 2006)]. A blob detector is then used to isolate detections and the blob centroids are used as 109 

detection coordinates. A simplified interface allows the user to rapidly select and modify detection 110 

settings for their application. Settings include: 1) selecting which frames to process, 2) minimum and 111 

maximum object size in pixels, 3) sensitivity for adjusting the threshold for discriminating foreground 112 

from background, 4) Number of background frames used for generating the rolling background image, 113 

and 5) target object diameter. This last option determines the size of a 2-D gaussian filter that is applied 114 

to the image, which helps reduce noise and isolate closely spaced animals. Each frame of the video is 115 

processed for detections before detections are linked together into 2-D or 3-D tracks in the proceeding 116 

steps. Two-dimensional tracking applications can skip to step 6. 117 

Step 3: Intrinsic camera calibration. For 3-D tracking applications, one must determine the camera’s 118 

intrinsic properties, including the focal length, principal point and lens distortion (Abdel-Aziz & Karara, 119 

1971; Hartley & Zisserman, 2004; Lourakis & Argyros, 2009). This information can be used to map any 120 

pixel in the camera image into a vector in a camera-based frame. Typically, this calibration can be done 121 

once per camera and lens combination in a laboratory and the values should be similar between 122 
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cameras and lens of the same make and model. In some special circumstances one might need to 123 

calibrate each individual camera-lens pair for increased accuracy. Cameras with variable focal length 124 

(i.e., a zoom lens) typically need to be calibrated separately at each focal length used for recording. 125 

We use MATLAB’s built-in camera calibratio functions (Bouguet, 1999) with some modifications to 126 

calibrate thermal images (Yahyanejad, Misiorny, & Rinner, 2011). We recommend using MATLAB’s built-127 

in camera calibrator app or freely available functions in OpenCV or Argus (Jackson et al., 2016) for 128 

calibrating light-based cameras.  129 

Traditionally, calibration procedures for light-based cameras rely on detecting the corners of a 130 

checkerboard pattern. With thermal imaging, one must first heat the checkerboard so that the darker 131 

squares will be hotter than the lighter squares because of higher light absorption (Figure 2a). For 132 

example, we achieved this by moving two 100-watt lamps over the checkerboard pattern for about 20 133 

seconds before taking thermal images.  134 

135 

However, uneven heating combined with rapid conduction of heat through the checkerboard image 136 

Figure 2. Thermal camera 

intrinsic calibration. (a) An 

experimenter heats a 

checkerboard pattern with two 

100-watt lamps. (b) Example 

thermal image of a 

checkerboard pattern with 

detected and reprojected 

square centers. (c) Graphical 

depiction of the camera and 28 

images of the checkerboard 

pattern taken at different 

positions and orientations. (d) 

Example output of intrinsic 

camera parameters for a Flir 

A65 camera. 
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increases the difficulty of detecting the corners between light and dark squares (or in this case between 137 

cold and hot squares; Figure 2b). Instead of detecting the corners, the cooler portions of the image are 138 

dilated so that each hot square is reduced in size and no longer connected to adjacent hot squares. A 139 

blob-detector is then used to detect the centers of the hot squares. The pixel values of the image are 140 

then inverted, and the procedure is repeated to detect the centers of the cold squares. This is repeated 141 

for 20-30 images taken at different positions and orientations relative to the camera. The resulting data 142 

are used by the software to calculate the camera’s intrinsic parameters (Figure 2c, d).  143 

Step 4: Extrinsic camera calibration. A second calibration procedure is required for generating 3-D tracks 144 

for each recording setup—that is, any time the cameras are moved even slightly. The extrinsic 145 

calibration determines the positions of the cameras in real-world 3-D space and their orientations [roll, 146 

yaw and pitch; (Abdel-Aziz & Karara, 1971)]. Together with the intrinsic calibration data, the extrinsic 147 

calibration allows one to map objects that are detected in two or more cameras to real-world 3-D 148 

coordinates. 149 

As noted previously, there are several approaches for generating extrinsic calibrations. ThruTracker has 150 

two options: a wand-based procedure that is based on methods used for easyWand (Lourakis & Argyros, 151 

2009; Theriault et al., 2014) and a procedure that is based exclusively on background points. One can 152 

also import calibrations made using DLTdv or easyWand (Hedrick, 2008; Theriault et al., 2014). 153 

Background points include any object that is visible within both cameras such as tips of tree branches, 154 

wind turbines, or animals. Moving objects can be used if the images are taken synchronously between 155 

cameras. This background point procedure [also known as structure from motion (Schönberger & 156 

Frahm, 2016)] means that 3-D calibrations can be made without dedicated calibration objects within the 157 

field of view. In effect, any object visible by two or more cameras can be used as a calibration object. 158 
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Two additional components of the calibration must be determined when no dedicated calibration 159 

objects are used: the scale of the scene and the gravitational axis. The scale can be set by specifying two 160 

points in the scene that are at a known distance from one another. Alternatively, one can use the 161 

distance between cameras to set the camera scale. 162 

Second, the gravitational axis can be set by measuring the inclination angle of one of the cameras using 163 

an inclinometer. This value is input into ThruTracker’s calibration app during the calibration procedure. 164 

With these options, one can obtain calibration data rapidly in the field with only a few measurements 165 

and with no requirement for deploying calibration objects. This is especially helpful for situations where 166 

it is not feasible to deploy calibration objects or where their use would disturb animals under study. 167 

A notable down-side of not using calibration objects is the absence of objects at known positions that 168 

can be used to check the accuracy of the calibration. Therefore, it is important to conduct tests of the 169 

calibration procedure using objects at known distances. For example, in our test using wind turbines 170 

below, we measured the variation in the reconstructed lengths of the turbine blades at different times 171 

and positions throughout our recording. Another alternative would be to conduct test setups in the field 172 

at locations where it is easier to deploy calibration objects such as a wand. 173 

Step 5: Generating 3-D Points. Three-dimensional points are generated after objects have been detected 174 

in videos from each camera and intrinsic and extrinsic calibrations are completed. For each set of 175 

synchronized video frames, theoretical 3-D points are created from all combinations of 2-D detections 176 

across cameras. Each putative 3-D point has an associated direct linear transformation (DLT) residual. 177 

The DLT residual is the distance in pixels between the observed image coordinates of a marker and the 178 

"ideal" image coordinates computed from the estimated 3-D location of the marker and the calibration 179 

information for the camera that captured the image. If we visualize each 2-D detection as a vector in 3-D 180 

space with its origin at the camera, the residuals indicate how closely a given set of 2-D detections and 181 
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their associated vectors come to crossing in 3-D space. The algorithm starts by creating 3-D points based 182 

on sets of 2-D points with the lowest residuals and removing those points from the available pool. It 183 

proceeds until there are no more 3-D points with residuals below the specified threshold. 184 

Step 6: Generating 2-D and 3-D Tracks. Two-dimensional and Three-dimensional points are stitched 185 

together across frames to make tracks. Each 2-D or 3-D point in the first frame is a putative track. 186 

Detections in each proceeding frame are assigned to existing tracks, or if no assignment is made, they 187 

become the beginning of a new track. A Kalman filter is applied to each track to predict the position of 188 

the track in the next frame. The distance between each detection and the predicted positions are 189 

computed. This is done both in 2-D and in 3-D to calculate a cost matrix. A Hungarian algorithm is used 190 

to determine the combination of assignments that minimizes cost across the assignment matrix (Kuhn, 191 

1955). Finally, a threshold is specified in ThruTracker such that assignments are only made if their cost is 192 

below the threshold. One can specify the number of frames between detections that are allowed (i.e., 193 

gap distance) before a track is terminated. One also specifies the minimum number of detections 194 

required for a track to be retained. Longer gaps and smaller minimum numbers of detections increase 195 

the number of tracks that are retained but increases the number of false positive tracks generated from 196 

noise. 197 

Step 7: Data visualization, analysis and classification: ThruTracker offers multiple tools for visualizing and 198 

processing tracks. One can rapidly toggle between tracks and use shortcut keys to classify them into 199 

different categories. For example, for wind turbine applications, the tracks can be labeled “bird”, “bat”, 200 

“airplane”, “noise”, etc. Another option allows all the tracks to be visualized at once. Tracks can then be 201 

selected as groups and classified based on their positions, start or end points. This tool is helpful for 202 

selecting tracks based on their location, as exhibited in the bat emergence case study presented below. 203 

Another option allows the user to draw a rectangle over the camera image to count exits and re-entries 204 

as animals pass into or out of the rectangle. This is useful, for example, when counting bats exiting a 205 
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cave roost. Resulting 2-D, 3-D and track data can be exported into CSV files for use in other analysis 206 

programs. 207 

2.2 Case Studies 208 

2.2.1 Case Study 1: Counting bat exits from bridges and caves using thermal imaging.  209 

We used ThruTracker to count bats emerging from bridges using a DJI Zenmuse XT2 thermal camera 210 

with a 13 mm lens (45-degree field of view) suspended from a DJI Matrice 300 drone (SZ DJI Technology 211 

Co., Shenzhen, China). Because this analysis was done in 2-D there was no need for intrinsic or extrinsic 212 

calibrations. The drone was flown at altitudes of 50 m and 80 m above a bridge known to be a roost 213 

location for big brown bats (Eptesicus fuscus) in August of 2020 near Burnsville, NC, USA. We also 214 

counted gray bats leaving caves using thermal cameras placed at ground level. Videos of gray bats were 215 

provided by the US Fish and Wildlife Service. 216 

Our goals were 1) to determine the maximum distance at which bats could be detected and 2) to 217 

compare manual counts of emergences with those produced using ThruTracker. The bridge recordings 218 

provide a test of relatively low numbers of bats counted near the limits of their detection range. The 219 

cave recordings test detection of large numbers with high rates of occlusion. 220 

Videos were processed in ThruTracker with the following parameters: sensitivity, 35; background 221 

frames, 20; Min object pixels, 1; max object pixels 100; min track length 5, max gap length 5; match 222 

threshold 10. After detections were made in ThruTracker, the applet TrackSelector was used to rapidly 223 

select tracks that originated near the edge of the bridge. Manual observers used VirtualDub software to 224 

play videos at 50% of normal speed and paused and reviewed videos frame by frame, as necessary.  225 

We processed two videos taken at heights of 50 m and 80 m above the bridge and two videos 226 

representing different bat densities at caves (Table 1). Videos were not meant to census the entire 227 

emergences, but rather provide data for comparing detection abilities.  228 
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2.2.2 Case Study 2:  229 

We tested ThruTracker’s ability to make 3-D calibrations for tracking 3-D flights of bats and birds at wind 230 

turbines. Studying animal movements at wind turbines is a problem of considerable interest, especially 231 

for bats who are being killed in large numbers for mostly unknown reasons (Arnett & Baerwald, 2013). 232 

Thermal imaging has been used for studying bats at wind turbines in 2-D (Horn, Arnett, & Kunz, 2008; 233 

Cryan et al., 2014) and 3-D (Kinzie et al., 2018; Schirmacher, 2020). Proprietary software for 3-D tracking 234 

of bats at wind turbines (was also recently published (Matzner, Warfel, & Hull, 2020). Here we report on 235 

our field camera setup, intrinsic and extrinsic calibration. Because we conducted these tests under cold 236 

winter conditions with few bats or birds present, we did not obtain 3-D animal tracks. For example 237 

tracks using a similar approach, see Schirmacher, 2020 (Schirmacher, 2020). 238 

We tested the calibration setup using two Flir A65 thermal cameras with 25-degree lenses synchronized 239 

with electronic inputs at an experimental wind turbine at the National Renewable Energy Laboratory 240 

(NREL) in Golden, CO during December 2019. The cameras were placed 33 m apart from one another 241 

and 40 m from the base of the turbine’s monopole. Cameras were aimed slightly below the wind 242 

turbine’s nacelle, which was 80 m off the ground. This resulted in an inclination angle of 62.2 degrees for 243 

our reference camera. 244 

3. Results 245 

3.1 Case Study 1: Counting bat exits from bridges and caves using thermal imaging.  246 

ThruTracker detected similar numbers of bats compared to the manual observers in all test cases, with 247 

error rates of 0.6-7.1% (Table 1; Figure 1; Supplemental Video 1. Thermal video taken from a UAV 248 

showed that the 50 m recording height was comfortably within the detection range for the bats. Bat 249 

detections had a size of 5.2 ± 3.4 pixels (mean ± st. dev.) and tracks extended across most of the image 250 

(Figure 3a) including over water and over the bridge. However, bats failed to be tracked over some land 251 
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areas where they lacked contrast with the background (e.g., see tracks terminating as they approach 252 

land area in bottom right portion of Figure 3a). Manual inspection of videos at these locations found 253 

that bats were not readily visible to the human eye, so this appears to be a limitation of the thermal 254 

imaging, not the detection algorithm.  255 

The 80 m recording height was much closer to the detection limit for E. fuscus bats using this recording 256 

setup. Bats had a detection size of 1.9 ± 1.1 pixels. Visual inspection of videos revealed that bats were 257 

only barely visible and that they were not detectable to the human eye within a short distance of their 258 

emergence. This is reflected in the ThruTracker tracks that terminate over open water some distance 259 

from the bridge exits (Figure 3b). This may have resulted from bats dropping to a lower altitude (and 260 

further distance from the camera) as they left the bridge, as was visible in other camera views taken at 261 

an oblique angle relative to the ground. ThruTracker performed slightly worse under these at the 80 m 262 

height than the 50 m height, but still detected 93% of tracks that were detected manually (Table 1). 263 

Counts of gray bats (Myotis grisescens) exiting caves were used to test of ThruTracker’s multi-object 264 

tracking abilities. ThruTracker achieved error rates of 4.3% and 0.6% for the two test videos, which we 265 

estimated to have exit rates of 16.4 and 103.0 bats per second (Table 1; Figure 3c, d; Supplemenatal 266 

Video 2). 267 
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Table 1. Comparison of manual and automated bat counts using thermal videography 268 

*Values show means of 2 observers; values in parentheses show values of the two observers. 269 

 Video 1 Video 2 Video 3 Video 4 

Emergence type Bridge Bridge Cave Cave 

Camera height (m) 50 80 ground ground 

Duration (m:ss) 3:21 1:58 0:05 0:05 

ThruTracker detections 86 39 85 518 

Manual detections* 85.5 (85,86) 42 (42,42) 81.5 (81, 82) 515 (508,522) 

Exit rate (bats per second) 0.42 0.35 16.4 103.0 

Error rate 0.6% 7.1% 4.3% 0.6% 
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 270 

 271 

3.2 Case Study 2: Calibrating large 3-D volumes using wind turbines. 272 

In our second case study, we demonstrate ThruTracker’s 3-D workflow for calibrating large spatial 273 

volumes using only the turbine itself as a calibration object. We calibrated the FLIR A65 thermal cameras 274 

Figure 3 Example ThruTracker detections of bats leaving a bridge (a, b) and cave (c, d). Big 

brown bats (Eptesicus fuscus) were filmed exiting a bridge using a thermal camera on a UAV 

flying at 50 m (a) and 80 m altitude (b). Red tracks indicate exits and white tracks indicate other 

detections. In (a, b) circles indicate the starting point of tracks to highlight departures from the 

bridge and the entirety of all tracks are shown. In (c, d) detections from a single frame are 

shown (circles) with tracks indicating movement over the two previous frames. See table 1 for 

statistics. 
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(640 x 512 pixel resolution) using the intrinsic calibration method described above. Example images and 275 

resulting intrinsic camera parameters are shown in Figure 2. We used 28 checkerboard images, with an 276 

average reprojection residual error of 0.69 pixels (range 0.48-0.83 pixels). 277 

We generated an extrinsic calibration in ThruTracker using 67 points from the wind turbine as 278 

background points (Figure 3). These included hot spots, corners and an anemometer on the nacelle, and 279 

turbine blade tips. Points were digitized manually using DLTdv8 (Hedrick, 2008). Efforts were made to 280 

select points that were 1) clearly visibly in both cameras, 2) distinct points in 3-D space, such as small 281 

hot spots or sharp edges of objects, and 3) covering a broad range of 2-D and 3-D positions. We 282 

excluded six points because they had DLT residuals > 3 pixels. The remaining calibration had mean 283 

reprojection errors of 0.63 pixels.  284 

We set the scale of the scene using the distance between the two cameras (33 m) and the gravitational 285 

axis was set using the inclination angle of the second camera (62.2 degrees). The resulting calibration 286 

had a volume of 235,597 m3 assuming a maximum detection distance of 200 m. The maximum detection 287 

range is likely less than 200 m for small bats (<30 g) with this camera setup, but it is possible that some 288 

large birds could be detected at this distance. 289 

To test the spatial accuracy of our calibration, we measured the distance between the tips of turbine 290 

blades and the tip of the hub in 23 frames chosen to represent a variety of spatial configurations. This 291 

resulted in a mean distance of 41.4 m, standard deviation of 1.05 m, and coefficient of variation of 0.02. 292 

Therefore, we can expect typical errors less than ± 1-2 m for this calibration setup. For comparison, a 293 

recently published study testing similar software for tracking birds and bats at wind turbines found 294 

errors up to ± 20 m (Matzner et al., 2020).  295 
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 296 

 297 

4. Discussion 298 

4.1. Animal Tracking Applications 299 

Videographic techniques are seeing expanded use for studies of wildlife (Cilulko, Janiszewski, 300 

Bogdaszewski, & Szczygielska, 2013; Christiansen et al., 2014; Gonzalez et al., 2016) ranging from 301 

animals in agricultural fields (Christiansen et al., 2014), to cetaceans (Seymour, Dale, Hammill, Halpin, & 302 

Johnston, 2017), bats and birds (Betke et al., 2008; Cullinan, Matzner, & Duberstein, 2015; Matzner, 303 

Cullinan, & Duberstein, 2015) and ants (Narendra & Ramirez-Esquivel, 2017). One major application of 304 

videography for studies of animals in the natural environment is counting populations. For example, 3-D 305 

thermal imaging has been used to show that bat colonies have only a small fraction of the number of 306 

individuals compared to earlier human counts (Betke et al., 2008). Thermal imaging has also been used 307 

in combination with radar and acoustics for monitoring migratory patterns of birds (Gauthreaux & 308 

Livingston, 2006; Horton, Shriver, & Buler, 2015). 309 

Figure 4. Extrinsic calibration of a wind turbine scene. (a) Example views from a single camera. (b, c) 

Examples of background points used for generating the calibration. These include a back corner of 

the nacelle (yellow arrow), a small hotspot of unknown origin (orange arrow) and a turbine tip (dark 

orange arrow). (d) Visualization of the calibrated scene. Views of two cameras are shown in light red 

and light blue shading. The wind turbine is shown as a grey outline but note that the turbine rotates 

about the vertical axis depending on wind direction. Magenta points show 3-D positions of points 

used for making the calibration.  
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A second major application of videography is studying animal movement patterns. Numerous studies 310 

have investigated the structure and rules underlying bird flocks (Ballerini et al., 2008; Evangelista et al., 311 

2017) and schools of fish (Jolles et al., 2017). Videography has also been used for studying flight 312 

biomechanics of animals under natural conditions et al., 2015), and interactions between bats and birds 313 

and large structures such as wind turbines and oil and gas platforms (Horn et al., 2008; Cryan et al., 314 

2014; Ronconi et al., 2015). Most of the studies described above have relied on custom software that is 315 

not widely available. The aim of the current study was to develop a robust, easy to use and free 316 

software package that could be used for these and other applications. 317 

4.2 ThruTracker Capabilities 318 

Here we present a new software package for 2-D and 3-D animal tracking. ThruTracker has several 319 

features not found in other freeware. These include easily adjustable procedures for 2-D and 3-D 320 

tracking; a tool for calibrating intrinsic parameters of thermal cameras; the ability to track and count 321 

hundreds of animals simultaneously; and the ability to make 3-D calibrations without dedicated 322 

calibration objects. We demonstrate these capabilities by counting bats leaving bridges and caves (Table 323 

1; Figure 3) and making a 3-D calibration using only a wind turbine as a calibration object (Figure 4). 324 

The software is compatible with thermal and light-based imaging and most standard video formats (e.g., 325 

avi, wmv, mp4). ThruTracker uses an app-based environment with no coding required to make well-326 

established detection and tracking algorithms widely available. Users simply import videos and select 327 

the detection and tracking options. These features make it easy to track moving animals under a variety 328 

of conditions. 329 

4.3 Requirements and Limitations 330 

ThruTracker uses a well-established background subtraction algorithm for object detection (Zivkovic, 331 

2004; Zivkovic & Van Der Heijden, 2006). This method generates a rolling model of the background using 332 
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a number of frames that can be specified by the user. This approach is best suited for stationary 333 

backgrounds and animals that are in near continuous motion. It has difficulty with animals that stay in 334 

one place; however, using more images for generating the background would help address this problem. 335 

ThruTracker aims to detect one point for each animal (the blob centroid). For detecting multiple body 336 

parts per animal one should consider deep-learning based approaches (Mathis et al., 2018; Pereira et al., 337 

2019). ThruTracker has built-in compatibility for importing detections from other programs such as 338 

DeepLabCut (Mathis et al., 2018) for could be used for generating 3-D tracks from point clouds. 339 

The main requirements for tracking in 3-D are 1) synchronized video are acquired from at least two fixed 340 

cameras 2) camera intrinsics are calibrated in the laboratory, and 3) some objects (including the focal 341 

animals themselves) are visible at a range of 2-D and 3-D positions within the calibrated volume. 342 

Without the requirements for dedicated calibration objects, it is now possible to calibrate nearly any 343 

volume in the lab or field. We demonstrate this workflow for generating 3-D calibrations at wind 344 

turbines, where it would be logistically challenging to put calibration objects in the airspace (Figure 4). 345 

Another approach would be to use the animals themselves as background points (Corcoran & Hedrick, 346 

2019). 347 

5. Conclusions 348 

Technological development is driving price reductions and capability expansion in thermal and high-349 

speed cameras, along with supporting equipment such as UAVs. However, the software required to 350 

make full use of these capabilities for research in fields as diverse as biomechanics, animal behavior, 351 

ecology, and population monitoring remains the province of specialized workflows in individual lab 352 

groups. ThuTracker provides an integrated, graphical, and user-friendly package to fill these needs, thus 353 

expanding the number of researchers able to make effective use of these emerging technologies. 354 
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