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PREFACE 

 This thesis is written in the style of the Journal of Mammalogy, to which a portion 

will be submitted for publication. 
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ABSTRACT 

Wind energy is among the most rapidly growing energy industries in the United 

States, with support for development coming from both state and federal governments.  

While the industry depicts an environmentally friendly image, the addition of 

infrastructure associated with wind farms alters landscapes in novel ways.  Numerous 

studies have documented impacts wind turbines have on bird and bat mortality; however, 

far less attention has been directed towards responses of non-volant, terrestrial organisms.  

Mammalian mesocarnivores are model organisms to assess the alteration of communities 

surrounding wind turbines as they respond to addition of turbines and human activity, 

addition and improvement of roadways, and increases in turbine-induced carrion.  In 

September 2011, I established a yearlong study surrounding the Central Plains Wind 

Facility in western Kansas to document patterns associated with the occupancy of 

terrestrial mammals within turbine and turbine-free habitats.  I placed 34 scent-baited 

trail cameras among turbine and control habitats, with a randomly placed subset along 

roadways.  Detection histories during 28-day survey periods and habitat covariates were 

analyzed with PRESENCE 5.5.  Canis latrans and Vulpes velox were the most abundant 

mesocarnivores detected.  Canis latrans had a higher probability of occupancy at the 

control area, while V. velox had higher probabilities of occupancy at the turbine area.  

Detection probabilities were impacted strongly by mean precipitation as well as between 

field and roadway locations for V. velox.  Vulpes velox detection probabilities were 

conditional on C. latrans presence and detection, although the two species occupied sites 

independently.  
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INTRODUCTION 

 During the past decade, wind energy has been among the fastest growing energy 

industries within the United States (American Wind Energy Association Data Services 

2012; Pasqualetti et al. 2004).  This growth was spurred by federal and state incentive 

programs as part of the US Department of Energy’s (DOE) plan to have 20% of the 

nation’s energy derived from wind by the year 2030, roughly equaling 300 gigawatts 

(Lindenberg 2008; Menz and Vachon 2006).  Despite record growth, the amount of 

electricity generated from wind by 2012 was only 60 gigawatts (American Wind Energy 

Association Data Services 2012).  Ideal locations to construct the large scale wind 

facilities necessary to reach the DOE’s goals, where consistent wind at 80 m exceeds 6.5 

m/s, have been identified along the Appalachian, Serra Nevada, and Cascade mountain 

ranges as well as over the majority of the Great Plains (Kuvlesky et al. 2007; Lindenberg 

2008; Nazzaro 2005).  These areas of high wind potential also are along migration routes 

of many species of birds and bats, leading to increased stakeholder awareness of negative 

turbine-wildlife interactions (Arnett et al. 2008; Arnold and Kennedy 2008; Erickson et 

al. 2001; Kuvlesky et al. 2007; Nazzaro 2005). 

 Birds and bats have been the focus of most studies examining turbine-wildlife 

interactions (Kuvlesky et al. 2007).  Avian collisions with turbines have been 

documented since the beginning of commercial wind energy production in the United 

States during the 1980s (Erickson et al. 2001).  Historically, studies focused on raptor 

mortalities in California; however, modern turbines have design alterations that have 

drastically reduced avian mortality, including longer and slower moving blades (Erickson 
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et al. 2001; Kuvlesky et al. 2007).  Bird mortalities from turbines are currently estimated 

to be 2.19 birds/turbine/year with approximately 0.033 raptor fatalities/turbine/year 

(Erickson et al. 2001; Kuvlesky et al. 2007).  Although these mortality rates are an order 

of magnitude lower than other causes of collision-based bird mortality, such as fence-

lines, windows and vehicles, the location of wind facilities typically coincides with 

migration routes and impacts species of special concern (Arnold and Kennedy 2008; 

Erickson et al. 2001; Kuvlesky et al. 2007).  Another issue with turbines and bird 

populations are impacts on habitat degradation for grassland nesting birds (Kuvlesky et 

al. 2007; Robel 2002).  Some species of grouse, including the lesser prairie-chicken 

(Tympanuchus pallidicinctus), are threatened at state levels.  As these species’ habitat is 

often ideal for wind development, there are concerns that turbines will disrupt breeding 

and recruitment, increase collision mortalities and predation events, and further range 

contractions (Arnold and Kennedy 2008; Robel 2002; Wolfe et al. 2007). 

Bat mortalities from turbines were known worldwide; yet not thought to occur 

with significant frequency until reports from the Mountaineer Wind Energy Center in 

West Virginia estimated 1,400-4,000 bat mortalities in 2003 (Arnett et al. 2008; Ellison 

2012; Kerns and Kerlinger 2004).  Since that time, numerous studies have documented 

high mortality rates for bats, with estimated national mortality rates of 28.5 

bats/turbine/year (Arnett et al. 2008; Ellison 2012; Kuvelsky et al. 2007).  These rates are 

substantially higher than bird mortalities as bats need not be directly struck by the turbine 

blade to die, rather bats can succumb to barotruama, the damage to tissues from high 

pressure gradients between inside and outside of the body, caused by turbine blade 
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movement (Baerwald et al. 2008).  Furthermore, there is evidence that certain bats, 

primarily juvenile male, migratory, tree-roosting bats such as those in the genus Lasiurus, 

are attracted to the turbines and thus killed more frequently (Arnett et al. 2008; Ellison 

2012).  Bat mortality estimates, as well as bird mortality estimates, vary regionally and 

are based on relatively few published studies.  Mortality rates are estimated from carcass 

searches around wind turbines, which are lower than actual mortality rates due to variable 

searcher efficiency and carcass removal by scavengers (Arnett et al. 2008; Ellison 2012; 

Kuvlesky et al. 2007; Smallwood 2007).  While these issues are ever present, estimated 

mortality rates are accepted as accurate and research is focusing on minimizing future 

impacts through siting and operational changes (Arnett et al. 2011; Ellison 2012). 

While bird and bat turbine-related impacts are essential for the industry and 

management agencies to address, there are other wind-wildlife interactions that are 

neglected, including the scavenging mammal community (Helldin et al. 2012; Kuvlesky 

et al. 2007).  Scavenging behavior often occurs at relatively high frequencies. However, 

scavenging as a process has been historically neglected by ecological studies, despite 

impacting community structure (DeVault et al. 2003; Selva and Fortuna 2007).  Studies 

assessing scavenging rates on experimentally placed carcasses in turbine free habitats 

have reported carcass removal rates ranging from 13-100% (Antworth et al. 2005; 

DeVault et al. 2003; Wolfe et al. 2007).  The prevalence of scavenging near turbines and 

the potential for impacting community structure and energy flow demonstrates the need 

for understanding scavenger guild around wind farms.  While the National Wind 

Coordinating Collaborative Wildlife Group has stressed the importance of monitoring 
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scavenging mesocarnivores for more accurate assessments of mortality, only a few 

studies have examined the rates at which scavenging occurs within wind farms, and no 

published studies have monitored mesocarnivore population dynamics (Arnold and 

Kennedy 2008; Helldin et al. 2010; Kuvlesky et al. 2007; Smallwood 2007; Smallwood 

et al. 2010).  Although, monitoring mesocarnivore populations might improve scavenging 

estimates, another goal for studying mammalian mesocarnivores is to improve our 

understanding of how mesocarnivores are distributed around wind turbines, as this will 

help show the ecological effects wind farms have on the entire community. 

Mammalian mesocarnivores have a pronounced impact upon the entire 

community as they affect population levels of a diverse range of prey species and affect 

energy flow throughout a landscape (DeVault et al. 2003).  Furthermore, the habitat 

fragmentation associated with wind energy facilities would be expected to have a 

pronounced impact upon mammalian mesocarnivores, making them model study 

organisms.  Wind facilities require extensive infrastructure to remain operational (Helldin 

et al. 2012; Kuvlesky et al. 2007).  In addition to the 80 m tall turbines and base pads, an 

extensive network of above and below ground electrical cables are needed (Helldin et al. 

2012).  Roadways are added or improved to handle construction and maintenance, which 

increases edge habitat and movement corridors for mesocarnivores (Forman and 

Alexander 1998; Helldin et al. 2012; Kuvlesky et al. 2007).  This has led to predictions of 

increased activity and predation events by mesocarnivores around turbines and also 

higher mesocarnivore gene flow in the surrounding community (Helldin et al. 2012; 

Robel 2002).  Wind facilities also add maintenance buildings and change the level of 
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human activity in the area, which could further alter activity patterns of mesocarnivores 

(Helldin et al. 2012; Kuvlesky et al. 2007).  Finally, the predicted increase of carrion into 

the area, due to turbine related mortality, increases the food resources available to 

mesocarnivores.  As mortality events are temporally predictable, mesocarnivores might 

detect these events and modify their behavior to take advantage of this ephemeral 

resource (Arnett et al. 2008; Antworth et al. 2005; Crawford 1971; DeVault et al. 2003; 

Selva and Fortuna 2007).   

One difficulty with studying the activity patterns of mesocarnivores is their 

elusive nature. However, this can be overcome through the use of occupancy modeling.  

Occupancy modeling accounts for imperfect detections in presence-absence data to infer 

the probability a species occupies an area but is not detected (MacKenzie et al. 2006).  

This maximum likelihood analysis allows for inference in systems where species are 

difficult to observe or trap, are found in a large area, or investigators have limited 

resources.  Questions of occupancy, the probability that a site is occupied by a target 

species for some amount of time, when analyzed with covariates can test hypotheses 

regarding geographic range, habitat use, resource selection, population dynamics, species 

interactions, and other pressing ecological inquiries (MacKenzie et al. 2006; O’Connell 

and Bailey 2011).  

In an effort to address the impacts that wind turbines have on the ecosystem, my 

study explored the occupancy dynamics of the mammalian mesocarnivore community at 

a wind energy facility.  My objectives were to document which mesocarnivore species 

occupy wind energy facilities and at what frequencies they are detected, determine what 
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factors are driving patterns of occupancy, and analyze if wind turbines are impacting the 

occupancy dynamics of mesocarnivores compared to non-turbine habitats.   
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MATERIALS AND METHODS 

Study sites - The study area, located along the eastern border of Wichita County, 

Kansas, was divided into a turbine area and a control area.  The turbine area consisted of 

the Central Plains Wind Farm, approximately 2.5 km northwest of Marienthal, KS.  The 

2,400 ha wind facility is owned and operated by Westar Energy.  The facility, comprising 

33 Vestas V90 turbines generating 99 MW/year, has been operational since 2009.  The 

control area was located ≥ 8 km southwest of the wind farm to establish independence 

between the turbine and control areas.  State highway 96 also separated the turbine and 

control areas, increasing independence (Fig. 1).  The control area was selected for 

similarity to the turbine area based on topography and microclimate.  Both areas were 

dominated by agriculture mixed with minimal amounts of Conservation Reserve Program 

(CRP) grasslands.  Agricultural fields were split between irrigated and dry-land practices.  

Crop types depended on season and rotation by the farmers yet consisted of, in order of 

frequency, winter wheat (Triticum aestivum), milo (Sorghum sp.), and maize (Zea mays).   

 Each study area was divided into 250 x 250 m grids on either side of roadways, 

representing distinct survey sites.  Sites for surveys were established at this distance to 

maximize detections while maintaining independence based on camera survey literature 

(Larrueca et al. 2007; Long and Zielinski 2008; MacKenzie et al. 2006; Sequin et al. 

2003).  The control area had 24 sites while the turbine area had 30 sites.  Sixteen sites 

were chosen in a stratified random design within each study area.  Of these, half were 

designated with roadway locations and half designated field locations.  One Stealth Cam 

Unit 840 Passive Infrared trail camera was placed within the center of each site, either 
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along the roadway or field edge of the grid according to prior designation.  Placement of 

the camera avoided direct sunlight on the lens and, whenever possible, was placed in an 

area of minimal vegetation to minimize false triggers of the cameras (Kays and Slauson 

2008; Swann et al. 2011).  Each camera was attached to a 1 tall m metal fencepost with 

plastic cable ties and fixed with a surveyor’s flag.  Posts were placed so the camera was 

0.5 m off the ground.  Cameras were baited with approximately 5 ml of homemade rotten 

bird egg material placed in plastic centrifuge vials.  The vials were pressed fully into the 

ground between 1 and 2 m from the camera and the vial caps were loosened.  This was 

done to increase detections of mesocarnivores while not offering them a reward (Schlexer 

2008; Swann et al. 2011).  Cameras were set to record 3 pictures per trigger event, with a 

delay period of 1 sec between trigger events.  Each camera was equipped with an 8 

gigabyte memory card and was able to take approximately 9,500, 3.5 megapixel 

photographs.   

Cameras were left for 28-day survey periods to maximize detections of elusive 

mesocarnivores and eliminate moon phase bias (Long and Zielinski 2008; MacKenzie et 

al. 2006).  A modified double-sampling design was implemented where at the end of each 

survey period, the cameras and scent lures were relocated, with new lures and memory 

cards, into a randomized grid site and location.  This increased the coverage of sampling 

units, while still allowing for repeat surveys with the added benefit of minimizing 

negative interactions with agricultural activities such as harvesting and disking (Long and 

Zielinski 2008; MacKenzie et al. 2006).  Cameras were relocated by using prior stratified 

random designations. However, at the judgment of field technicians, when placement was 
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thought to interfere with agricultural activities, a new site was assigned.  New sites also 

were assigned in the field when vegetation at sites would obstruct camera operation (e.g., 

the height of maize stalks exceeding the lens).  Sampling took place from 24 September 

2011 through 20 October 2012 during which there were 14 survey periods.  

Detection histories - All 432,831 images taken during the study were analyzed 

and labeled with metadata with ExifPro Photo Browser (Kowalski and Kowalski 2011).  

Mammalian species detected were identified to species when possible.  Detection 

histories were compiled for each species according to site.  Sites that had camera failure, 

the premature cease of triggering detections due to physical or technical error prior to 14 

survey days, or did not have a camera present were coded as missing data.  

Covariate sampling – I created an a priori list of climate, land cover, and human 

use covariates that might influence mesocarnivore detection and occupancy probabilities.  

Climate data, including mean temperature, precipitation, and snow cover, were obtained 

for each survey period from the National Climatic Data Center daily records from the 

nearest station, (Scott City, KS, USA; GHCND:USC00147271) located 21 km east of the 

study areas.  Land cover data included land use, CRP versus agricultural, and crop type, 

which were compiled from ground truthing at the beginning and end of each survey 

period.  Camera site locations were classified as either field or roadway locations.  

Distance from camera to nearest building was measured using GPS locations of cameras 

and 2012 satellite imagery.  A human activity index was calculated by using the mean 

amount of vehicles and pedestrians detected with trail cameras at each study area over 

time.  
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Occupancy modeling – The detection histories for each species were entered into 

program PRESENCE version 5.5 along with covariate data for occupancy modeling 

(Hines 2006).  Multiple seasons (Table 1) were defined according to biological 

significance to mesocarnivores and the lunar cycle, including: 1) pack coalescence from 

September to November, 2) reproduction from November to March, 3) dispersal from 

March to July, and 4) summer from July to August (Bekoff 1977; Egoscue 1979).  Wind 

facility manipulation (turbine area versus control area) and land use (agriculture versus 

CRP) were included as site covariates, variables impacting detection and occupancy 

probabilities that remain unchanged for sites from survey period to survey period.  Site 

location (roadway versus field), camera distance to nearest building, human activity 

index, and weather data were used as sampling covariates, variables impacting detection 

and occupancy probabilities that change for sites from survey period to survey period.  

Models were run for each mesocarnivore species with more than 20 modelable 

detections, which I define as the first detection of a species at a site during the survey 

period.  A multi-step approach was used to determine which candidate models to use for 

seasonal effects and the highest supported detection covariates (MacKenzie et al. 2006).  

Seasonal patterns were modeled first with the top model being selected for use with the 

full set of covariates through single species, multi-season models.  Model support was 

assessed by using Akaike’s Information Criterion (AIC) and 95% confidence intervals.  

Probability of occupancy and detection were calculated in addition to the influence of 

covariates using a logit-link function.  Multi-season, conditional two-species co-

occurrence models were run, by using the psiBa parameterization method, between Canis 
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latrans and Vulpes velox with only the highest supported detection covariates from 

previous models in an effort to reduce the candidate model set to 33 models (Richmond 

et al. 2010).  These models tested the effect of C. latrans presence and detection on V. 

velox detection probability, C. latrans presence on V. velox occupancy, and the how the 

occupancy for both species was impacted by turbines.  Canis latrans was presumed to be 

the dominant species of canid based on other studies in this region (Jackson and Choate 

2000; Matlack et al. 2000).  Colonization and extinction probabilities were held constant 

and seasonal detection probability covariates were removed due to lack of power.  

Dominance was assessed by examining the AIC weight of models and model categories 

(e.g., conditional versus unconditional).  I also calculated a species interaction factor 

(SIF) as a function of the top 5 model averaged occupancy estimates for both species 

(Richmond et al. 2010).   

Statistical analysis 

Detection history assessment - A chi-square test of independence with Yate’s 

correction was used for each species to determine if modelable detections occurred more 

frequently in the control or turbine areas.  I used a Welsh’s two sample t-test to assess 

modelable detections of mesocarnivores at each study area over time.  I also reported the 

frequency of mesocarnivores over the course of a 24 hour period. 

Independence of variables - To analyze for autocorrelation in modelable species 

detections I ran a Mantel test of matrix correspondence with day of modelable detection 

and GPS location of the cameras for each species run with occupancy modeling.  

Euclidean distances were used for both parameters.  Covariates were tested prior to use in 
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modeling to help determine biological significance.  A Student’s t-test was used to show 

significant differences between survey periods for mean temperature, precipitation, and 

snow cover.  I used a Welsh’s two sample t-test to assess similarity of the distance from 

camera to nearest building and the human activity index across study areas. 
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RESULTS 

 Detection history assessment - I had 276 detections of 7 species of mammalian 

mesocarnivores during the 9,291 camera-days of the study.  Detected mesocarnivore 

species included: Canis latrans (n=126), Vulpes velox (n=106), Mephitis mephitis (n=25), 

Procyon lotor (n=10), Taxidea taxus (n=6), Mustela frenata (n=2), and Felis domesticus 

(n=1) (Table 2).  Due to power constraints, only species with more than 20 modelable 

detections, C. latrans (n = 64) and V. velox (n = 51), were modeled.  Mesocarnivores as a 

guild were detected equally at both turbine and control habitats (χ2 = 0.33, d.f. = 1, P = 

0.05).  Canis latrans was detected significantly more frequently in the control area (χ2 = 

5.64, d.f. = 1, P = 0.05), while V. velox was detected significantly more frequently in the 

turbine area (χ2 = 15.37, d.f. = 1, P = 0.05).  There was no significant difference in 

mesocarnivore detections between study areas over the course of the study period (t = 

0.65, d.f. = 25.1, P = 0.52) (Fig. 2).  The frequency of detections of C. latrans and V. 

velox over the span of 24 hours indicated crepuscular activity for both species (Fig. 3). 

 Independence of variables - The Mantel test showed low levels of autocorrelation 

among C. latrans (r = 0.062, d.f. = 54, P = 0.04) and no significant autocorrelation for V. 

velox (r = -0.025, d.f. = 43, P = 0.70) (Fig. 4).  Mean temperature (t = 4.94, d.f. = 13, P < 

0.001) and precipitation (t = 3.31, d.f. = 13, P = 0.006) showed significant differences 

across survey periods and were used as covariates for modeling, while mean snow cover 

did not significantly differ between survey periods (t = 1.16, d.f. = 13, P = 0.27) and was 

deemed not biologically relevant for modeling.  Distance to nearest building was 

significantly different between control and turbine areas with buildings being closer to 
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cameras at the turbine area (t = 3.23, d.f. = 186.5, P = 0.001).  Human activity differed 

significantly between study areas (t = 5.72, d.f. = 131.9, P < 0.001) with more activity 

detected at the control area (Fig. 5). 

Occupancy modeling 

 Canis latrans models – The top seasonal occupancy model for C. latrans, 

compared to the full set of candidate models (Table 3), had constant seasonal 

colonization and detections (w = 0.86, K = 3, -2*log(L) = 239.72).  The 15 single species, 

multi-season models (Table 4) showed a top model with seasonal occupancy as a 

function of the control area, colonization did not differ, and the probability of detection 

varied as a function of mean precipitation (w = 0.20, K = 3, -2*log(L) = 239.72).  

Estimates for the probability of occupancy (β = 1.47 ± 0.89) and probability of detection 

(β = -1.95 ± 1.07) and their respective covariates both showed no significant predictive 

power.  Probability of detection as a function of mean precipitation and distance to 

nearest building also were included in the model with the second most support (w = 0.15, 

K = 4, -2*log(L) = 229.63).  For further clarity, tables 3 and 4 are reproduced in appendix 

I without phidot notation (Tables I3 and I4). 

Vulpes velox models – The highest supported seasonal occupancy models for V. 

velox (Table 5), allowed occupancy and detections to vary with season while colonization 

did not vary (w = 0.49, K = 8, -2*log(L) = 213.40).  Of the 26 single species, multi-

season models (Table 6), the top model had occupancy varying with season, differing 

between the turbine and control areas, colonization constant, and detection probabilities 

varying as a function of seasons, field location, and mean precipitation (w = 0.12, K = 11, 
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-2*log(L) = 182.47).  The differences in occupancy among turbine and control areas were 

significant (β = -21.37 ± 0.00).  Probability of detection increased over the course of the 

study (0.18, 0.18, 0.14, 0.59, 0.45); however, these coefficients were associated with high 

standard errors (± 37.2) and thus did not have significant explanatory power.  This pattern 

of increased detection probabilities was likely the result of increased detections over time 

(Fig. 2).  Probability of detection significantly varied between field and roadway 

locations (β = -1.87 ± 0.48). Mean precipitation did not significantly affect detection 

probability (β = 1.55 ± 0.95).  Probability of detection showed moderate support as the 

second ranked model, varying with seasons and between field and roadway locations (w 

= 0.09, K = 10, -2*log(L) = 185.10). The third ranked model, in which probability of 

detection varied by season, between field and roadway locations, and agricultural and 

CRP land use, also showed moderate support (w = 0.09, K = 12, -2*log(L) = 181.20).  For 

further clarity, tables 5 and 6 are reproduced in appendix I without phidot notation 

(Tables I5 and I6). 

Species co-occurrence models – The full candidate set contained 33 species co-

occurrence models (Table 7).  For further clarity, tables 7 is reproduced in appendix I 

without phidot notation (Table I7).  Vulpes velox detection probability was influenced 

strongly by the presence and detection of C. latrans with a cumulative Akaike weight of 

0.99 (Table 8).  Also, V. velox occupancy was conditional on C. latrans occupancy with a 

cumulative Akaike weight of 0.94 (Table 8).  The top model had C. latrans occupancy 

uninfluenced by control and turbine areas, but V. velox detections varied at the control 

and turbine areas when C. latrans was present and uninfluenced by control and turbine 
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areas when C. latrans was not present (w = 0.64, K = 17, -2*log(L) = 412.97).  

Occupancy covariates for this model suggested when C. latrans was present in the 

control area, the probability of occupancy for V. velox was 1.00 (1.00,1.00) and when C. 

latrans was present in the turbine area the probability of occupancy for V. velox was 0.00 

(0.00, 0.00).  Despite this strong relationship, the top model was describing a very small, 

albeit interesting, portion of the overall data.  Therefore, I used the second ranked model 

(ΔAIC = 3.74) for majority of the insights about the study system.  

The second model (Table 7) had C. latrans probability of occupancy varying 

between the control and turbine areas.  Vulpes velox probability of occupancy when C. 

latrans was present varied between the control and turbine areas and when C. latrans was 

not present the probability of V. velox occupancy did not vary between the control and 

turbine areas (w = 0.09, K = 18, -2*log(L) = 414.71).  Canis latrans had a probability of 

occupancy of approximately 1.00 (1.00,1.00) at the control area.  When C. latrans was 

absent, V. velox had a probability of occupancy at the turbine area of approximately 1 

(1.00, 1.00).  Both of these relationships were considered to have predictive explanatory 

power.  The naïve estimates for colonization and extinction across all sites was -0.55 (± 

0.45) and -44.01 (± 10.00) respectively.  The probability of detecting C. latrans was a 

nonsignificant function of mean precipitation, (Fig. 6) with naïve estimates of -1.58 (± 

0.94).  The probability of detection for V. velox when C. latrans was absent, was a 

function of mean precipitation (β = 1.10 ± 1.78) and field locations (β = -0.86 ± 0.99), 

although both were not deemed significant.  The probabilities of detecting V. velox when 

C. latrans was present but either detected or undetected were significantly predictive 
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functions of both mean precipitation and field versus roadway locations, and showed 

levels of species interaction.  When considering V. velox probability of detection as 

influenced by mean precipitation, there was a pronounced change from a positive 

association with precipitation when C. latrans was detected, to a negative association 

when C. latrans was not detected (Fig. 7).  When considering field locations as a function 

of detection probabilities, V. velox was more likely to be detected at only roadway 

locations when C. latrans was present and detected (p = 0.99) versus present but 

undetected (p = 0.81; Fig. 8).  The cumulative AIC weight of the top five models was 

0.92.   
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DISCUSSION 

 Though mesocarnivores as a guild were detected evenly between turbine and 

control areas, Canis latrans and Vulpes velox detections were significantly different 

between both areas (Table 2).  Over the duration of the study, mesocarnivore detections 

per survey period increased slightly in both the turbine and control areas.  This 

insignificant rise is expected to be from random population fluctuations and not from 

acclimation to turbines or cameras.  While no significant differences were seen between 

sites, one notable exception is during March and April when detections at the control site 

suddenly peaked (Fig. 2).  The increase in detections consisted primarily of Canis latrans 

and represented the dispersal period for juveniles (Bekoff 1977; Larrueca et al. 2007).  

The lack of significant changes in detections over the course of the study period was 

counter to previously stated hypotheses that an influx of bird and bat mortality during 

migration periods would lead to increased detections of mesocarnivores.  I cannot 

determine from this study whether this pattern is due to a lack of mesocarnivore reaction 

to mortality events or if there are minimal fluctuations in mortality events at this wind 

facility. However, there is ample evidence that mesocarnivores modify behaviors to 

predictable mass mortalities, (Antworth et al. 2005; Crawford 1971; DeVault et al. 2003; 

Selva and Fortuna 2007), which suggests there are few fluctuations in turbine-related 

mortalities at the Central Plains Wind Facility.  Low numbers of mortality events could 

be attributed to the siting of the wind farm away from large water bodies and woody 

areas, and on the outskirts of the Central Migratory Flyway (Arnett et al. 2008; Kuvlesky 

et al. 2007; Nazzaro 2005). 
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 Contrary to expectation (Helldin et al. 2012; Kuvlesky et al. 2007), less human 

activity was observed at the turbine area than the control area (Fig. 5).  While there were 

many maintenance vehicles at the turbine site, many of the roads were gated to limit use.  

Human activity did not influence the detection or occupancy of C. latrans or V. velox.  

Many mesocarnivore species avoid human activity in rural areas (Bekoff 1977; Forman 

and Alexander 1998; Helldin et al. 2012; Larrueca et al. 2007; Sequin et al. 2003). 

However, C. latrans was detected in areas of increased human activity, suggesting the 

differences between control and turbine areas was strong enough to modify typical 

behaviors.  The frequency of detections over the span of 24 hours provided some 

evidence that C. latrans was impacted differently by the human activity at the turbine 

area than at the control area.  Canis latrans detections at the control site extended much 

further into the daytime hours, while at the turbine site detections dropped to 0 during the 

course of the typical workday (Fig. 3).  

Mean precipitation influenced the probability of detecting both C. latrans and V. 

velox, with both species being less likely to be detected with precipitation.  This is 

counter to original expectations as bird and bat mortalities have been shown to increase 

immediately prior to precipitation events (Arnett et al. 2008).  This again suggests the 

Central Plains Wind Facility has a low number of mortality events.  Precipitation 

increases olfactory detection by mesocarnivores and rainfall events often increase rodent 

activity (Gentry et al. 1966; Vickery and Bider 1981), suggesting scent-based 

mesocarnivores would have greater foraging success during precipitation.  

Mesocarnivores are expected to forage optimally so the decreased activity and detection 
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during times of increased precipitation might be due to changes in small mammal 

abundance.  Small mammals might have a strong negative association with the turbine 

area, due to increased noise or vibrations, and thus during rainfall events mesocarnivores 

might forage in areas of higher small mammal density (Rabin et al. 2006).  Contrary to 

this hypothesis, no differences in small mammals have been observed at turbines (De 

Lucas et al. 2005; Rabin et al. 2006).  Although, small mammal responses to turbines 

remains poorly understood, and needs greater attention.   

Vulpes velox had a higher probability of detection at roadway locations than field 

locations, (Fig. 8) while C. latrans showed no significant differences between roadway 

and field locations (Table 4).  While literature sources suggest roadways are used for 

movement of mammalian mesocarnivores, the relationship has not been explored across 

ecosystems (Forman and Alexander 1998; Helldin et al. 2012; James and Stuart-Smith 

2000).  Most roadway use studies have been performed in areas where the surrounding 

landscape hinders movement.  The smaller V. velox might have movement impeded by 

crops whereas C. latrans are large enough that they might not be hindered by similar 

vegetation.  However, recent studies have suggested the use of roadways by carnivores is 

not a ubiquitous pattern among species and individuals; rather, that roadway use is 

dependent on variables such as age, sex, social position, and previous experiences 

(Larrueca et al. 2007; Sequin et al. 2003).  Probably the modification and addition of 

roadways at wind facilities only affects mesocarnivores on a case by case basis and no 

catch-all management or siting guidelines will predict mesocarnivore response.  
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The treatment (control and turbine areas) affected mesocarnivore occupancy, with 

C. latrans having a higher probability of occupying the control area and V. velox having a 

higher probability of occupying the turbine area.  While the top species co-occurrence 

model suggested V. velox had a higher probability of occupancy in the control area when 

C. latrans was present and detected, this referred to a very small portion of the overall 

detection data.  Therefore models that described the greater portion of the data were 

chosen over those which fit a small subset of the data to more accurately describe the 

overall patterns of occupancy.  Literature examples of C. latrans preying upon or 

displacing V. velox (Bekoff 1977; Egoscue 1979; Jackson and Choate 2000; Matlack et 

al. 2000), as well as the reciprocal nature of the initial modelable detection data (Table 2) 

prompted the examination of antagonizing species interactions on the occupancy patterns.  

Antagonizing interactions were apparent but occurred at a finer scale than occupancy, 

and were incorporated into the estimates of probability of detection.  A study design that 

includes a larger wind facility and entire home ranges of mesocarnivores should show 

antagonistic interactions impacting both detection and occupancy.  

The evidence for antagonistic interactions between C. latrans and V. velox came 

from probabilities of detection.  The species co-occurrence models ranked formulas with 

V. velox detection conditional on both the presence and detection of C. latrans as being 

better supported than V. velox detection unconditional of C. latrans (Table 8).  A clear 

example of the conditional nature of V. velox detections is the probability of detection for 

V. velox varying with mean precipitation (Fig. 7).  The relationship between V. velox 

detection probability and mean precipitation was negative when C. latrans was not 
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present or was present but not detected.  However, when C. latrans was present and 

detected at a site the relationship between V. velox detection probability and precipitation 

became positive (Fig. 7).  As C. latrans detection probability was impacted negatively by 

mean precipitation irrespective of V. velox, it suggests V. velox modified typical activity 

patterns to avoid C. latrans.  This pattern could be viewed as competitive exclusion or 

predator avoidance on a temporal scale.  Similar patterns were observed with detection 

probabilities at field locations (Fig. 8).  When C. latrans was present and detected at a 

site, V. velox was detected almost exclusively at roadway locations.  However, when C. 

latrans was no longer detected at a site, V. velox expanded its area of activity and had a 

higher probability of being detected at field locations.  Another example of V. velox 

modifying behavior because of C. latrans could be seen with detection frequency over a 

24 hour span (Fig. 3).  Vulpes velox at the turbine area had a larger range of diurnal 

activity in the absence of C. latrans.  The detection frequencies of both mesocarnivore 

species decreased to zero from 1030 to 1300 regardless of antagonistic interactions, 

suggesting a fixed temporal limit of mesocarnivore activity during the midday.  

As wind energy technology expands across the United States, it increasingly will 

impact wildlife.  My study suggests wind turbines play a role in modifying the occupancy 

pattern of mammalian mesocarnivores, specifically C. latrans and V. velox.  Although 

this study cannot make predictions for wind energy across the country, some general 

patterns were apparent and should be explored at additional sites.  Though C. latrans 

seemed to avoid turbines, V. velox was associated with turbine areas.  Roadway 

alterations should be minimized in future wind energy development as roadways 
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impacted V. velox detection probabilities within my study and would probably impact 

other species at wind facilities with denser surrounding vegetation (Helldin et al. 2012).  

Human activity did not have a strong influence on the detection of mesocarnivores 

surrounding wind turbines.  This suggests turbine operational hours could remain 

constant without significantly altering mesocarniovore occupancy.  The changes of 

mesocarnivore occupancy and behavior as highlighted throughout this study potentially 

could have implications for community structure and processes.  Therefore, I advocate 

that mesocarnivore species management be formally considered during the siting process 

for wind facilities.
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Table 1- Seasonal divisions designated in PRESENCE multi-season occupancy models, 
based on biological significance to mammalian mesocarnivores (Bekoff 1977; Egoscue 
1979). 

Season Duration Survey Periods 
Pack coalescence September-November 1-2 and 14 
Reproduction November - March 3-6 
Dispersal March - July 7-11 
Summer July – August 12-13 
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Table 2- Mammalian mesocarnivore detections at the turbine and control study areas in 
Wichita County, Kansas.  Detections were split into total detections and modelable 
detections, representing the first detection during each study period per site.   

 Total Detections  Modelable Detections  
Species Control Turbine Total Control Turbine Total 
Canis latrans 91 35 126 42 22 64 
Vulpes velox 27 79 106 11 40 51 
Mephitis mephitis 14 11 25 7 10 17 
Procyon lotor 5 5 10 5 4 9 
Taxidea taxus 4 2 6 4 2 6 
Mustela frenata 2 0 2 1 0 1 
Felis domesticus 0 1 1 0 1 1 
Total 143 133 276 70 79 149 
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Table 3- Full set of seasonal occupancy model candidates for Canis latrans showing the 
difference in Akaike’s Information Criterion (AIC) relative to the best model (ΔAIC), 
relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  Models show probability of occupancy (ψ), 
probability of colonization (γ), probability of extinction (ε), and probability of detection 
(p).  Probabilities were either held constant (.) or were impacted by covariates.  
Covariates varied with season (s) or varied with survey (t).  The top model suggested 
seasonal occupancy with colonization and detection held constant representing 
populations in a non-Markovian equilibrium. 

Model ΔAIC w K -2*log(L) 
ψ(.),γ(.),p(.) 0 0.8646 3 239.72 
ψ(.),γ(.),p(s) 6.62 0.0316 7 238.34 
ψ(.),γ(t),ε=1-γ,p(s) 6.88 0.0277 10 232.6 
ψ(.),γ(t),p(s) 7.11 0.0247 10 232.83 
ψ(.),γ(.),ε=1-γ,p(s) 7.66 0.0188 7 239.38 
ψ,γ(.),ε(.),p(s) 8.18 0.0145 8 237.9 
ψ(.),γ(.),p(t) 8.83 0.0105 16 222.55 
ψ,γ(.),ε(.),p(t) 10.51 0.0045 17 222.23 
ψ,γ(s),ε(t),p(s) 11.21 0.0032 14 228.93 
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Table 4- Full set of multi-season occupancy model candidates for Canis latrans showing 
the difference in Akaike’s Information Criterion (AIC) relative to the best model (ΔAIC), 
relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  Models show probability of occupancy (ψ), 
probability of colonization (γ), probability of extinction (ε), and probability of detection 
(p).  Probabilities were either held constant (.) or were impacted by covariates.  
Covariates varied between control and turbine areas (control), mean precipitation 
(precip), distance to nearest building (build), roadway location (road), field location 
(field), mean temperature (temp), agriculture and CRP land use (ag), and human activity 
index (traffic).  The top model shows probability of occupancy varying between control 
and turbine areas, colonization as a constant, and the probability of detection varying 
with mean precipitation. 

Model ΔAIC w K -2*log(L) 
ψ(control),γ(.),p(precip) 0 0.1979 5 231.03 
ψ(control),γ(.),p(precip+build) 0.6 0.1466 6 229.63 
ψ(control),γ(.),p(precip+road) 1.28 0.1043 6 230.31 
ψ(control),γ(.),p(.) 1.67 0.0859 4 234.7 
ψ(control),γ(.),p(precip+temp) 2 0.0728 6 231.03 
ψ(control),γ(.),p(precip+build+road) 2.06 0.0706 7 229.09 
ψ(control),γ(.),p(build) 2.63 0.0531 5 233.66 
ψ(control),γ(ag),p(.) 2.84 0.0478 5 233.87 
ψ(control),γ(.),p(temp) 2.94 0.0455 5 233.97 
ψ(control),γ(.),p(road) 3.1 0.042 5 234.13 
ψ(control),γ(.),p(field) 3.13 0.0414 5 234.16 
ψ(control),γ(.),p(traffic) 3.57 0.0332 5 234.6 
ψ(control),γ(.),p(road+build) 4.22 0.024 6 233.25 
ψ(.),γ(.),p(.) 4.69 0.019 3 239.72 
ψ(control),γ(.),p(traffic+road) 5.04 0.0159 6 234.07 
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Table 5- Full set of seasonal occupancy model candidates for Vulpes velox showing the 
difference in Akaike’s Information Criterion (AIC) relative to the best model (ΔAIC), 
relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  Models show probability of occupancy (ψ), 
probability of colonization (γ), probability of extinction (ε), and probability of detection 
(p).  Probabilities were either held constant (.) or were impacted by covariates, varied 
between seasons (s).  The top model suggested seasonal occupancy with colonization 
held constant and detection varying between seasons, representing populations in a non-
Markovian equilibrium. 

Model ΔAIC w K -2*log(L) 
ψ(.),γ(.),p(s) 0 0.4928 8 213.4 
ψ(.),γ(.),ε=1-γ,p(s) 1.47 0.2363 8 214.87 
ψ,γ(.),ε(.),p(s) 2 0.1813 9 213.4 
ψ(.),γ(.),p(.) 5.12 0.0381 3 228.52 
ψ(.),γ(s),p(s) 5.16 0.0373 11 212.56 
ψ(.),γ(s),ε=1-γ,p(s) 7.28 0.0129 11 214.68 
ψ,γ(s),ε(s),p(s) 12.14 0.0011 15 211.54 
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Table 6- Full set of multi-season occupancy model candidates for Vulpes velox showing 
the difference in Akaike’s Information Criterion relative to the best model (ΔAIC), 
relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  Models show probability of occupancy (ψ), 
probability of colonization (γ), probability of extinction (ε), and probability of detection 
(p).  Probabilities were either held constant (.) or were impacted by covariates.   
Covariates varied between control and turbine areas (control), mean precipitation 
(precip), distance to nearest building (build), roadway location (road), field location 
(field), mean temperature (temp), agriculture and CRP land use (ag), and human activity 
index (traffic).  The top model showed probability of occupancy varying between control 
and turbine areas, colonization as constant, and the probability of detection varying 
between seasons, field and roadway locations, and mean precipitation. 

Model ΔAIC w K -2*log(L) 
ψ(control),γ(.),p(s+field+precip) 0 0.123 11 182.47 
ψ(control),γ(.),p(s+field) 0.63 0.0898 10 185.1 
ψ(control),γ(.),p(s+field+precip+ag) 0.73 0.0854 12 181.2 
ψ(control),γ(.),p(s+road) 1.04 0.0731 10 185.51 
ψ(control),γ(.),p(s+field+precip+build) 1.14 0.0696 12 181.61 
ψ(control),γ(.),p(s+field+precip+ag+build) 1.22 0.0668 13 179.69 
ψ(control),γ(.),p(s+field+precip+traffic) 1.3 0.0642 12 181.77 
ψ(control),γ(.),p(s+field+ag) 1.34 0.0629 11 183.81 
ψ(control),γ(.),p(s+field+precip+temp) 1.75 0.0513 12 182.22 
ψ(control),γ(.),p(s+field+build) 1.91 0.0473 11 184.38 
ψ(control),γ(.),p(s+field+traffic) 1.96 0.0462 11 184.43 
ψ(control),γ(.),p(s+field+temp) 1.98 0.0457 11 184.45 
ψ(control),γ(.),p(s+field+precip+ag+traffic) 2.17 0.0416 13 180.64 
ψ(control),γ(.),p(s+field+precip+ag+temp) 2.37 0.0376 13 180.84 
ψ(control),γ(.),p(s+field+precip+ag+build+temp) 2.73 0.0314 14 179.2 
ψ(control),γ(.),p(s+field+precip+ag+build+traffic) 2.93 0.0284 14 179.4 
ψ(control),γ(.),p(s+field+traffic+build) 3.41 0.0224 12 183.88 
ψ(control),γ(.),p(s+field+precip+ag+build+temp+traffic) 4.5 0.013 15 178.97 
ψ(control),γ(.),p(s+traffic) 15.16 0.0001 10 199.63 
ψ(control),γ(.),p(s) 15.26 0.0001 9 201.73 
ψ(control),γ(.),p(s+ag) 15.47 0.0001 10 199.94 
ψ(control),γ(.),p(s+build) 16.07 0 10 200.54 
ψ(control),γ(.),p(s+precip) 16.29 0 10 200.76 
ψ(control),γ(.),p(s+temp) 16.39 0 10 200.86 
ψ(control),γ(ag),p(s) 17.19 0 10 201.66 
ψ(.),γ(.),p(s) 24.93 0 8 213.4 
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Table 7- Full set of multi-season, species co-occurrence occupancy models explaining 
the interaction between dominant Canis latrans (species A) and Vulpes velox (species B) 
showing the difference in Akaike’s Information Criterion relative to the best model 
(ΔAIC), relative support for each model or AIC weight (w), and the number of 
parameters (K).  Occupancy models were either: (1) unconditional, where presence of V. 
velox was independent of presence of C. latrans (ψB); or (2) conditional, where presence 
of V. velox was dependent on the presence of C. latrans (ψBA and ψBa).  Occupancy 
covariates were either constant or a function of the control site (control).  When V. velox 
occupancy was unconditional only one parameter was estimated.  When V. velox 
occupancy was conditional, two parameters were estimated for the presence and absence 
of C. latrans.  Three detection models where either: (1) V. velox detection probability was 
independent of C. latrans presence and detection (pA,pB); (2) V. velox detection 
probability was dependent on C. latrans presence but not detection (pA,pB,rB); or (3) V. 
velox detection probability was dependent on both C. latrans presence and detection 
(pA,pB,rBA,rBa).  Detection covariates were held constant using mean precipitation for C. 
latrans and both field location, and mean precipitation for V. velox.  Seasonal changes of 
probability of colonization and extinction was held constant throughout. 

Occupancy model Detection model ΔAIC w K 
ψA,ψBA(control),ψBa pA,pB,rBA,rBa 0 0.6426 17 
ψA(control),ψBA(control),ψBa pA,pB,rBA,rBa 3.74 0.099 18 
ψA(control),ψBA,ψBa pA,pB,rBA,rBa 3.77 0.0976 17 
ψA(control),ψB(control) pA,pB,rBA,rBa 5.42 0.0428 19 
ψA(control),ψBA(control),ψBa(control) pA,pB,rBA,rBa 5.42 0.0428 19 
ψA(control),ψBA,ψBa(control) pA,pB,rBA,rBa 5.51 0.0409 18 
ψA,ψB(control) pA,pB,rBA,rBa 7.7 0.0137 18 
ψA,ψBA,ψBa(control) pA,pB,rBA,rBa 10.2 0.0039 17 
ψA(control),ψBA(control),ψBa pA,pB,rB 10.71 0.003 18 
ψA(control),ψBA,ψBa pA,pB,rB 11.31 0.0022 17 
ψA(control),ψB pA,pB,rBA,rBa 11.9 0.0017 17 
ψA(control),ψBA(control),ψBa(control) pA,pB,rB 12.3 0.0014 19 
ψA(control),ψB(control) pA,pB,rB 12.62 0.0012 19 
ψA(control),ψBA,ψBa(control) pA,pB,rB 12.88 0.001 18 
ψA(control),ψBA,ψBa pA,pB 12.96 0.001 17 
ψA(control),ψBA(control),ψBa pA,pB 12.98 0.001 18 
ψA,ψBA(control),ψBa pA,pB,rB 13.58 0.0007 17 
ψA,ψB pA,pB 13.97 0.0006 10 
ψA,ψB(control) pA,pB,rB 14.07 0.0006 18 
ψA(control),ψBA(control),ψBa(control) pA,pB 14.54 0.0004 19 
ψA(control),ψBA,ψBa(control) pA,pB 14.58 0.0004 18 
ψA(control),ψB(control) pA,pB 14.58 0.0004 19 
ψA,ψBA,ψBa(control) pA,pB,rB 15.59 0.0003 17 
ψA,ψBA,ψBa pA,pB,rBA,rBa 15.98 0.0002 16 
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Table III1.  Continued  

Occupancy model Detection model ΔAIC w K 
ψA,ψB pA,pB,rBA,rBa 15.99 0.0002 16 
ψA,ψB(control) pA,pB 17.03 0.0001 18 
ψA,ψBA(control),ψBa pA,pB 17.27 0.0001 17 
ψA,ψBA,ψBa(control) pA,pB 18.44 0.0001 17 
ψA(control),ψB pA,pB,rB 20.44 0 17 
ψA,ψBA,ψBa pA,pB,rB 21.67 0 16 
ψA,ψB pA,pB,rB 22.38 0 16 
ψA(control),ψB pA,pB 23.58 0 17 
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Table 8- Relative support for different subsets of the species co-occurrence models 
where Vulpes velox was either conditional (C) or unconditional (U) of Canis latrans 
occupancy and V. velox detection probability was either conditional or unconditional on 
C. latrans occupancy and detection.  Number of models (N) and the relative importance 
weight (w+) or summed Akaike weights for all models sharing similar structure in the full 
set of candidate models reported within Table 7.   

Effect of Canis latrans 
occupancy on Vulpes 
velox occupancy 

Effect of Canis latrans 
occupancy on Vulpes 
velox detection 

Effect of Canis latrans 
detection on Vulpes 
velox detection N w+ 

C C C 7 0.927 
U C C 4 0.0584 
C C U 7 0.0086 
C U U 7 0.003 
U C U 4 0.0018 
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Fig. 1.- The study areas in Wichita County, Kansas containing the turbine area (Central 
Plains Wind Facility) to the north of state highway 96 (white line), and the control area ≥ 
8 km to the south west.  
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Fig. 2.- Modelable mesocarnivore detections for the turbine (dashed) and control (solid) study areas over the duration of the study.  
There was no significan difference between the two areas (t = -0.65, d.f. = 25.1, P = 0.52). 
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Fig. 3.- Frequency of detections for Canis latrans (solid) and Vulpes velox (dashed) at the control area (gray) and the turbine area 
(black).  Detections reflect crepuscular activity of both species with some differences between study areas.  
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Fig. 4.- Mantel test showing no autocorrelation among modelable detections of (a) Canis latrans (r = 0.062, d.f. = 54, P = 0.04) and 
(b) Vulpes velox (r = -0.025, d.f. = 43, P = 0.70) at the spatial and temporal scales. 
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Fig. 5.- Human activity index measured by for the turbine (dashed) and control (solid) study areas over the duration of the study.  
Human activity differed significantly between areas (t = 5.72, d.f. = 131.9, P < 0.001). 
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Fig. 6.- Probability of detection for Canis latrans as a function of mean precipitation (cm) from the second highest ranking species co-
occurrence model.  The thin dotted lines represent the 95% confidence intervals.  
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Fig. 7.- Probability of detection for Vulpes velox given the Canis latrans were present and detected (pBA) and undetected (pBa) 
described as a function of mean precipitation (cm) from the second highest ranking species co-occurrence model.  The thin dotted 
lines represent the 95% confidence intervals. 
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Fig. 8.- Probability of detection for Vulpes velox given the Canis latrans were present and detected (a) and undetected (b) described as 
a function of field locations from the second highest ranking species co-occurrence model.  
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APPENDIX I 

Full suite of occupancy models run in PRESENCE corresponding to tables 3 
through 7 written out in expanded form instead of standard phidot notation.  
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Table I3- Full set of seasonal occupancy model candidates for Canis latrans showing the difference in Akaike’s Information Criterion 
(AIC) relative to the best model (ΔAIC), relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  The top model suggested seasonal occupancy with colonization and detection held constant 
representing populations in a non-Markovian equilibrium. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
colinization (γ) 

Probability of 
extinction (ε) 

Probability of detection 
(p) 

    Constant Constant NA Constant 0 0.8646 3 239.72 
Constant Constant Constant Varied between season 6.62 0.0316 7 238.34 
Constant Varied between survey 1-γ Varied between season 6.88 0.0277 10 232.60 
Constant Varied between survey NA Varied between season 7.11 0.0247 10 232.83 
Constant Constant 1-γ Varied between season 7.66 0.0188 7 239.38 
Constant Constant Constant Varied between season 8.18 0.0145 8 237.90 
Constant Constant NA Varied between survey 8.83 0.0105 16 222.55 
Constant Constant Constant Varied between survey 10.51 0.0045 17 222.23 
Constant Varied between season Varied between survey Varied between season 11.21 0.0032 14 228.93 
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Table I4- Full set of multi-season occupancy model candidates for Canis latrans showing the difference in Akaike’s Information 
Criterion (AIC) relative to the best model (ΔAIC), relative support for each model or AIC weight (w), the number of parameters (K), 
and -2 times the logarithm of the likelihood.  The top model shows probability of occupancy varying between control and turbine 
areas, colonization as a constant, and the probability of detection varying with mean precipitation. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
colonization (γ) Probability of detection (p) 

    Varied between area Constant Mean precipitation 0 0.1979 5 231.03 
Varied between area Constant Mean precipitation + Distance to nearest building 0.6 0.1466 6 229.63 
Varied between area Constant Mean precipitation + Varied between location 1.28 0.1043 6 230.31 
Varied between area Constant Constant 1.67 0.0859 4 234.7 
Varied between area Constant Mean precipitation + Mean temperature 2 0.0728 6 231.03 

Varied between area Constant 
Mean precipitation + Distance to nearest building 
+ Varied between location 2.06 0.0706 7 229.09 

Varied between area Constant Distance to nearest building 2.63 0.0531 5 233.66 

Varied between area 
Varied between 
land use Constant 2.84 0.0478 5 233.87 

Varied between area Constant Mean temperature 2.94 0.0455 5 233.97 
Varied between area Constant Varied between location 3.1 0.042 5 234.13 
Varied between area Constant Varied between location 3.13 0.0414 5 234.16 
Varied between area Constant Human activity index 3.57 0.0332 5 234.6 

Varied between area Constant 
Varied between location + Distance to nearest 
building 4.22 0.024 6 233.25 

Constant Constant Constant 4.69 0.019 3 239.72 
Varied between area Constant Human activity index + Varied between location 5.04 0.0159 6 234.07 
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Table I5- Full set of seasonal occupancy model candidates for Vulpes velox showing the difference in Akaike’s Information Criterion 
(AIC) relative to the best model (ΔAIC), relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  The top model suggested seasonal occupancy with colonization held constant and detection 
varying between seasons, representing populations in a non-Markovian equilibrium. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
colinization (γ) 

Probability of 
extinction (ε) 

Probability of detection 
(p) 

    Constant Constant NA Varied between season 0 0.4928 8 213.4 
Constant Constant 1-γ Varied between season 1.47 0.2363 8 214.87 
Constant Constant NA Varied between season 2 0.1813 9 213.4 
Constant Constant NA Constant 5.12 0.0381 3 228.52 
Constant Varied between season NA Varied between season 5.16 0.0373 11 212.56 
Constant Varied between season 1-γ Varied between season 7.28 0.0129 11 214.68 
Constant Varied between season Varied between season Varied between season 12.14 0.0011 15 211.54 
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Table I6- Full set of multi-season occupancy model candidates for Vulpes velox showing the difference in Akaike’s Information 
Criterion relative to the best model (ΔAIC), relative support for each model or AIC weight (w), the number of parameters (K), and -2 
times the logarithm of the likelihood.  The top model showed probability of occupancy varying between control and turbine areas, 
colonization as constant, and the probability of detection varying between seasons, field and roadway locations, and mean 
precipitation. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
colinization (γ) Probability of detection (p) 

    Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation 0 0.123 11 182.47 

Varied 
between area Constant Varied between season + Varied between location 0.63 0.0898 10 185.1 
Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Mean temperature 0.73 0.0854 12 181.2 

Varied 
between area Constant Varied between season + Varied between location 1.04 0.0731 10 185.51 
Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Distance to nearest building 1.14 0.0696 12 181.61 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building 1.22 0.0668 13 179.69 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Human activity index 1.3 0.0642 12 181.77 

Varied 
between area Constant 

Varied between season + Varied between location + Varied 
between land use 1.34 0.0629 11 183.81 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Mean temperature 1.75 0.0513 12 182.22 

Varied 
between area Constant 

Varied between season + Varied between location + 
Distance to nearest building 1.91 0.0473 11 184.38 
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Table I6- Continued. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
colinization (γ) Probability of detection (p) 

    Varied 
between area Constant 

Varied between season + Varied between location + Human 
activity index 1.96 0.0462 11 184.43 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
temperature 1.98 0.0457 11 184.45 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Human activity 
index 2.17 0.0416 13 180.64 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Mean temperature 2.37 0.0376 13 180.84 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Mean temperature 2.73 0.0314 14 179.2 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Human activity index 2.93 0.0284 14 179.4 

Varied 
between area Constant 

Varied between season + Varied between location + Human 
activity index + Distance to nearest building 3.41 0.0224 12 183.88 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Mean temperature + Human activity index 4.5 0.013 15 178.97 

Varied 
between area Constant Varied between season + Human activity index 15.16 0.0001 10 199.63 
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Table I6 Continued. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
occupancy (ψ) Probability of occupancy (ψ)     

Varied 
between area Constant Varied between season 15.26 0.0001 9 201.73 
Varied 
between area Constant Varied between season + Varied with land use 15.47 0.0001 10 199.94 
Varied 
between area Constant Varied between season + Distance to nearest building 16.07 0 10 200.54 
Varied 
between area Constant Varied between season + Mean precipitation 16.29 0 10 200.76 
Varied 
between area Constant Varied between season + Mean temperature 16.39 0 10 200.86 

Varied 
between area 

Varied 
between land 
use Varied between season 17.19 0 10 201.66 

Constant Constant Varied between season 24.93 0 8 213.4 
Varied 
between area Constant 

Varied between season + Varied between location + 
Distance to nearest building 1.91 0.0473 11 184.38 

Varied 
between area Constant 

Varied between season + Varied between location + Human 
activity index 1.96 0.0462 11 184.43 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
temperature 1.98 0.0457 11 184.45 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Human activity 
index 2.17 0.0416 13 180.64 
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Table I6- Continued. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
occupancy (ψ) Probability of occupancy (ψ)     

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Mean temperature 2.37 0.0376 13 180.84 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Mean temperature 2.73 0.0314 14 179.2 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Human activity index 2.93 0.0284 14 179.4 

Varied 
between area Constant 

Varied between season + Varied between location + Human 
activity index + Distance to nearest building 3.41 0.0224 12 183.88 

Varied 
between area Constant 

Varied between season + Varied between location + Mean 
precipitation + Varied between land use + Distance to 
nearest building + Mean temperature + Human activity index 4.5 0.013 15 178.97 

Varied 
between area Constant Varied between season + Human activity index 15.16 0.0001 10 199.63 
Varied 
between area Constant Varied between season 15.26 0.0001 9 201.73 
Varied 
between area Constant Varied between season + Varied with land use 15.47 0.0001 10 199.94 
Varied 
between area Constant Varied between season + Distance to nearest building 16.07 0 10 200.54 
Varied 
between area Constant Varied between season + Mean precipitation 16.29 0 10 200.76 
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Table I6- Continued. 

Model ΔAIC w K -2*log(L) 
Probability of 
occupancy (ψ) 

Probability of 
occupancy (ψ) Probability of occupancy (ψ)     

Varied 
between area Constant Varied between season + Mean temperature 16.39 0 10 200.86 

Varied 
between area 

Varied 
between land 
use Varied between season 17.19 0 10 201.66 

Constant Constant Varied between season 24.93 0 8 213.4 
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Table I7- Full set of multi-season, species co-occurrence occupancy models explaining the interaction between dominant Canis 
latrans (species A) and Vulpes velox (species B) showing the difference in Akaike’s Information Criterion relative to the best model 
(ΔAIC), relative support for each model or AIC weight (w), and the number of parameters (K).  Occupancy models were either: (1) 
unconditional, where presence of V. velox was independent of presence of C. latrans (ψB); or (2) conditional, where presence of V. 
velox was dependent on the presence of C. latrans (ψBA and ψBa).  When V. velox occupancy was unconditional only one parameter 
was estimated.  When V. velox occupancy was conditional, two parameters were estimated for the presence and absence of C. latrans.  
Three detection models where either: (1) V. velox detection probability was independent of C. latrans presence and detection (pA,pB); 
(2) V. velox detection probability was dependent on C. latrans presence but not detection (pA,pB,rB); or (3) V. velox detection 
probability was dependent on both C. latrans presence and detection (pA,pB,rBA,rBa).  Seasonal changes of probability of colonization 
and extinction was held constant throughout. 

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Probability of occupancy 
for Canis latrans (ψA) 

Probability of 
occupancy for 
Vulpes velox (ψB) 

Probability of occupancy 
for Vulpes velox when 
Canis latrans is present 
(ψBA) 

Probability of occupancy for 
Vulpes velox when Canis 
latrans is absent (ψBa) 

Conditional Constant NA Varied between area Constant 

Conditional Varied between area NA Varied between area Constant 

Conditional Varied between area NA Constant Constant 

Unconditional Varied between area Constant NA NA 

Conditional Varied between area NA Varied between area Varied between area 
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Table I7- Continued. 

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox 
given that Canis 
latrans is absent 
(pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 
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Table I7- Continued.  

ΔAIC w K 

      

0 0.6426 17 

3.74 0.099 18 

3.77 0.0976 17 

5.42 0.0428 19 

5.42 0.0428 19 
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Table I7- Continued. 

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Conditional Varied between area NA Constant Varied between area 

Unconditional Constant 
Varied between 
area NA NA 

Conditional Constant NA Constant Varied between area 

Conditional Varied between area NA Varied between area Constant 

Conditional Varied between area NA Constant Constant 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox 
given that Canis 
latrans is absent 
(pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 
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Table I7- Continued.  

ΔAIC w K 

      

5.51 0.0409 18 

7.7 0.0137 18 

10.2 0.0039 17 

10.71 0.003 18 

11.31 0.0022 17 
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Table I7- Continued.  

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Unconditional Varied between area Constant NA NA 

Conditional Varied between area NA Varied between area Varied between area 

Unconditional Varied between area 
Varied between 
area NA NA 

Conditional Varied between area NA Constant Varied between area 

Conditional Varied between area NA Constant Constant 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox 
given that Canis 
latrans is absent 
(pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Independent NA 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA NA NA 
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Table I7- Continued. 

ΔAIC w K 

      

11.9 0.0017 17 

12.3 0.0014 19 

12.62 0.0012 19 

12.88 0.001 18 

12.96 0.001 17 
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Table I7- Continued.  

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Conditional Varied between area NA Constant Constant 

Conditional Constant NA Varied between area Constant 

Unconditional Constant Constant NA NA 

Unconditional Constant 
Varied between 
area NA NA 

Conditional Varied between area NA Varied between area Varied between area 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox 
given that Canis 
latrans is absent 
(pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Independent NA 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA NA NA 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Independent NA 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA NA NA 

Dependent Presence 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Independent NA 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA NA NA 
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Table I7- Continued. 

ΔAIC w K 

      

12.98 0.001 18 

13.58 0.0007 17 

13.97 0.0006 10 

14.07 0.0006 18 

14.54 0.0004 19 
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Table I7- Continued.  

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Conditional Varied between area NA Constant Varied between area 

Unconditional Varied between area 
Varied between 
area NA NA 

Conditional Constant NA Constant Varied between area 

Conditional Constant NA Constant Constant 

Unconditional Constant Constant NA NA 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox given 
that Canis latrans 
is absent (pB) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present (rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Independent NA 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location NA NA NA 

Independent NA 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location NA NA NA 

Dependent Presence 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location 
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Table I7- Continued. 

ΔAIC w K 

      

14.58 0.0004 18 

14.58 0.0004 19 

15.59 0.0003 17 

15.98 0.0002 16 

15.99 0.0002 16 
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Table I7- Continued.  

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Unconditional Constant 
Varied between 
area NA NA 

Unconditional Constant NA Varied between area Constant 

Conditional Constant NA Constant Varied between area 

Unconditional Varied between area Constant NA NA 

Conditional Constant NA Constant Constant 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox given 
that Canis latrans 
is absent (pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Independent NA 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location NA NA NA 

Independent NA 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location NA NA NA 

Independent NA 
Mean 
precipitation 

Mean precipitation 
+ Varied between 
location NA NA NA 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean precipitation 
+ Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 
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Table I7- Continued. 

ΔAIC w K 

      

17.03 0.0001 18 

17.27 0.0001 17 

18.44 0.0001 17 

20.44 0 17 

21.67 0 16 
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Table I7- Continued.  

Occupancy model 

Vulpes velox 
presence 
compared to 
Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox 
presence compared 
to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Vulpes velox presence 
compared to Canis latrans 

Unconditional Constant Constant NA NA 

Unconditional Varied between area Constant NA NA 
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Table I7- Continued.  

Detection model 

Vulpes velox detection 
compared to Canis 
latrans 

Probability of 
detection for 
Canis latrans 
given that 
Vulpes velox is 
absent (pA) 

Probability of 
detection for 
Vulpes velox 
given that Canis 
latrans is absent 
(pB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
(rB) 

Probability of 
detection for Vulpes 
velox given Canis 
latrans is present 
and detected (rBA) 

Probability of 
detection for 
Vulpes velox given 
Canis latrans is 
present and 
undetected (rBa) 

Dependent 

Presence 
and 
detection 

Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location 

Mean precipitation 
+ Varied between 
location NA NA 

Independent NA 
Mean 
precipitation 

Mean 
precipitation + 
Varied between 
location NA NA NA 
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Table I7- Continued. 

ΔAIC w K 

      

22.38 0 16 

23.58 0 17 
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