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Abstract 
Development of marine renewable energy (MRE) has been hindered by the need for information 
about potential environmental effects. Monitoring of these effects, however, is expensive and it 
is not always clear how to efficiently collect data for a wide range of possible effects. Monitoring 
guidelines are needed for developers and regulators to use when planning and consenting MRE 
projects. Predictive modeling of environmental effects can help determine what needs to be 
monitored, while also estimating what effects might occur and their magnitude. Modeling for 
environmental effects of MRE is at different stages of maturity and applicability depending upon 
the type of impact being considered.  

We reviewed models of six categories of stressors: collision risk, underwater noise, 
electromagnetic fields (EMFs), changes in habitat, displacement of marine species, and 
changes in oceanographic systems. Receptors were species or groups of species potentially 
affected by the stressors. Collision risk models are a developing field of modeling specific to 
MRE and are limited by insufficient data regarding avoidance or evasion and the outcomes of 
collisions, and by the challenges of monitoring animals very close to operating devices to derive 
such data. Underwater noise models are well-developed but applications to MRE remain few, 
with a limited understanding of the behavioral and long-term effects of noise on animals and 
populations. The physics of EMFs is well-understood, but we did not find any models for MRE or 
close analogs. As seen with the previously mentioned stressors, the effects of EMFs on 
physiology and behavior and how they affect populations over time are not well-understood.  

Models of habitat changes have been developed for other purposes and can be used for MRE, 
but the few published studies are primarily theoretical, because of the lack of field testing and 
validation with MRE projects. Displacement of marine species has not yet been modeled. To 
model displacement, approaches used for the effects of underwater noise on populations and 
for changes in habitat could be adapted. This would require measuring the movement of 
animals relative to the presence of devices (for displacement) and distinguishing it from other 
drivers of behavior (noise, changes in habitat conditions). Hydrodynamic and wave models for 
predicting changes in oceanographic systems are well-developed, but their validation with data 
from active MRE projects is limited. These models frequently provide physical inputs to models 
of other stressors, so their accuracy is critical for overall estimates of stressor effects. 

Most models require site-specific data for environmental parameters and species distribution. 
Physiological, behavioral or demographic data are best collected from the project site, but may 
be obtained from other sources when necessary. Monitoring of physical data is relatively 
straightforward, though consideration must be given to spatial coverage and time frames 
needed to adequately measure natural variability. Behavioral data for modeled species and 
linkages between stressors and effects on survival and reproduction present significant 
information gaps. Validation of MRE models is uncommon and mostly applied to baseline 
conditions because of the small number of operating MRE devices.  

This review provides insight into the options available for modeling MRE-related stressors, the 
information needed to parameterize models, and development needs. The goal of strengthening 
the connection between models and monitoring is to work toward guidelines for effective and 
consistent monitoring, better use of monitoring data, and improved project evaluation. Common 
information needs among models for different stressors can strategically inform monitoring 
campaigns and create efficiencies for projects as a whole. Project characteristics should be 
compared to potential models because there is no universal set of models suitable for all MRE 
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devices and locations. Modeling should be used iteratively with ongoing monitoring to 
characterize uncertainties and as a basis for consultation between developers and regulators. 
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Summary 
The objective of the model review documented here was to identify models that have been 
applied to marine renewable energy (MRE) projects (i.e., tidal, wave, or current energy devices) 
and that can inform environmental risk assessments that are conducted as part of project 
planning and consenting. We describe how models have been applied, data requirements, 
strengths and weaknesses, and how monitoring can support model implementation, validation, 
and development. We also discuss how model approaches can be adapted to different 
environments and devices.  

Models can be used to improve monitoring protocols by indicating what data are most important 
and the scale and resolution at which they should be collected. This report provides a starting 
point for a data identification process that would include site- and project-dependent 
considerations. We also describe the uncertainties and gaps in model development and where 
additional research would improve the ability to efficiently evaluate risk. We aimed to synthesize 
what is known about modeling approaches, rather than specific findings of modeling studies 
about environmental risk. The current state of knowledge about the environmental effects of 
MRE from field, laboratory, and modeling research is provided by Copping and Hemery (2020). 

MRE projects can affect the environment through six main stressors, categorized as follows in 
this report: collision risk, underwater noise, electromagnetic fields (EMFs), changes in habitat, 
displacement of marine species, and changes in oceanographic systems. The stressors affect 
receptors, defined in this report as the organisms (typically animals) and their habitats . Most 
receptors are species or groups of species that are of interest because they are ecologically 
important and/or protected (e.g., marine mammals, seabirds) or because they are of commercial 
and/or recreational value (e.g., fish, shellfish). 

Models are tools for focusing monitoring because they synthesize the data that are collected 
and help the user quantify the remaining uncertainties and their impacts on decisions. 
Numerical models can also be used directly for environmental assessment of planned devices 
and evaluation of their operation. Along with predicting the likelihood of outcomes that have not 
yet occurred, they can be used to identify and streamline what field data are needed and how 
they should be collected.  

The range of potential stressors and receptors  related to MRE calls for diverse modeling 
approaches, many having physical and biological components. The level of development of 
available models and their application to MRE varies among stressors, as does the availability 
of information and how site-specific it must be. Understanding the range of models currently 
available and how to use them would benefit from a thorough review of information 
requirements, the relationship between modeling and monitoring, model development needs, 
and commonalities among models and stressors that can improve monitoring efficiency.  

For each stressor, we identified the model approaches and software that have been used, the 
attributes and applications of the models, and their strengths and weaknesses. We compiled 
information about parameters and inputs with a focus on their applicability to devices, receptors, 
and environments, and the extent to which the models and parameters were general or site-
specific. We also described the use of field data for parameterization and/or validation. After 
reviewing stressors, we identified commonalities in information needs to inform cost-effective 
monitoring and we synthesized gaps and uncertainties in the models and monitoring 
approaches. 
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Below, we summarize each stressor and key findings of the review. 

Collison Risk 

The collision risk stressor refers to the likelihood of animals coming into contact with MRE 
devices, particularly tidal turbines or kites. The risk of interaction with devices has been 
modeled from two perspectives: the risk of individuals encountering or colliding with devices, 
and the rate of mortality from collisions that would harm the overall population.  

Encounter rate models determine how often the animal comes close enough to the device that it 
may collide with the device if it does not take evasive action, whereas collision risk models 
determine the probability of the animal actually coming into contact with the device. Both the 
collision risk and encounter rate models use information about the structure of the device, the 
shape of the animal, and its swimming and diving behavior. Collision risk models can include 
the ability of the animal to avoid (from a longer distance) or evade (from immediately near) a 
turbine, but realistic estimates of these parameters are generally not available. Information 
about whether a collision would cause injury or death is also scarce. Observation of behaviors 
near turbines and collision outcomes is difficult but critical for improving these models.  

Population-centric approaches work backward from species demographics to determine rates of 
fatal collisions that would still allow the population to sustain a particular abundance or growth 
rate. These models require survival and reproductive parameters. Estimating these parameters 
requires extended population surveys, but published values and demographic models may be 
available for well-studied species.  

No reviewed collision risk studies included model validation; monitoring of the behavior of 
animals near MRE devices and the outcomes of collisions are necessary for predicting both the 
immediate and long-term risks of interactions with devices. 

Underwater Noise 

The underwater noise stressor includes the effects of noise produced by devices on species’ 
health or behavior. Underwater acoustic modeling is well-developed for diverse applications, but 
relatively few studies have involved MRE devices. Noise produced by pile driving during 
offshore wind turbine construction has been modeled more frequently, but the differing nature of 
the noise and deployment locations limits the relevance of pile driving models to MRE.  
Acoustic models can estimate transmission loss of sound by distance or directly estimate sound 
propagation through water and sediment over short (nearfield) or long (farfield) distances. No 
single noise model is appropriate for every situation. Noise frequency, spatial scale, 
environmental complexity, and information availability should guide model selection. Models can 
be used to estimate the effects on species using maps of sound pressure or sound threshold 
distances, species distribution in response to noise, or the population effects if survival or 
reproduction might be affected by noise. 

Nearly all propagation models require some level of spatial data about the seabed and water 
properties, which may be provided by a hydrodynamic model. Transmission loss models require 
field measurements of the noise at different distances for parameterization, but most 
propagation models do not. Sound levels at the source may be empirically measured or 
modeled. Modeling biological effects requires auditory thresholds for behavior or injury and may 
also require movement and demographic rates, which can be derived from monitoring or, in 
some cases, literature.  
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Field validation of noise models for MRE has been limited, and is complicated by spatial and 
temporal variability. Measurements taken regularly at multiple observation points for operating 
devices could greatly improve the process of choosing models and accurately predicting noise 
levels for a particular type of device. Noise that is not intense enough to harm animals may have 
longer-term effects on behaviors like foraging and breeding, but behavioral responses need 
further study to improve predictions on population-level effects. 

Electromagnetic Fields 

EMFs generated by MRE devices or cables have the potential to affect the physiology or 
behavior of species that are sensitive to them, but these responses and their long-term effects 
are not well-understood. The physics of EMFs are established and simplified conditions are 
straightforward to model, but there are only a few examples of models in real-world conditions 
like submarine cables buried in heterogeneous sediments. No models have been applied to 
MRE projects, either for transmission cables or for the MRE generators themselves. Field 
measurements of marine EMFs for model validation and for measuring animal responses are 
also very limited. Effects on animal movement and consequences for health or reproduction are 
not well-understood and have not been modeled. Overall, EMF models for MRE are in nascent 
stages and require more modeling of complex layouts, field validation, and species-response 
data from controlled laboratory studies and field observations in order to develop MRE-specific 
models that address the potential for long-term effects. 

Changes in Habitat 

The physical and biotic components of habitat can be altered directly by the presence of devices 
and their foundations or anchors and by indirect effects on benthic or pelagic conditions. 
Species and habitat distribution models are covered extensively in the literature, but only a few 
studies have addressed MRE, primarily tidal turbines that were planned or had been previously 
tested (none actually operational devices).  

Several statistical methods have been used to estimate the importance of physical 
characteristics such as substrate, shear stress, currents, and water properties on species 
distribution, based on observations without devices present. They then predict the effects of 
MRE devices on those physical characteristics using hydrodynamic and sediment models. With 
that output, the statistical model results can be used to estimate any alterations to species 
distribution. These statistical methods vary by technique, but all require physical data from 
surveys or modeling before and after device deployment and some metrics of species 
distribution before deployment for prediction and after deployment for model validation.  

Changes in food webs, such as those caused by the formation of artificial reefs, can also be 
assessed using ecosystem models; however, these models can become highly complex and 
require extensive biological information. Ecosystem models have been used to estimate the 
effects of hypothetical MRE devices acting as artificial reefs. Biophysical models have also been 
used to study the effects of devices as stepping stones for larval dispersal or the effects of 
changes in currents on plankton-based food webs. 

The accuracy of habitat change models depends on the quality of the species occurrence or 
abundance surveys and having informative physical data at sufficiently high resolution. 
Ecosystem and food web models also require many parameters for the physiology of each 
species. The accuracy of the physical models used to predict changes in the substrate and 
water column will affect the predictive capabilities of the habitat models. 
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Displacement of Marine Animals 

Marine species can be displaced when their movements and ranges change because of the 
presence of MRE devices, even if suitable habitat is still present. Displacement due solely to 
device presence (rather than other stressors, like noise) has not been modeled in any available 
studies. These effects can be addressed using an approach similar to the models for predicting 
noise effects on populations: models of individual movement that include behavioral responses 
to devices, at scales larger than those considered by collision risk models. This approach 
requires individual-based models that may use hydrodynamic model output to describe the 
physical conditions. The models can include other influences on behavior, such as prey 
distribution. As with models for other stressors, the lack of behavioral data and limited ability to 
separate the effects of multiple stressors on changes in species distribution are obstacles for 
displacement modeling. Statistical approaches, like those used in habitat change models, could 
also be adapted for displacement modeling if distances and/or directions from devices were 
used as predictor variables, but similar observational data needs apply. 

Changes in Oceanographic Systems 

MRE devices inherently alter the flow of water, waves, and energy in the surrounding 
environment and have the potential for both direct effects on species from these physical 
changes and indirect effects on other stressors such as habitat change and noise. 
Consequently, accurately modeling these effects is fundamental to the accuracy of many other 
models.  

Software for modeling water and sediment dynamics in marine environments is well-
established. Coastal hydrodynamic model software packages such as FVCOM, Delft3D, MIKE 
3, TELEMAC 2D and Fluidity are used to predict the spatiotemporal dynamics of water surface 
elevation, currents, temperature, salinity, and other constituents like nutrients or chlorophyll. 
Wave models such as SWAN predict wave dynamics in shallow and deep water, and are often 
coupled with hydrodynamic models.  

Placing an MRE device or array in the hydrodynamic model domain allows estimation of the 
effects on the energy and physical qualities of the system. Different models use different scales, 
resolutions, and dimensionalities, and strengths and weaknesses for different modeling 
situations based on the simplifying assumptions they make to reduce computing time. 
Computational fluid dynamic models and certain wave models are specialized for smaller scales 
and fine resolutions to model in detail the areas or volumes near devices. All require spatial data 
about bathymetry, substrates, tides, and other physical characteristics. Some input data are 
available through national or international databases; other input data require site-specific data 
collection, which can be challenging and time-consuming for variables that change both spatially 
and temporally. Wave spectra inputs for wave models can be particularly challenging to collect, 
because they can vary considerably by location and weather condition.  

Model validation requires time series of the data output by the model, and adequate coverage of 
the spatial domain to assure accuracy in areas of particular interest. Some routinely collected 
data can be used for model calibration and validation, but nearshore or constrained areas may 
not be routinely monitored.   
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Synthesis 

Model availability and maturity vary by stressor. Most models have been developed for other 
applications, but all stressors have approaches that can be adapted and further developed to 
assess the effects of MRE devices. There are no single “right” models for use for any particular 
stressor and all have significant room for development. In most cases, there are multiple 
approaches to choose from based on device type, site characteristics, data availability, and any 
specific regulatory requirements or research objectives.  

Some models can be applied to multiple stressors. For example, species distribution models 
can be used to assess changes in habitat (physical characteristics of the environment, 
distribution of other biota) and species displacement (distribution of the focal species based on 
device presence). Hydrodynamic models can be integrated with or provide time-series input 
data for a number of models for other stressors, so model choice, accuracy of input data, and 
validation are especially important.  
 
There are commonalities in data needs across models. Information about the physical setting— 
bathymetry, sediment type, water properties—is required for most models. Models for collision 
risk, species displacement, and population effects of noise require some combination of 
information about swimming/diving behavior and species distribution and dispersal. Any model 
estimating population-level effects will at minimum require survival and reproductive 
parameters. Some data can be collected once for a site or for a short period of time, while other 
data may require ongoing monitoring for model parameterization and validation. Monitoring 
should consider the natural variation in physical parameters like water properties and seasonal 
behavior or changes in species distribution to assure variability is adequately characterized.  
 
Obtaining species data is a common challenge for modeling studies because only a few highly 
studied species are sufficiently described in the literature. Site-specific data about species 
demographics are ideal but not required, because they require potentially high-effort monitoring 
for extended time periods. 

Most of the models in this review have been used in theoretical studies or in environmental 
assessments prior to installation of MRE devices. Modeling studies of operating devices are 
rare, in part because of the limited number of operational devices. Model validation varies from 
extensive, especially for physical models, to none for models incorporating behavior, in 
accordance with the degree of difficulty inherent in collecting the necessary data. The limited 
testing and deployment of MRE devices to date is also an obstacle to collecting data for 
validation. Model validation with monitoring data from operational devices remains a significant 
task. 

Next Steps 

One or more models may be suitable for a project depending on the type of device, the 
characteristics of the site, existing information about the project and any previous deployments 
of the device, and whether there are receptors of particular interest (e.g., protected species.) To 
apply this review to field testing, the first steps would be to describe the site, device, expected 
nature of stressors, and potential receptors. That information should then be aligned with 
modeling approaches reviewed herein to identify the most suitable approaches to modeling and 
the degree of adaptation that may be necessary. In some cases, software may be available to 
apply existing models. In other cases, particularly for less-studied stressors or devices, 
additional model development may be needed.  
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After selecting an approach, existing information can be compared to data needs for the model 
to determine what data need to be collected and at what spatial and temporal resolution 
(fineness, frequency) and scale (total area, length of time). Modeling should be an iterative 
process in accordance with monitoring to update assessments of remaining uncertainties and 
future monitoring needs and priorities.  
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Acronyms and Abbreviations 
1D one-dimensional 
2D two-dimensional 
3D three-dimensional 
AcTUP Acoustic Toolbox User-interface and Post-processor 
AC alternating current 
AI aggregation index 
AUV autonomous underwater vehicle 
BRT Boosted Regression Tree 
CAD computer-aided design 
CFD computation fluid dynamics (model) 
CHD coastal hydrodynamic (model) 
CRM collision risk model 
DC direct current 
DEPONS Disturbance Effect on the Harbour Porpoise in the North Sea 
EIA environmental impact assessment 
EMF electromagnetic field 
ENFA ecological niche factor analysis 
ERM encounter rate model 
ETPM exposure time population model 
EwE Ecopath with Ecosim 
FEM finite element model/finite element method 
FVCOM Finite Volume Coastal Ocean Model 
GAM generalized additive model 
GAMM generalized additive mixed model 
GLM generalized linear model 
GLMM generalized linear mixed-effect model 
GPS Global Positioning System 
GSM Global System for Mobile Communication 
HAMMER Hydro-Acoustic Model for Mitigation and Ecological Response 
HVDC high-voltage direct current 
IBM individual-based model 
KHPS Kinetic Hydropower System 
MaxEnt Maximum Entropy 
MRE marine renewable energy 
MRED marine renewable energy device 
OES Ocean Energy Systems 
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PCoD population consequence of disturbance 
PE parabolic equation 
PNNL Pacific Northwest National Laboratory 
PTS  permanent threshold shift 
RF Random Forest 
ROV remotely operated vehicle 
SDM species distribution modeling 
SEL sound exposure level 
SEMLA Swedish Electromagnetic Low-noise Apparatus 
SPL sound pressure level 
SSM state-space model 
SVR support vector regression 
SWAN Simulating WAves Nearshore 
TFiT Triton Field Trials 
TL transmission loss 
TTS temporary threshold shift 
VOWTAP Virginia Offshore Wind Technology Advancement Project 
WAMIT Wave Analysis Massachusetts Institute of Technology 
WEC wave energy converter 
WI wavenumber integration 
WSE water surface elevation 
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1.0 Introduction 
This report is part of the Triton Initiative at the Pacific Northwest National Laboratory (PNNL), 
and the Triton Field Trials (TFiT) project. The objective of Triton is to support development of 
environmental monitoring technologies for marine renewable energy (MRE) and quantification of 
environmental impacts of MRE devices. This model review advances the TFiT goal of 
developing monitoring and data analysis guidelines for marine energy deployment. It describes 
the current state of development of models for quantifying environmental effects of MRE, the 
data requirements for the models, and how models can be used together with monitoring to 
improve efficiency and effectiveness of data collection and analysis. 

1.1 Issue 

Development of MRE (energy extracted from tides, waves, or currents) has been hindered by 
uncertainty about the effects of MRE devices on the local ecosystem. Estimation of the 
environmental effects of devices prior to their deployment is a legal requirement in many 
countries. Assessments of new technologies are challenging because of the lack of existing or 
analogous devices. Similarly, regulators have found it difficult to establish assessment 
guidelines and standard monitoring protocols for MRE developers. Environmental monitoring 
and data analysis can be resource-intensive and deter the advancement of MRE projects and 
technologies, especially if unnecessary data are collected or useful data are not analyzed. 
Commitments to monitoring operating devices can reduce uncertainty for future development, 
but monitoring must be strategic to be cost-effective. The MRE industry needs systematic 
monitoring protocols that are agreed upon by the regulatory and research and development 
communities (Mendoza et al. 2019).  

One approach to addressing uncertainty in the shortage or absence of empirical data is to apply 
numerical models to estimate outcomes and quantify information needs. The development of 
quantitative models includes identifying the states and processes that must be understood to 
describe a system and make predictions. Models synthesize existing information by using 
empirical data to parameterize and validate model functions. In doing so, information gaps 
become evident and the model can inform the user about the effects of those uncertainties and 
the importance of having additional data.  

Applying models to evaluate MRE is challenging because the potential stressors on the 
environment encompass multiple scientific disciplines, from physics to population biology. The 
stressors require very different modeling approaches, some of which require specialized 
software or expertise. Most model approaches in this review were not originally developed to 
assess the effects of MRE devices, but they have been, or could be, adapted for MRE use. 
Additional changes may be necessary for different types of devices. 

Models can be used while planning MRE projects for environmental effects assessments. They 
can also be used for operating devices to estimate hard-to-measure environmental effects using 
data that are easier to collect. Models can be informed by information specific to the project or 
adapt data collected for similar projects. Linking models and monitoring programs increases 
monitoring efficiency and effectiveness while also improving the models (Cleasby et al. 2020; 
Goh et al. 2020; Shabtay et al. 2018).  

Models that can be readily adapted to new locations or devices facilitate further development by 
reducing up-front research and data collection costs and time. Most models are transferrable to 
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different locations if enough site-specific information is available (e.g., bathymetry, water and 
substrate properties, species distribution). However, some locations or spatial scales may 
require a different modeling approach. For example, models developed for open, deeper water, 
and a relatively flat seabed could be unsuitable for nearshore locations that have complex 
bathymetries. Higher model resolutions may be needed to model complex environments or 
arrays of devices that may have interacting environmental effects. Simpler models trade ease of 
use and fewer parameters for more realistic model processes. 

Species models and their demographic and behavioral parameters are more readily transferred 
to new locations, but with consideration of possible local effects on behaviors or demographics. 
Model research and validation at existing or test sites can be used to develop guidelines for how 
models can be transferred to new locations, information requirements for the site, and ongoing 
monitoring needs for model validation. 

Development of improved, standardized monitoring protocols and modeling approaches for 
MRE should be approached comprehensively, rather than by individual stressors, because 
there are potential efficiencies to be gained by aligning data requirements. Identifying 
overlapping needs and focusing on the value of the necessary monitoring will provide the 
greatest amount of information from limited data sets and improve the efficiency of monitoring 
and reporting. A holistic assessment of modeling for MRE will determine which models are 
available, what information they use, and what work needs to be done to assure models 
adequately address stressors and are accessible to end users. 

1.2 Background 

Models of MRE environmental effects have been reviewed briefly (e.g., Bender et al. 2017) or 
as part of a broader review with a focus on their scientific conclusions (Copping et al. 2016; 
Copping and Hemery 2020). A thorough evaluation of model approaches, structures and 
techniques with an emphasis on data requirements has not previously been completed.  

The number of peer-reviewed model studies specific to MRE remains small. A portion of the 
studies focused on theory (i.e., used simplified or abstracted devices and/or environments) and 
thus did not consider monitoring requirements. Other studies were conducted for environmental 
assessment as a planning requirement and were not developed to complement monitoring for 
operating devices. Environmental assessments conducted to meet regulatory requirements for 
proposed MRE devices often use overly simple models because of insufficient data, time, or 
resources. There is a shortage of readily available alternative modeling approaches or 
consistent guidelines for the minimum level of monitoring and modeling necessary to adequately 
assess the planned project.  

A larger number of published studies have addressed the construction and/or operation of wind 
turbines and arrays because they are more prevalent than MRE devices. Offshore wind 
installations introduce some stressors to the environment that may have relevance to MRE 
projects such as habitat changes near foundations and the possibility of underwater noise. 
However, although wind farms may cover large areas, wind turbines interact with the 
underwater environment far less directly and extensively than tidal, wave, or current devices 
and may be sited in less complex physical environments (i.e., farther offshore). Noise impacts of 
wind turbines are primarily associated with pile driving during construction rather than 
operations.  
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Overall, MRE projects have unique interactions with the environment that don’t have clear 
analogs to learn from. There are also fewer models of the high-energy and complex 
environments in which MRE devices would be sited for optimal power generation. These 
locations may not be adequately addressed by models that have only been developed in 
theoretical studies or low-complexity environments. 

This review is part of the TFiT project, which seeks to develop improved guidelines for 
monitoring and estimation of device-animal interactions with field testing of devices. A project 
objective is to contribute to improved guidance regarding data collection for MRE developers 
and regulators. This model review explains available modeling approaches and their strengths 
and weaknesses, with particular focus on the data needs of the models, how the models can 
direct monitoring efforts, and the uncertainties and gaps in model development that can be 
addressed with further research. For that reason, this review goes beyond identifying models 
that can be used for specific TFiT test devices to cover a broader set of conditions that may be 
relevant to potential MRE development efforts.  

1.3 Report Purpose, Scope, and Organization 

The objective of the review documented here is to identify existing models of the environmental 
effects of MRE and evaluate how they can inform monitoring protocols. We have identified 
models for a number of stressors, receptors, and devices. Stressors are the ways in which the 
installation, presence, and/or operation of MRE devices affect the surrounding environment and 
ecosystem (Boehlert and Gill 2010). We evaluated the following stressors defined by Copping 
and Hemery (2020): 

• collision risk  
• underwater noise  
• EMFs  
• changes in habitats  
• displacement of marine animals 
• changes in oceanographic systems. 

We focused on models that included stressors and biological receptors (i.e., species or groups). 
Receptors are ecosystem components (primarily biological) that may be altered by the stressor 
either directly or through changes in the environment. The most common receptors were marine 
mammals and fish. Seabirds, sea turtles, and a few invertebrate taxa were occasionally 
included in studies. In a few cases, receptors were functional groups or trophic levels within an 
ecosystem rather than individual species. When models including species were limited or not 
available, we also reviewed models of stressor effects on the physical environment that could 
be linked to biological receptors with additional model development.  

Models of environmental changes could be used to estimate the effects on ecosystem function 
and/or services, but a focus on animal species as receptors was far more common in the 
literature because of the prevalence of regulatory requirements focused on protected or 
commercially important species. In a few cases, devices were evaluated for their effects on 
sedimentation or shoreline erosion, which could be considered physical, rather than biological, 
aspects of ecosystem functions. 

The report is organized by stressor category. For each stressor, we first provide its definition 
and scope. We describe the types of models that have been applied for that stressor, example 
applications, their spatial and temporal scales, and the information required to parameterize and 
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initialize the models. We specifically note whether studies used monitoring data and any model 
validation that was performed. We focus on MRE-specific models but because they were 
usually limited in number, we also review similar models for the stressor to provide insight into a 
broader range of approaches. We then summarize the relationship between the models for that 
stressor and monitoring needs, and then the information and modeling gaps, uncertainties, and 
research and development needs.  

The review concludes with a synthesis that discusses model approaches, the types of devices 
that have been included, and model applications. We evaluate the level of development of 
models, how specialized they are to particular environments or devices, and what would be 
required to apply them to new devices and locations. We also summarize model parameters 
and inputs, identifying the most common and most critical information needs for the broadest 
range of modeling applications. These information needs can be a guide for monitoring, 
research to fill data gaps in existing models, and model validation. 

This review is not intended to duplicate the thorough science summaries provided in the OES-
Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable 
Energy Development Around the World (Copping and Hemery 2020). The State of the Science 
report describes and synthesizes the science findings of modeling studies, along with 
experimental and observational studies, as components of the full scope of research that has 
been conducted for each stressor. Our focus was not on what the conclusions of modeling 
studies have contributed to the overall understanding of MRE effects, but rather on the modeling 
techniques and their past and potential applications. 
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2.0 Methods 
Published models were identified in four main ways: 

• Searches of the Tethys Knowledge Base (Whiting et al. 2019) 

• Keyword searches on the Web of Knowledge database (Clarivate) 

• Models reviewed in the State of the Science reports (Copping et al. 2016; Copping and 
Hemery 2020) 

• Literature cited in other reviewed papers. 

We did not attempt to identify every applicable model study in the literature, but rather as many 
representative examples as we could locate. We attempted to identify all MRE-specific studies, 
but not all potentially relevant analogous cases were reviewed. Reports that were not part of 
peer-reviewed journals were used when they were the best examples of a model. If a report led 
to a journal publication, information from both may have been used to obtain model details. 
Books were used for background material about stressors and general modeling theory and 
approaches. 

Information about each model study was collected in tables and organized by stressor. The 
tables included information about the following: 

• category: broad category of model type (if needed) 

• model name/lineage: for any model given a name, and/or if it was based on previous 
publications 

• type of model: modeling approach 

• affiliation: institutional affiliation of authors 

• reference: author(s) and date of study 

• location: what area was modeled, if specified 

• type of stress: type of device, presence vs. operation, etc. 

• receptor group: species/taxa affected by the stressor 

• spatial scale: area or volume covered in the model 

• temporal scale: duration and time step  

• general inputs: categories of information required for parameterization, specification of the 
domain, initial conditions, time-series inputs, and sources 

• site-specific inputs: information used in specific published model applications and sources  

• outputs: information generated by the model 

• limits/constraints: situations or conditions that the model does not accommodate by design 
or because of lack of information 

• uncertainties: parts of the model or inputs that are included but informed by limited data; 
particularly uncertainties identified by the study author(s) 

• findings relevant to monitoring, verifying, and improving models: use of monitoring data in 
the model, model verification, or validation; uncertainties associated with monitoring 
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• applied to MRE: whether or not the study included MRE devices 

• sensors: sensors or other monitoring equipment identified in study, if any. 

Summaries of reviewed models are included in the Results section below. The complete tables 
are included in a supplement to this report. 
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3.0 Results 
The results of the review of models presented for each stressor category include the stressor 
definition and scope, model types and approaches, the relationship of the models to monitoring, 
and associated gaps and uncertainties.  

3.1 Collision Risk 

This section describes models of how likely animals are to encounter or collide with MRE 
devices, based on the characteristics of the device and the animal. Some models also estimate 
collision risk based on animal behavior, or estimate the effects of collision mortality on 
populations. 

3.1.1 Definition and Scope  

Any device or technology that moves has the potential to interact with organisms living in or 
moving through the area where the device is installed. After the installation of a turbine, animals 
have some probability of (1) encountering the turbine, which means they are close enough to 
need to quickly evade the turbine; (2) colliding with the turbine by making physical contact; and 
(3) being injured or killed by the turbine strike. These probabilities depend upon the size and 
shape of the device and animal and the animal’s behavior. Most of the studies reviewed for the 
collision risk stressor have involved tidal turbines and focused on identifying the proportion of 
organisms in an area that are at risk for collision. Few models assessed whether the collision 
would cause injury or mortality, and studies involving longer time scales or comparing risks of 
resident vs. migratory populations have not been conducted. The receptor groups covered for 
the collision risk stressor were seabirds (e.g., common murre, Atlantic puffin, northern gannet), 
marine mammals (e.g., killer whale, harbor seal, harbor porpoise), and fish (e.g., herring, 
salmon, sturgeon). 

3.1.2 Model Types and Approaches 

The types of models used to study collision risk include the following: 

• Collision risk models (CRMs) estimate the potential collision rate of individuals based upon 
the number of passages of an animal through a device. This is the likelihood of the animal 
having direct contact with part of the device. 

• Encounter rate models (ERMs) estimate the potential encounter rate of individuals with a 
device based upon the movement paths of animals and the volume swept by the device. An 
encounter is defined as being near the device but not yet in contact with it; if no evasive 
action is taken a collision may result. 

• Exposure time population models (ETPMs) assess the mortality rate due to collisions that 
can affect a population. 

Both CRMs and ERMs include characteristics of the species (e.g., size, behavior) and the 
physical characteristics of the device (Band 2016). The injury or mortality potentially caused by 
the collision has not been included in most CRMs and ERM studies. ETPMs focus on the effects 
of mortality caused by collisions at the population scale and do not include sublethal effects. 
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3.1.2.1 Collision Risk Models 

CRMs have commonly been used to study the risk of birds colliding with wind turbines (Band 
2012, 2016). They are now also applied to evaluate the collision probability of marine species 
with tidal turbines. The spatial scale for the collision rate estimate is usually in meters, 
immediately around the device of interest. To be able to estimate the probability of collision, the 
behavior of animals around devices should be included in CRMs. However, information about 
the avoidance and attraction of animals is rarely available and most of the models reviewed did 
not include such information. 

Most of the CRMs reviewed were applied to marine mammals. Thompson et al. (2016) 
estimated the number of harbor seals that would collide with a rotating tidal turbine in a 
hypothetical array in one year. The model included the characteristics and locations of the 
turbines and the swimming and diving behavior of the seals as estimated from telemetry data. It 
was assumed that the animal behaviors were not influenced by the presence of the turbines 
(i.e., avoidance and evasion were not included in the model) and that collisions were fatal. 
 
Wood et al. (2016) developed a CRM based on Band’s wind turbine model (Band 2012) and 
applied it to harbor porpoises at the Strangford Lough SeaGen turbine (Ireland). The model 
included avoidance, defined as the animal deliberately moving away from the turbine after 
detecting it, and estimated the number of collisions per year. Copping and Grear (2018) 
modeled killer whale, harbor seal, and harbor porpoise at three locations favorable for the 
installation of tidal turbines (Admiralty Inlet, United States; Lashy Sound, Scotland; and Minas 
Passage, Canada, respectively). Three identical turbines in an array were simulated at each 
location. Their model assessed the risk of injury by determining the part of the animal’s body 
that would be impacted.  

CRMs were also used to calculate the potential collision rate of fish with turbines. Hammar et al. 
(2015) modeled the fish brassy trevally in a hypothetical one-turbine deployment. The model 
included fish behavior and predicted a low collision risk for smaller fish. Larger fish able to swim 
in faster currents were more likely to be at ideal turbine locations and so had a higher risk of 
collision. In another study, different numbers of turbines, numbers of blades per turbine, and 
avoidance rates were simulated to predict collision risk for Atlantic salmon (Xodus Group 2016). 
Collision risk was predicted to increase with the number of turbines and blades per turbine. 

Other models described as probabilistic models also estimated the probability of collision. Those 
models have structures similar to CRMs. The model developed by Schmitt et al. (2017), 
implemented in the open-source freeCAD (Computer-Aided Design) software, predicted 
collision probability distributions in three dimensions. It was applied to a seal encountering a 
subsurface tidal kite, a simplification of the Deep Green subsea tidal kite developed by Minesto. 
No reaction of the animal to the kite was included. A similar three-dimensional (3D) model 
simulating movements of animals around the Deep Green tidal kite was the Hazard Zone 4D 
model (Kregting et al. 2016). It provided confidence intervals for collision probabilities that can 
be incorporated into a CRM. Another probabilistic model developed for the Verdant Kinetic 
Hydropower System (KHPS) turbines, named KHPS-Fish, was used to simulate the risk of fish 
striking turbines (Bevelhimer et al. 2016; Tomichek et al. 2015). The probability of blade strike 
was predicted from the model using information about fish distribution and behavior. 

All models reviewed included, as inputs, the configuration of the operating device and 
behavioral parameters of the species of interest. Environmental characteristics including 
channel width and depth (or area) and current velocity are also included in some models. The 
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device model for turbines includes information such as the number of blades, rotation time, 
blade width, blade speed, and the layout of turbines in an array. For the models of tidal kites, 
the depth, height and width of trajectory, and time it takes to travel the length of the track are 
specified. Biological characteristics are species-specific and can include diving behavior (i.e., 
dive frequency, proportion of time foraging), swimming speed, and body length. The reviewed 
studies did not address differences in behavior between populations of the same species. The 
main output is the probability of collision with the device when an organism passes through it. 

3.1.2.2 Encounter Rate Models 

ERMs include an approach similar to that of CRMs and were developed to predict the likelihood 
of animals encountering a turbine. An encounter happens as an animal approaches a turbine 
but has not yet come into contact with it. Once the animal has encountered the turbine, the 
encounter may lead to a collision if the animal does not successfully evade the turbine (Wilson 
et al. 2007). ERMs reviewed estimated the probability of encounter based upon the density of 
the animals (as affected by their behavioral patterns), the velocities of the animals and the 
turbine blades, and the “encounter radii” of both based upon their dimensions. ERMs can be 
extended by adding probabilities of evasion to estimate the collision rate. 

Wilson et al. (2007) developed an ERM for herring and harbor porpoise in a hypothetical tidal 
array. The model included a probability that the animals would be within the depth range of the 
turbine and the density of individuals for each species, and estimated the probability of 
encounter between a rotating turbine and the animals. The probability of encounter increases 
with the body size of the animal. The risk of encountering a single array was multiplied by the 
number of turbines to determine the total risk; the interacting effect of turbines or their 
arrangement were not considered. 

Parameters included in an ERM are the rotating speed of the device, the rotor diameter and 
“encounter radius” (relative to its path through the water), and the depth of the device. The 
biological parameters include the density of animals per unit volume, their swimming behavior, 
and their length, from which the encounter radius for the animal is calculated. Behavior may 
vary by time of day and time of year. The output is the number of animals per time that would 
encounter a rotating turbine.  

3.1.2.3 Exposure Time Population Model 

The ETPM was developed by Grant et al. (2014) and applied to diving birds in a tidal 
environment. If information about population dynamics is available, the ETPM can also be 
applied to other marine species. When little information is available about the behavior of 
organisms near a rotating turbine, the ETPM allows for estimating the size of the population at 
risk and identifying the risk of collision that would negatively affect the population. Essentially, 
this approach works backward to determine an acceptable collision risk as a function of the 
population size, the maximum rate of additional mortality that would not adversely affect the 
population, and the time the organism is exposed to the device(s). The definition of “adversely 
affect” may vary by application, ultimately depending upon project objectives or regulatory 
guidelines. A straightforward example would be: given a growing population, the increase in 
mortality that is less than that which would cause the population to decline.  

The ETPM framework contains three steps (Band 2016; Grant et al. 2014): 
1. Develop a population model to estimate the level of additional mortality that allows the 

population or population growth rate to remain above the specified threshold.  
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2. Quantify the exposure time based upon the amount of time the animal spends at the 
appropriate depth range and the proportion of water at that depth range swept by the 
device. 

3. Estimate the rate of collision resulting in mortality, per unit of time, from the two first steps 
that will induce a decline or other undesirable change in the population. 

The process does not require a specific type of population model, as long as it can be used to 
calculate the effects of different levels of mortality on the population. Age-structured matrix 
models or any other population viability modeling approach would be appropriate. These models 
do not generally account for sublethal effects of a collision, though this could be accommodated 
if the population model had a mechanism for sublethal effects on population dynamics (e.g., 
reduced breeding propensity if injured). The models also do not explicitly account for avoidance 
behavior. Conceptually, avoidance could be incorporated in the calculation of exposure time; 
e.g., if individuals avoid turbines 50% of the time, that would reduce the exposure time by 50%.  

Inputs required for the population model are the number of individuals in the population, 
reproductive rate, survival rate (either of which could depend upon age or stage), and age at 
maturity. Estimating the exposure time requires the number of dives per unit of time, the total 
number of dives for each individual in the area, the mean time spent at the depth of the device, 
and the volume swept by rotors. The exposure time may be calculated differently depending on 
life stage (e.g., adult vs. juvenile behavior during the breeding season). The “acceptable” 
collision rate per individual is estimated using the number of individuals in the population, the 
threshold mortality rate, and the exposure time, all previously calculated.  

3.1.3 Relationship of Models to Monitoring 

In the models reviewed for collision risk, the characteristics of the organisms (e.g., 
swimming/diving behavior, size) and behavior around devices were obtained from literature 
review (e.g., Copping and Grear 2018; Grant et al. 2014) or from monitoring data (e.g., Hammar 
et al. 2015; Thompson et al. 2016). Most monitoring of fish behavior has used video cameras if 
the water clarity and light levels are sufficient (e.g., Hammar et al. 2015). If light levels are low, 
artificial light can be added but with the risk of confounding the data by repelling or attracting 
animals.  

When light is insufficient for video capture, active acoustics are often used. For ranges less than 
20 m, acoustic cameras (aka imaging sonar) are suitable. Bevelhimer et al. (2016) used a 
multibeam hydroacoustic system to track fish near a turbine to assess their spatial distribution, 
velocities, and response to the turbine when present. The study was performed without a 
turbine, with an operating turbine, and with a non-operating turbine. Although hydroacoustics 
cannot be used to identify species, it is a powerful tool for characterizing the behavior of 
taxonomic groups and measuring the size and range of detected targets. However, the water 
surface, seabed, and other boundaries can reflect sound, affecting data quality. Operational 
devices can also reflect sound. Dynamic components (e.g., turbine blades) can create a “blind 
area” close to the device where detection of a target is impossible because of turbulence and 
irregular reflections. For instance, acoustic camera data may clearly show a fish approaching an 
operational turbine, but when the fish is close to a moving blade, the strike, near-miss, or 
evasion behavior is obscured. 

Some applications have combined video cameras and active acoustic devices to complement 
the advantages and disadvantages of each technology. For example, the range and size of 
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targets are difficult to estimate with video cameras unless using expensive and complicated 
stereo configurations. Adding an acoustic camera can provide the range and size of targets 
when the target is in both sensors’ fields of view. Such a method could be applied to all the 
monitoring locations proposed in the TFiT project to both detect the presence of marine 
organisms and describe their behavior. 

Longer ranges (>20 m) can be acoustically monitored using echosounders. Animal distributions, 
densities, and large-scale movements can be produced from echosounder data streams. These 
data can provide inputs for ERMs and abundance estimates for a group of animals moving 
toward a device. Identifying species is usually not possible. 

General behavioral data are important for knowing how much time animals might spend in the 
vicinity of turbines. Thompson et al. (2016) used telemetry data to include diving and swimming 
behavior of harbor seals in their model. Harbor seals were tagged with Global Positioning 
System and Global System for Mobile Communication (GPS/GSM) phone tags to provide 
locations and records of dives (including duration and depth) and haulouts. This method 
provides behavioral information at small spatial scales. High-resolution 3D acoustic telemetry 
tags can also be used to track detailed fish movements. Their utility is limited by the cost of tags 
and the hydrophone arrays that must be installed and calibrated in an energetic environment. 
Fish telemetry requires surgical implantation of tags, whose effects are uncertain. Overall, in 
telemetry studies, acquiring enough individuals of particular species can be difficult unless they 
are easily captured or procured from a rearing facility (in the case of fish). 

No reviewed studies performed validation of model outputs. When applied to a specific location, 
observations of collision rate for the species of interest and rates of injury or mortality following 
the collision are necessary to compare with the predictions. These data have, generally, not yet 
been collected, because of the limited number of turbines and the regulations requiring turbines 
to be shut down when marine mammals are present. Also needed for validation are more 
models designed for specific test sites rather than hypothetical turbines or arrays. If collision 
rates and outcome data are collected as part of a testing and/or required monitoring process for 
a device, the information will be useful to the models. The physical technologies for turbines 
vary considerably. Until one or a few designs become predominant, site-specific sensors and 
monitoring methods are likely to continue to be needed. This need creates challenges for 
developing models and parameters that can be generalized to new installations. 

3.1.4 Gaps and Uncertainties 

While the estimation of the collision risk probability using CRMs should include the behavioral 
response (i.e., avoidance, evasion, or attraction) of the animals toward the device of interest, it 
was rarely considered in the reviewed studies because of the lack of observations of animals 
behaving around and at different distances from devices. For the vast majority of species and 
devices, CRMs must make significant behavioral assumptions to predict the actual collision, or 
simplify the model by assuming no behavioral response.  

Models addressed turbine arrays in terms of the total area/cross section of the channel that 
would be blocked (Thompson et al. 2016; Copping and Grear 2018), but did not incorporate 
avoidance or evasion in their models and consequently the potential for behavior to be affected 
by multiple devices encountered in sequence. This would require another layer of behavioral 
information that may not be possible to obtain without test arrays and intensive monitoring. It 
would be possible to explore possible effects of arrays using models with assumptions about 
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behavior of individuals after they evade one turbine and approach another. This approach can 
be used to estimate how important such behaviors may be. 

Only one model (Copping and Grear 2018) estimated the potential outcomes of a collision in 
terms of injury or mortality. Doing so requires additional information about the physiology of the 
organism and the effects of strikes by various-sized turbine blades, moving at various speeds, 
with an animal that is also in motion. Some information may be available from studies of 
collisions with other objects, such as ship propellers, but there are key differences in the physics 
and velocities involved that would limit extrapolation (Wilson et al. 2007). 

CRMs and ERMs are focused on the individual scale and no effect on the population is 
predicted from these models. Only ETPMs address the effects of (hypothetical) collisions on the 
entire population, based on the assumption that collision results in mortality. Estimation of the 
population-level effects of fatal versus non-fatal collisions is also lacking in all the models 
reviewed. In most of the studies reviewed, assumptions were made about species behavior 
such as swimming speeds and diving depth or frequency. Differences in behavior among 
populations has not been addressed because of the lack of data, nor have the effects on 
migratory populations been compared to those on resident populations. 

Diving birds are more challenging to model for collision risk than fish or mammals, in part 
because their diving behavior would need to include the distribution and behavior of prey near 
the turbines because they are unlikely to dive in their absence. 

3.2 Underwater Noise 

This section describes models used to estimate how noise from MRE devices is transmitted 
through the marine environment and the potential effects of that noise on individual animals and 
populations. 

3.2.1 Definition and Scope  

Underwater noise models have been developed for the construction and operation of some 
MRE devices. More models have been developed for offshore wind. The greatest potential for 
harmful noise for wind or water energy usually occurs during construction rather than operation 
of devices due to the higher intensity of impulsive sound occurring during pile driving (Dahl et al. 
2015). Consequently, pile driving, typically for wind turbine construction, is heavily represented 
in the energy-related underwater noise modeling literature. There is a smaller selection of 
models specific to wave or tidal devices that focus on their operation. These devices produce 
sound levels more likely to affect behavior than to cause physical harm.  

Model scales ranged from meters to hundreds of kilometers. Models were either applied to the 
immediate vicinity of the sound source (nearfield) to characterize the generation of sound at the 
source, or at longer distances (farfield) to characterize the propagation of a prespecified sound 
source. No single model is both appropriate and practical for all distances, so some studies 
used two different models for the nearfield and farfield.  

Studies assessed noise impacts from sound propagation on population dynamics. Some 
estimated sound pressure level (SPL) or sound exposure level (SEL) without a specific receptor. 
Others delineated the spatial extent of noise impacts relative to regulatory or biological sound 
thresholds. Another class of models estimated the physiological and behavioral responses of 
animal populations to received sound. Population models characterized spatial patterns of 
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species in response to noise and/or estimated the effects of noise on survival or reproduction 
(e.g., sound avoidance reducing access to prey and consequently the ability to reproduce).  
Seals and porpoises were the most common receptor species. Other marine mammals 
(dolphins, whales), fish (cod), and sea turtles were also included, though less audiogram and 
behavioral data exist for most non-mammalian species. Several studies evaluated noise relative 
to thresholds for a large number of species or taxonomic groups.  
The number of MRE-specific models were limited, so models related to wind energy were 
included in this review if the associated studies evaluated species effects or used approaches 
not demonstrated elsewhere. Literature about other sources of underwater noise, such as 
seismic exploration and ship noise, were not included in this review. 

3.2.2 Model Types and Approaches 

Model applications assessing MRE sound propagation and/or its impact on marine animals can 
be categorized into four approaches: 
1. Transmission loss (TL) models: theoretical or semi-empirical estimates of the weakening of 

sound resulting from spreading, attenuation, and other factors invariant with distance.  
2. Nearfield propagation models: direct solutions to the wave equation for sound propagation 

computed at fine resolutions, used to estimate how a source produces sound and its 
propagation over short distances of meters to 10s of meters. 

3. Farfield propagation models: approximations to the wave equation practical for estimation 
over longer distances (kilometers). Some of these models incorporate complex bathymetries 
and variability in sound velocity by depth and distance.  

4. Species-effect models: estimated impacts of sound on the behavior of individual animals or 
groups of animals and/or the effects on demographic rates and subsequent population 
dynamics. 

Most of the TL and propagation models are simplified by removing the time dimension and 
solving only in the frequency domain, producing static 1D, 2D, or 3D maps. Models of 
population-level effects include time and either a constant sound field (for estimating effects of 
operations) or pulses (construction) that occur during all or part of the behavioral or population 
simulation. 

The remainder of this section summarizes the models reviewed in each of these categories. 

3.2.2.1 Transmission Loss Models 

TL models calculate attenuation rates and consequent sound levels by estimating the geometric 
spreading of sound waves and attenuation from absorption, scattering, and leakage from sound 
channels (Urick 1983). Spreading and attenuation are functions of distance from the source. 
Spherical spreading is appropriate for unobstructed deep water, while cylindrical spreading is 
appropriate for surface ducts or shallow water. Hybrid geometries have been applied to 
intermediate cases (e.g., Bailey et al. 2010). Attenuation may be empirically estimated from field 
sound measurements or calculated using material properties of the water and sediment.  

The only identified study that applied TL models to MRE operations was that by Pine et al. 
(2014), which used field measurements of operating noise from a single or pair of tidal turbines 
(via underwater playback) to show that models of spreading only (no attenuation), often used in 
environmental assessments because of their simplicity, would underestimate sound levels. They 
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showed that a model that included an empirically estimated spreading constant along with 
published attenuation and absorption constants (Richardson and Thomson 1995) was more 
accurate.  
 
Three studies used TL models for pile driving. Middel and Verones (2017) used a spherical 
spreading model without attenuation1 to demonstrate how noise could be included in life cycle 
assessment for wind farms. Bailey et al. (2010) measured pile driving noise from recordings to 
evaluate a spreading and attenuation model used in an environmental statement for wind 
turbine construction. The statement assumed a geometry intermediate between cylindrical and 
spherical spreading. The model best fit to the data showed that a spherical model more 
accurately described observed noise, which the authors attributed to the location of the wind 
farm in deeper waters (42 m) than those previously constructed. This is an example of the need 
for models to be appropriate to the geometry and bathymetry of a site. 

Lippert et al. (2018) parameterized a TL model for pile driving using analytical calculations of the 
attenuation coefficient (Zampolli et al. 2013). Rather than measuring sound in the field, they 
estimated the material properties of the water and bottom sediment to calculate attenuation. 
They verified results with data from a benchmark model and three published field studies. 

TL models are simple enough to be implemented in a spreadsheet and therefore have been 
relatively common in environmental assessments. In exchange for simplicity, they do not 
account for spatial variation in water properties or bathymetry. They are best suited for open 
water with a flat seabed, a setting more likely for wind turbines than tidal turbines or wave 
energy converters. Models should be parameterized with site-specific measurements. 
Heterogeneity in bathymetry, water, or sea floor properties at the site are not accommodated 
and can be a primary source of error for TL models (Lippert and Von Estorff 2014).  

3.2.2.2 Nearfield Propagation Models 

Sound-propagation models predict the movement of sound waves through water and other 
media. They model sound intensity (as opposed to TL) as the speed of sound changes with 
depth, salinity, or temperature. Changes in velocity concentrate or spread sound waves, which 
also reflect and scatter when encountering other sediment or other objects. Propagation models 
can either be direct solutions to the wave equation that describes sound propagation or a variety 
of simplifications.  

Finite element, finite difference, and boundary element models are direct solutions. They allow 
sound waves to be reflected back toward the source and interact with the outgoing waves, 
which requires the 2-way wave equation. These models accurately model sound in complex 
environments such as near a coastline or other obstacles or a complex seabed. They are less 
necessary in more open environments where sound is less likely to reflect.  

Finite element models (FEMs) are the most common nearfield models. They require the model 
space to be divided into elements that are a fraction of the wavelengths being studied, so they 
are most practical on the order of meters or 10s of meters (the nearfield). Larger areas are 
possible but require extensive computational resources, especially for high-frequency sound. In 
acoustic modeling, FEMs are used for (1) short-range modeling in complex spaces, (2) 

 
1 Such a model is known as a 20 log R model where R is the distance and 20 is the spreading coefficient. 
Cylindrical models are based on a 10 log R spreading function, and hybrid models have coefficients in 
between 10 and 20. This terminology can be used in environmental assessments. 
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estimating generation of sound from a source to use in a farfield propagation model, or (2) to 
serve as a benchmark for other models (e.g., Jensen et al. 2011). There is well-established 
software for implementing FEMs, as shown in the following examples. 

Ikpekha et al. (2014) used an FEM (COMSOL Multiphysics) to show how the SPL from a wave 
energy device would be amplified by reverberation on a sand seabed for a range of 200 m. The 
model was an abstraction with a homogeneous environment.   

Kim et al. (2013) and Marmo et al. (2013) illustrated the hybrid approach of first using FEMs to 
model sound generation from pile driving and wind turbine operation, respectively. The model 
results were then used in a second model to estimate long-distance propagation. These studies 
used Abaqus  (Kim) and COMSOL Multiphysics (Marmo) to create a 3D model of the pile or 
turbine base. Using the material properties of the pile, base material (e.g., concrete), water, and 
seabed, the FEM calculates the pressure field created by the impacts or vibrations entering the 
structure estimates the sound produced by that pressure field. This approach requires detailed 
information about structural geometry and composition, as well as load patterns expected during 
pile driving or operation. Using those data, the models can estimate sound generation by 
structures that have been designed but not constructed.  

All three studies used hypothetical structures rather than planned devices. They did not include 
spatial heterogeneity such as water surface or bottom roughness (though the models allow it). 
Applications for specific devices would require fine detail about the sites and devices being 
evaluated. Lippert and von Estorff (2014) verified a combined FEM and wavenumber integration 
model (described below) in the farfield but did not evaluate FEM performance alone in the 
nearfield. Otherwise, these studies did not verify the models with observations. 

Hafla et al. (2018) used a finite difference model, Paracousti, to model three generic MRE 
sound sources. Paracousti solves velocity-pressure equations, which are an alternative to the 
more common wave equation; the inputs and outputs are similar to FEMs. Paracousti uses 
parallel processing to reduce computation time. The resulting model is well-suited for shallow 
water and complex bathymetries likely to be found at MRE installations. For low-frequency 
sound, common to MRE devices, Paracousti should be employed on the scale of kilometers 
rather than meters.  

Overall, nearfield models are highly accurate, even for complex problems, but are usually only 
practical to implement at small spatial scales. They have been beneficial for estimating the 
sound produced by devices when it cannot be measured empirically. The results can be used in 
a long-range model to estimate the effects of sound on animals at longer distances. 
Conceptually, these models are well-suited to modeling environments in complex environments. 
The software can be used for many applications, but models must be designed specifically for 
individual devices and their locations. Real-world applications are limited. If the device or a 
close analog is already installed, it may be easier to collect recordings for use in long-range 
models.  

3.2.2.3 Farfield Propagation Models 

Approximations to the wave equation have been developed to make large-scale sound-
propagation modeling feasible. These models are typically created by restricting the model to 
the frequency domain (e.g., removing the time element and producing a “snapshot” of the sound 
field). Additional simplifications have produced five types of models suitable for different 
conditions. Ray theory, normal mode, multipath expansion, fast field, and parabolic equation 
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models can be categorized by their suitability for shallow or deep water, low or high frequencies, 
and range-independent or -dependent problems (Table 1). Range-dependent models allow the 
seabed or water properties to vary with distance, while range-independent models only allow 
vertical variation. Parabolic equations (PEs) were most common in reviewed papers, but beam 
trace (or ray theory), and fast field (or wave number integration) models were also identified.   

The only MRE-specific model in this category was a fast field model (SCOOTER), implemented 
in the AcTUP interface (Maggi and Duncan 2005), to evaluate the propagation of sound from 
three adjacent turbines (Lloyd et al. 2011). This model application was not documented in 
adequate detail to fully inform this review. Fast field models, sometimes called wavenumber 
integration (WI) models, model sound propagation in stratified water and sediment (Jensen et 
al. 2011) but do not include variation with distance from the source. The model requires detailed 
information about the properties of multiple water and bottom layers. Error in data about bottom 
layers or the absence of data creates increasing error with distance from the source (Lippert 
and Von Estorff 2014).   

Table 1. Domains of frequently used farfield propagation models from Etter (2009). Filled 
circles indicate the model approach is applicable and practical in that domain; half-
filled circles indicate limitations in accuracy or execution speed; and empty circles 
indicate the model is not applicable. Low frequency < 500 Hz, high frequencies > 500 
Hz. RI = range-independent (environment does not change with distance from 
source); RD = range-dependent (heterogeneous environment). 

 

Parabolic equation models were the most common in this review and in many ocean acoustic 
applications because of their accuracy over long distances (Jensen et al. 2011). They are the 
most suitable range-dependent option for lower frequencies. Variations on the software RAM 
(Farcas et al. 2016) are commonly applied: RAMGeo for fluid seabeds (Tetra Tech 2013), 
RAMSGeo for elastic seabeds (Hastie et al. 2015), and HAMMER, which extends the 2D RAM 
output to an Nx2D model1 (Rossington et al. 2013). All of these studies modeled pile driving. 
Tetra Tech (2013) also modeled wind farm operation. Lin et al. (2019) and Kim et al. (2013) 
modeled pile driving using PE models not based on RAM: an unnamed model (Lin et al. 2012) 
and the Monterey-Miami Parabolic Equation model (Smith 2001).  

 
1 Nx2D models use many 2D model output “slices” to construct a 3D result. Because there is no 
interaction in the third dimension these are not truly 3D models, but are more practical computationally. 
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The accuracy of PE models depends on the accuracy and spatial resolution of input data 
including bathymetry, sediment characteristics, and water properties. Water properties vary on 
short time scales, which can have a significant effect on sound propagation, for example by 
season (Farcas et al. 2016; Lin et al. 2019). Farcas et al. (2016) also broadly reviewed 
considerations related to input data, their availability, and consequences of uncertainty for 
several propagation models. They described model validation and steps to improve model 
predictions.  

Lin et al. (2019) validated 2D and 3D PE models by comparing them to field data of recorded 
sound played from a moving source and recorded at a fixed vertical hydrophone array. They 
found good agreement except for late-arriving sound at longer distances. They ascribe this 
discrepancy to the assumption of constant acoustic properties for the seabed because of the 
lack of spatial data. While bathymetric and water property data are often accessible through 
large-scale, publicly available data sets, information about seabed composition is more likely to 
require site-specific data collection (Farcas et al. 2016). Hastie et al. (2015) also validated their 
model against field recordings up to 10 km and found a small (< 10 dB) positive bias in model 
predictions for most distances. 

Ray models were not often used for MRE applications, in part because they are less accurate 
for lower frequencies. One exception was a Gaussian beam trace model implemented in AcTUP 
for wind farm operation (Marmo et al. 2013). A beam trace model adds random noise to the 
sound path to avoid artifacts common to ray models, like sound “shadows.” Small errors in the 
environmental domain create large impacts in longer-range predictions of ray or beam models. 
They are most valid at higher frequencies, in deep water (10–20x wavelength), and at shorter 
distances. 

The long-range propagation models just described are well-studied and considered reliable if 
the correct model is chosen for the application. Spatial data for the site are very important: 
depth-based information for the water column and seabed layers for range-independent models, 
and bathymetry, water properties, and sediment characteristics for range-dependent models. 
Field-recorded sound at multiple distances is not required for model development, but is very 
useful for model validation (discussed further in the section about Relationship of Models to 
Monitoring below). Monitoring that accommodates spatial and temporal variability is important 
for validation, because it may be otherwise difficult to determine whether the model is “wrong” or 
the empirical data are not representative of the model domain.  

3.2.2.4 Species-effects Models 

The simplest estimate of the impacts of MRE noise on marine animals are the maximum 
distance(s) from the source at which sound would injure or affect the behavior of a species. 
More complex models predict changes in behavior and exposure based on sound avoidance. 
The most complex and data-intensive models also relate sound impacts to demographic rates 
and resulting population size and resilience. Output from any sound-propagation model can be 
used in species-effects models with static maps or time series of pulsed events.1 Accuracy will 
partly depend on the reliability and resolution of the sound model and the availability of 
biological data. 

 
1 Because most acoustic models do not include time, time series of repetitive noises like pile driving 
would be created after modeling the spatial extent of the sound. 
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A number of reviewed models (Bailey et al. 2010; Ikpekha et al. 2014; Lloyd et al. 2011; Marmo 
et al. 2013; Tetra Tech 2013) estimated the maximum distances from the sound source(s) to 
regulatory and/or taxon-specific thresholds of audibility, behavioral response, or damage. Some 
studies used broadband sound levels (Bailey et al. 2010). Others compared multiple 
frequencies to taxon-specific audiograms to determine sound exposure based on hearing ability. 
They estimated distances for audibility (Ikpekha et al. 2014); audibility, behavioral response, 
and injury (Marmo et al. 2013); or permanent threshold shift (PTS; irreversible hearing loss) and 
temporary threshold shift (TTS; reversible hearing loss; Lloyd et al. 2011). Many studies rely on 
audiogram data from Southall et al. (2007), but sound sensitivity data are lacking for many 
species, especially non-mammals. 

Hastie et al. (2015) used GPS tracking of harbor seals to estimate their sound exposure during 
pile driving. They used a model of TTS and recovery developed for California sea lions (Kastak 
et al. 2007) to estimate temporary auditory damage and used non-specific (m-weighted) 
audiograms1 (Southall et al. 2007; Tougaard and Dähne 2017) to estimate PTS. This approach 
did not include a model to predict behavior, so it requires field data about animal movement. 
This and many other approaches are most effective with species-specific auditory damage 
models, which were unavailable in this instance.  

Agent-based modeling allows behavior to be modeled rather than observed. Rossington et al. 
(2013) modeled cod behavior in response to pile driving sound and compared the resulting 
distribution with the same cod population but without a response to the noise. The model 
SAFESIMM (Donovan et al. 2017) consisted of superindividuals2 following rules for swimming 
and diving behavior that change with sound disturbance, demonstrated for gray seals and 
harbor porpoises . As superindividuals moved, the model calculated the cumulative SEL 
weighted to their audiogram and the ensuing probability of TTS, PTS, or behavioral changes. As 
inputs, the model used baseline estimates of population density and distribution from survey 
data and/or environmental suitability models. The authors created a database of parameters for 
115 species of marine mammal, with data from similar species used to fill gaps.3 The quality of 
species-specific data was highly important, especially for longer model durations, and 
probabilistic approaches were recommended to address uncertainty. While observational 
movement data were not required at the specific site (e.g., as for Hastie et al. 2015), the models 
needed extensive behavioral information for the species of interest.  

The long-term effects of sound on a population are of key interest, because TTS or behavioral 
changes may or may not have lasting effects over individual life spans or overall population 
dynamics. New et al. (2014) and Pirotta et al. (2018) described a Population Consequences of 
Disturbance (PCoD) model framework that can be used to evaluate the cumulative effects of 
sublethal disturbance on a population as mediated through behavioral changes or injuries that in 
turn affect health and then vital rates. King et al. (2015) demonstrated an “interim PCoD” 
application for a noise disturbance (pile driving) potentially affecting harbor porpoises. 
Information about the relationships between behavior or physiological changes and health and 

 
1 Frequency weighting is a process used to filter sound by frequency to the hearing capability of a 
species. M-weighting was designed as a generalized function for marine mammals that has equal weights 
for a broad range of moderate frequencies and tapers at low and high frequencies (Tougaard et al. 2017). 
It has been used when species-specific weighting information is not available. 
2 Superindividuals are multiple individuals modeled as one unit to simplify computation, which is 
particularly suitable for animals that move as groups. 
3 It was unclear whether this database was available for use by other researchers. 
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vital rates was not available, so the “interim” model used expert elicitation to parameterize the 
model. 

Middel and Verones (2017) simplified the PCoD model for harbor porpoises by estimating 
“disturbance days” and “potentially disappeared fraction of species,” or the proportion of the 
species absent during pile driving. The sound-propagation model defined an area that the 
species would avoid during days during which pile driving occurred, resulting in temporary 
habitat loss which may affect foraging. This removes the need for estimating disturbance effects 
on health, but in doing so does not estimate cumulative effects on population survival or 
reproduction. Application of this approach to long-term/continuous sound sources that caused 
permanent habitat loss would have different implications.  

Demographic models that incorporate sound predicted the effects of auditory injury or 
behavioral changes in reproduction and survival effects over multiple generations (Nabe-Nielsen 
et al. 2014; Thompson et al. 2013). Thompson et al. (2013) modeled decreased reproductive 
success for harbor seals that avoided foraging areas because of pile driving, and increased 
mortality by 25% for seals experiencing PTS. They projected the resulting population for 20 
years with 4 years of construction. The study used a high-quality telemetry data set to determine 
seal habitat and initial distribution. They had to use behavioral data from porpoises as a proxy 
for seals and expert opinion for the relationships between noise impacts and vital rates. 

Nabe-Nielsen et al. (2014) modeled the energetic consequences of sound disturbances on 
porpoises in the Inner Danish Waters. Individual behavior was a function of sound level and 
prey density, with disturbances (wind turbine operation and ship noise) reducing access to food 
patches and therefore affecting energy levels. The authors used the effects of stored energy on 
survival and reproduction to estimate the effects of noise on population dynamics. As with other 
models, this approach requires detailed information about species distribution and behavior and 
must also estimate prey availability and distribution. Nabe-Nielsen et al. (2014) had no prey 
data, so they assumed that prey was distributed according to the observed distribution of 
satellite-tracked porpoises.  

The DEPONS model (Nabe-Nielsen et al. 2018; Van Beest et al. 2015) was the same model as 
Nabe-Nielsen et al. (2014) adapted to pile driving in the North Sea. It is also included in the 
displacement of marine animals section of this report. They used acoustic data loggers to record 
porpoise clicks in response to pile driving and tested multiple movement models to 
accommodate the lack of behavioral information. The authors also used porpoise density as a 
proxy for food availability. Prey distribution and its variability, other anthropogenic impacts, 
realistic movement behavior, and the details of the deterrence and return-time of the noise were 
all important gaps for further research. While this study focused on porpoises, these 
uncertainties apply to other species as well. Harbor porpoises are relatively well-studied for this 
and other stressors compared to other marine species. 

Agent-based models can be applied to novel species and/or locations if behavior and 
distribution data are available. Behavioral data do not have to be collected at the study site, 
though doing so is beneficial. These models have high data requirements, especially if a more 
detailed sound-propagation model is used than the simple ones applied for these examples. 
Because of the uncertainty in most population and behavioral models, it is important to apply 
probabilistic approaches that allow parameter uncertainty to propagate through models. 
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3.2.3 Relationship of Models to Monitoring 

Most underwater noise models reviewed here share common monitoring needs. Exceptions are 
the semi-empirical TL models that are parameterized using recorded sound, which is sufficient 
as long as the sound was recorded under similar environmental conditions. Analytical 
transmission models, nearfield models, and farfield propagation models require bathymetry, 
geophysical data, and water column data. Range-dependent models accommodate more 
complex environments but require a greater area and resolution of spatial data. Recorded 
sound can be used for model validation. Most information needs are site-specific, though the 
acoustic properties of many materials can be obtained in literature. 

Field recordings of sound propagation require either the actual sound source (Bailey et al. 2010) 
or a nearfield recording of a similar source that can be played back at the same volume (Lin et 
al. 2019; Nabe-Nielsen et al. 2018; Robertson et al. 2018). Robertson et al. (2018) discussed 
the strengths and weaknesses of using recordings as a sound source. Measured sound 
propagation will vary with water temperature, salinity, and depth, while weather effects on 
surface roughness and other sources of background noise may interfere with or mask source 
noise (Urick 1983).  

Most examples of field sound collection in this review consisted of single or few measurements 
and limited spatial extent, which are inadequate for understanding temporal variability. Ideally, 
sound data would be collected during different seasons and at multiple directions and distances 
from the source (Bailey et al. 2010; Farcas et al. 2016; Lin et al. 2019), but this level of data 
collection was rare. Fewer collections may be enough if sound production is limited to a specific 
time of year (e.g., a construction season) or the bathymetry is very simple. Insufficient sound 
data can introduce bias in semi-empirical models and erroneously indicate biases during 
validation of propagation models. 

Nearfield models of sound sources are primarily concerned with the specifications of the 
structure and the water and sediment properties in the immediate vicinity, which are likely to be 
available from the planning and permitting process. At this scale, spatial heterogeneity is less of 
an issue and data needs are considerably fewer. Detailed information about water properties 
may only be needed for larger spatial scales. 

Of the data requirements for farfield propagation models, bathymetric data are the most broadly 
available, though they may not be at fine enough resolutions. Data about seabed characteristics 
are rarely available, so data collection will likely be required. In most cases, only a single survey 
would be needed unless physical changes in the area during device operation are expected to 
be significant. Depth profiles of water properties are variable over time. They can be monitored, 
but higher spatial resolutions of data are easier to obtain using hydrodynamic models with less 
intensive monitoring for model validation.   

For more information about input and validation data, Farcas et al. (2016) reviews 
considerations for collecting input data and calibrating and validating sound-propagation 
models. Key points include guidance for selecting models (similar to Table 1), considerations for 
data quality and resolution, estimation of source levels, examples of model validation and its 
interpretation, sources of real-world variability (e.g., tides and water temperature), the 
consequences of error in input data or parameters, and topics for further research. 

Population models that include behavioral and demographic parameters are data-intensive. The 
studies reviewed above used satellite, aerial, and/or acoustic tracking of animals to determine 
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distribution, general movement patterns, and responses to sound to inform model 
parameterization. Recordings of porpoise clicks have been used to evaluate avoidance of sound 
sources (Nabe-Nielsen et al. 2018; Williamson et al. 2016). Other models used behavioral data 
collected elsewhere and/or for other species. Behavioral parameters may be site-specific 
(Nabe-Nielsen et al. 2018) as well as species-specific, which introduces considerable 
uncertainty when data are lacking.  

Only six of the reviewed studies conducted model validation. In most cases, models were 
validated against sound levels recorded by stationary or towed hydrophones. Only one model 
validation was specific to MRE, but not an installed device: Pine et al. (2014) played back 
recordings of tidal turbines and measured sound levels up to 5 km away. They used the 
resulting data to show that simple spreading models were inadequate. The same data were 
used to fit a more complex model, which was not itself validated (which would have required a 
separate data set). 

Lippert and von Estorff (2014) validated their coupled FEM and WI model using sound 
measurements from pile driving at 60 m and 750 m from the source. Hastie et al. (2015) used 
recordings taken from 1.0 to 9.5 km from pile driving activity and reported error statistics for the 
model predictions. However, they modeled sound 200 km from the source, so were unable to 
validate the majority of model predictions. Lin et al. (2019) used a stationary receiver and a 
towed speaker of recorded pile driving. They note that their single transect was on a path not as 
bathymetrically complex as some other parts of the study area, which limited their ability to 
validate the model and compare the accuracy of a 3D model with that of a N x 2D model. 

Thompson et al. (2013) compared model predictions of species-specific sound thresholds for 
harbor seals with data previously collected at the same location (Bailey et al. 2010), which 
included measurements at multiple distances and directions from the pile driving source. Lippert 
et al. (2018) used published data from recordings of pile driving at three sites in the North Sea, 
consisting of transects of three to eight measurements ranging from ~200 m to 5 km. This 
strategy is efficient but requires previous work to have been done at the same or a similar 
location and to be sufficient for the new study. Lippert et al. (2018) also compared their model 
predictions to a generic benchmark model, COMPILE, which numerically solved a simple case 
study for use in verifying other models. 

The reviewed population models used all of the available data to parameterize models and did 
not discuss validation. Behavior or movement models could be validated by reserving some 
empirical data from the initial collection or conducting additional monitoring, but limited sample 
sizes or resources (or lack of interest in validation) appears to have precluded this approach. 
Validation of predicted changes in vital rates or population responses could require tracking of 
animals over long time periods, a resource-intensive process with a multi-year time lag before 
validation would be possible. These time frames should be considered when deciding upon 
modeling approaches. 

None of the studies reviewed appeared to be part of a longer-term monitoring effort. Modeling 
assessments were typically done during the pre-construction planning process (Tetra Tech 
2013; Thompson et al. 2013) or during construction (Hastie et al. 2015). Some studies were 
conducted to demonstrate the inadequacy of common approaches to modeling for 
environmental assessment and/or suggest improved approaches (Lippert and Von Estorff 2014; 
Pine et al. 2014; Rossington et al. 2013).  
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3.2.4 Gaps, Limits, and Uncertainties 

Models of underwater noise have received extensive research focus for other applications, and 
generally perform well if provided with adequate input data. Most sound-propagation questions 
related to MRE are not unique and can use existing models and software, but the choice of 
model is important. Far more models have been developed for pile driving (primarily for wind 
farms) than for the operation of MRE devices, because of the greater potential for auditory injury 
from impulsive noise. Less work has been done on the non-impulsive and generally quieter 
noise from operating devices, which are more likely to affect behavior than cause injury. Most 
models of MRE devices have been hypothetical or based on recordings rather than actual 
devices because of the small number of devices deployed. Modeling approaches vary among 
studies and the transferability of models between devices has not been addressed.  

A primary limitation is the availability of spatial data (seabed material and water column 
properties) and its temporal variation. It has been common for environmental assessments to 
use simple TL models, which require limited data and development and do not require 
specialized software. However, multiple studies have shown that these models are prone to 
significant error without site-specific transmission data (Bailey et al. 2010; Pine et al. 2014). 
Even with site-specific data, TL models are not well-suited to areas with variable bathymetry or 
water properties, or over longer distances. 

Range-dependent propagation models can handle spatial variability much more accurately, 
especially with high-resolution bathymetry and seabed composition data. Temporal variability in 
the water column remains a challenge. Because the output of most propagation models 
represents one point in time, additional data and modeling effort are required to represent 
temporal changes. A conservative approach to simplifying modeling for environmental 
assessments is to identify maximum ranges of auditory impacts (worst-case scenarios), which 
may overestimate risk at other times of the year. If noise models can be informed by reliable 
hydrodynamic models, spatiotemporal variability can be addressed more directly.  

Examples of model validation are sparse, and usually limited to one or a few transects or point 
observations. Effective validation requires measurements of sound (with and without the source 
operating to control for ambient noise) at multiple angles and distances from the source and 
ideally under multiple weather conditions and/or seasons. Environmental complexity requires 
both a more complex model and a richer set of observations to assure that model validation is 
reflecting model skill and not a mismatch between modeled and empirical conditions. Modeling 
for environmental assessments done before a device is installed can be validated using sound 
source recordings if any are available (i.e., from previous installations of a device), but this, too, 
is challenging and has been done infrequently, and most assessments do not appear to have 
follow-up validation after installation. 

Models of biological effects of underwater noise are highly uncertain for all but the most well-
studied species, like harbor porpoises. Data are sparse for non-mammalian taxa. The 
population-level impacts of sound are of high interest, but complex. Existing examples have 
relied extensively on assumptions about behavior, resource availability, and the effects of noise 
on behavior and vital rates. Prey distribution, needed for understanding the effects of sound on 
foraging and therefore species distribution and movement, is identified as a critical information 
gap that has not been directly addressed by monitoring. Full population modeling also requires 
reproduction and survival rates and estimates of the effects of sound on those rates. This 
information is rarely available and resource- and time-intensive to collect. Identifying threshold 
distances and areas of impact is more straightforward than modeling populations, but still 
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requires species-specific auditory impact data. Overall, biological models incorporating noise 
might have been parameterized with field data, but none have not been validated. 

3.3 Electromagnetic Fields 

This section describes models that estimate the extent of EMFs generated by objects that 
produce or carry electrical current, including MRE devices and transmission cables. Models that 
estimate the effects of EMF on animals and populations are still to be developed. 

3.3.1 Definition and Scope 

EMFs are generated by any electrical current-producing or carrying system, including the 
electricity generators on MRE devices that convert motion to electricity and the submarine 
cables that transmit electric current to land. The electric generator produces an EMF and drives 
the flow of current through one or more transmission cable(s). The flow of current through 
cables can either be direct current (DC) or alternating current (AC) and will generate a static or 
time-varying magnetic field, respectively, that can be detected outside the cable. The magnetic 
field strength depends primarily on the magnitude and direction of the electric current and the 
characteristics of the cable, and it attenuates with distance from the cable (Associates et al. 
2011). While the electric fields produced by generators are constrained inside insulated 
inductors and cables, AC magnetic fields change rapidly and can induce a coupled electric field 
in the seawater around a conductor. 

The generation and propagation of magnetic fields and electric fields are governed by Maxwell’s 
equations. These equations are used to generate models that can be applied to all sources of 
EMF, including generators and cables associated with MRE devices. Based on Maxwell’s 
equations, software has been developed to simulate the distribution of electric and magnetic 
fields surrounding a cable. The spatial scale of the models reviewed was generally the extent of 
the cable of interest, from meters to kilometers and the currents used were within an order of 
magnitude for underwater high power cables. No model applications for MRE were identified in 
this review. However, there are no unique characteristic of EMF generated by MRE devices that 
would change how it is modeled. 

Some marine organisms are electro- and/or magneto-sensitive and their movement, behavior, 
and migration may be affected by the presence of EMFs generated by undersea cables or 
generators (Albert et al. 2020; Gill et al. 2014). Their physiological development may also be 
affected in the presence of high intensity EMF (Albert et al. 2020; Lee and Yang 2014; Scott et 
al. 2018). The majority of research has been on individuals in laboratory settings and responses 
to EMF in that context do not indicate significant effects on populations or species interactions; 
realistic field studies of individual or population effects are lacking. No models applied to study 
the effects of EMF on marine organisms were found in this review. 

3.3.2 Model Types and Approaches 

Models of EMF take two basic forms: 

• Analytical models are the simplest, consisting of equations for simple cases that can be 
solved without specialized software. 

• Simulation models are solved using numerical techniques such as FEM to accommodate 
greater complexity in the structure of the device or cable and the surrounding materials.  
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To date, there have been no published models of effects of EMF on species behavior or 
population dynamics. Species effects are limited to some laboratory and field observations for a 
limited number of species.  

3.3.2.1 Mathematic Models for EMF 

Several related analytical approaches can be used to model EMFs under simplified conditions. 
The law of Biot-Savart is an equation describing a magnetic field generated by a direct electric 
current. Kavet et al. (2016) used this equation to model the magnetic field from an electric DC 
cable 85 km long in San Francisco Bay (the Trans Bay Cable). Outputs of the model were 
compared with the measured magnetic field. Model parameters included information about 
cable location (buried depth, angle) its configuration (conductor separation, cable twist) and the 
north, east, and vertical components of the cable field and geomagnetic field. Dhanak et al. 
(2015) also used the Biot-Savart equation to estimate the magnetic field produced by a DC 
cable to compare it with empirical observations. Similarly, Ampere’s law can be used to 
calculate the magnetic field when the field is constant in time (see Slater et al. 2010). 
 
Lucca (2013) developed an analytical expression to model both the electric and magnetic fields 
outside an AC submarine cable. They compare a model that assumes the sea is infinitely deep 
and one that includes finite sea depth and the resistivity of the seabed and qualitatively validate 
the model against an FEM (Huang and Gloyne-Philips 2005) and a radial transmission line 
model (Slater et al. 2010). This model does not accommodate environmental variability along 
the cable. 

3.3.2.2 Software for EMF 

Two simulation software applications that model EMFs were reviewed. The Maxwell 2D 
software was developed to simulate EMF in 2D (i.e., the cross section of the cable is assumed 
to be uniform along its length) using the finite element method. It was used to model the EMF 
generated by a submarine cable with AC and to assess the effects of sediment type on the 
magnitude of the generated magnetic and electric fields (Center for Marine and Coastal Studies 
2003). Gill et al. (2012) used Maxwell 2D to model the magnetic field and electric current density 
from a buried submarine AC cable at an offshore wind farm after determining that the real-world 
setting was too complex for an analytical approach. The parameters included in the model were 
the material characteristics of the cable, seawater, and sediment and the boundary conditions of 
the field (field behavior, sources and intensity of the current). 

Hutchison et al. (2020) used the software package COMSOL to model the magnetic fields of 
two DC cables: the Cross-Sound Cable (40 km long, Long Island Sound) and the Neptune 
Regional Transmission System (105 km long, from New Jersey to Long Island). Like Maxwell 
2D, COMSOL is a 2D multiphysics simulation software that can simulate the coupling effects of 
different fields using an FEM. It includes an AC/DC module to simulate EMF. The parameters 
required in the module are the shape and size of the cable (cable radius, armor thickness, lead 
sheath radius and thickness, conductor radius), the material properties, the distribution and 
number of cables, and the depth at which the cable is buried. The authors modeled multiple 
cross sections to account for varying depths. The outputs of the model are the electric potential 
distribution within the cable and the density of the magnetic flux. They compared model results 
to field measurements and found agreement with the magnetic flux predictions and 
observations. However, field measurements detected unexpected AC fields induced by the DC 
cables which were not predicted by the COMSOL module. 
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3.3.3 Relationship of Models to Monitoring 

The production of EMFs can be modeled based upon the design of the cable or the generator 
on the MRE device. Modeling underground cables or other components requires information 
about the seabed composition. Data for validating EMF models for marine devices or cables 
have been limited until recently; while measuring EMFs is conceptually straightforward, it 
involves practical challenges in marine environments. Field measurements of species response 
to EMFs are even more challenging to collect. Most behavioral response data have been 
derived from highly controlled laboratory studies, and most often related to fish (Hutchinson et 
al. 2018).  

Thomsen et al. (2016) used a custom-built platform (SEMLA) with a magnetometer and 
electricity incorporated into a sledge that was towed in the water or along the seabed to 
measure EMFs along an AC cable and near wind turbines. They demonstrated that empirical 
measurements for electric fields could be readily measured alongside magnetic fields, and 
therefore previous obstacles to model validation can be overcome (they did not evaluate a 
specific model). Hutchinson et al. (2020) used the same sensor platform to measure electrical 
and magnetic fields along both DC and AC cables and to validate the EMF simulation model 
described above for DC cables. They note that a remotely operated vehicle (ROV) equipped 
with a magnetometer could not produce satisfactory results. The sledge design was easier to 
control than the ROV, especially when used directly on the seabed, which also improved 
measurements by stabilizing the platform.  

Dhanak et al. (2015) deployed an autonomous underwater vehicle (AUV) with electric sensors, 
towing a magnetometer, to measure EMF at both DC and AC cables. They visually compared 
the measurements for the DC cable with analytical model results. Kavet et al. (2016) measured 
magnetic fields along a high-voltage DC (HVDC) cable using a pair of magnetometers towed 
behind a vessel and compared the results with analytical estimates of the magnetic field and 
found a very close and statistically significant match. This was the only one of these studies to 
provide a direct comparison of observed and predicted magnetic fields and quantitative model 
validation. 

Monitoring of EMF has been demonstrated at both DC and AC cables, but the additional 
complexity of the magnetic and electric fields of AC cables has so far precluded the type of 
modeling studies reported here for DC cables. Both Hutchinson et al. (2020) and Dhanak et al. 
(2015) measured EMF at both DC and AC cables, but only modeled DC cables; therefore model 
validation was only provided for the magnetic field and not the electric field. 

Some studies of species responses, both behavioral (activity, attraction or repulsion) such as 
Hutchison et al. (2020) and physiological (cellular or developmental/reproductive), to EMF have 
been made in the field and laboratory as reviewed by Albert et al. (2020). These studies are 
short-term and do not evaluate effects over longer life cycles or on populations. The findings of 
the studies reviewed by Albert et al. (2020) have been varied and inconclusive as a whole. They 
recommend careful selection of study organisms, assuring that laboratory-generated EMFs 
match the temporal patterns expected in the field and that intensities and frequencies would 
match what an animal would experience, which differs by species habitat and behavior. More 
field measurements of EMFs consistent with marine devices and cables would be needed to 
adequately simulate these fields in the lab. Field and laboratory studies of behavior should 
assure adequate randomization and replication. 
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3.3.4 Gaps and Uncertainties 

A number of existing submarine HVDC cables are used to transfer megawatts of power tens of 
kilometers whose magnetic fields have been measured and used to validate physical models of 
EMF. MRE devices are more likely to generate AC power for transmission across several 
kilometers to shore-based facilities or be used in directly powering remote devices. As AC 
power applications, these MRE devices will involve a higher current-to-voltage ratio than HVDC 
power cables and will likely generate a stronger magnetic field for their size. In addition, studies 
efficiently measuring both electric and magnetic fields are very recent, and only the magnetic 
fields produced by DC cables have been modeled, and those models validated. Modeling the 
induced electric fields from AC cables is computationally more complex. 

Most models are for idealized cables, perfectly straight, and in 2D cross section. While spatial 
variability in sediment can be accounted for by modeling multiple cross sections, the models of 
idealized cables do not accommodate cable curvature or interactions with other EMF-producing 
objects. The generators incorporated into MRE devices have not been sufficiently studied as 
EMF sources. Their effects will typically be located in the water column rather than buried in 
sediment, so they may affect different species. In some environments and device configurations 
this may merit further study of the generator fields, particularly for arrays of devices. 

The effects of EMF on marine organisms are still being evaluated. The impact of DC and AC 
fields, intensity, frequency of oscillation and trends of repulsion and attraction have been 
documented for some species (Albert et al. 2020), but are not well-understood for many 
electro/magneto-sensitive species. The behavior of organisms when encountering EMF is 
poorly known.  

To date, no models of EMF effects on species are available, either of short-term effects or of life 
cycle or population-level effects. Models will be important for evaluating whether any direct 
effects of EMFs on species, e.g., behavioral changes, would have population- or community-
level effects. In these cases, the location of devices and cables will be important. For example, if 
EMFs generated by cables crossing the entrance to a bay reduced access to important foraging 
or breeding areas, greater effects on the population would be expected than if only part of the 
entrance or bay was affected. It is likely that data limitations will continue to limit modeling for 
some time, but modeling studies may be possible for some species that can help inform further 
data collection. 

3.4 Changes in Habitat 

This section describes modeling related to environmental conditions (seafloor, water column, 
other biota) required by species and their resulting distribution as affected by MRE installations. 

3.4.1 Definition and Scope  

Most MRE devices must be attached to the bottom by foundations or anchoring systems, which 
could alter sediment characteristics, species distributions (attraction or avoidance), and 
community composition. Changes in water properties, currents, and waves caused by river and 
tidal turbines and wave converters (see the section about Changes in Oceanographic Systems 
below) can also affect benthic and pelagic habitats. Specific survey designs, such as a before-
after control impact study, may be able to document potential effects by monitoring changes in 
the area around a deployed device. Modeling can also be used to characterize habitat 
components and forecast changes. Changes can be modeled from a population to an 
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ecosystem level, from a local to a global scale, and over various time periods. Changes induced 
by MRE may be combined with other sources including marine pollution, vessel traffic, and 
climate change, which together produce cumulative effects. 

A great diversity of habitat models are used outside of the MRE field. Most of them could be 
applied in the MRE context, but few MRE-specific studies exist. Habitat models may focus on 
species distribution, habitat suitability, ecological niches, ecoregionalization of communities, 
trophic networks, animal (larval) dispersion, habitat connectivity, and other aspects of species-
environment interactions (see comparative review in Drew et al. 2011; Elith et al. 2006; Franklin 
2010; Norberg et al. 2019; Zhang et al. 2019). Most of these models were developed for 
terrestrial ecology before being adapted for the marine environment. The dynamic nature of 
currents, sediments, and water properties may create challenges in marine habitat 
characterization relative to terrestrial habitats that typically change at slower rates.   

For the present review, most studies that applied one or more models to assess changes in 
habitats caused by MRE development involved tidal turbines. While no studies were directly 
related to specific existing MRE deployments, some of them were related to sites that either are 
currently being evaluated for deployment or had test deployments in the past decade. Other 
studies used theoretical cases to demonstrate concepts. The types of models reviewed here are 
not limited to tidal sites and can be broadly applied to MRE and other marine applications (e.g., 
conservation, resource management). Seven other studies, related to the offshore wind industry 
and to basic benthic ecology, were reviewed to broaden the search and bring in analogous 
models.  

The receptors covered by these studies were diverse (e.g., crustaceans, sea stars, plankton, 
fish) and ranged from individual species to groups of related species, theoretical taxa, and 
functional groups. Neither spatial scale nor temporal scale are limited for any of these models 
and varied from very local (one sampling station) to several thousands of square kilometers (an 
ocean basin), and from a day to 30 year time periods.  

3.4.2 Model Types and Approaches 

Four classes of models that characterize and forecast changes in benthic and pelagic habitats 
are reviewed here. All four have statistical components, while the third also includes an option 
for simulating changes in food webs or changes in species dispersal. The fourth category 
primarily addresses the effect of devices as novel habitats to increase population connectivity 
and distribution. 

• Species Distribution Modeling (SDM), also called habitat suitability modeling or ecological 
niche modeling, is used to estimate a species’ distribution and suitable habitat, as well as its 
ecological requirements. 

• Decision-tree ensemble models (e.g., Random Forest [RF], Boosted Regression Tree 
[BRT]) are compilations of multiple classification or regression models used for detecting, 
quantifying, or forecasting change in species distribution based on estimated relationships 
between observed habitat use and environmental characteristics. 

• Trophic web and spatial ecosystem models focus on ensembles of organisms and functional 
groups to draw relationships within a food web and predict spatiotemporal changes in the 
ecosystem. 

• Biophysical models are used to estimate the role of MRE devices as artificial reefs in the 
dispersal of larvae and resulting species distribution. 
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There is overlap in the application between SDM and decision-tree ensemble models. Both use 
species distribution observations to determine the importance of environmental parameters to 
the ability to predict species presence or presence/absence. The estimated relationships can 
then be used to predict species distributions when the environmental parameters are altered by 
the presence and/or operation of the device. The methods involved in estimating the 
relationships differ. 

Several of these model categories overlap with models applicable to the displacement of marine 
animals; this section only addresses changes in distribution based on habitat alteration, as 
opposed to avoidance of devices.  

3.4.2.1 Species Distribution Models 

When evaluating changes in habitats, studies often focus on distributions of species and 
environmental conditions associated with those distributions. A wide range of modeling 
approaches is available for addressing these questions and can use abundance numbers, 
presence-absence, or presence-only data as response variables (Drew et al. 2011; Franklin 
2010). These approaches are known as SDM, Habitat Suitability Modeling, or Ecological Niche 
Modeling. They estimate the probability of occurrence of the species in defined areas using 
correlations between species records and environmental data. Other outputs include 
characterization of habitat requirements and maps of habitat suitability. Such approaches can 
also be used to model the displacement of marine animals from areas targeted by MRE 
developments (see the Displacement section).  

Reliable presence-absence data are rare, especially in the marine environment, and models 
able to deal with presence-only data have become highly popular over the past decade. 
Examples of such models are MaxEnt (Maximum Entropy; Phillips et al. 2006) and ENFA 
(Ecological Niche Factor Analysis; Hirzel et al. 2002). MaxEnt uses environmental data to model 
the probability of species occurrence in a way that agrees with everything known about its 
distribution without making any assumptions about what is not known (Phillips et al. 2006). 
Along with the species occurrence points, MaxEnt samples a random subset of background 
points in the study area that represent the overall distribution of environmental conditions, 
providing a comparison with conditions at the occurrence points (Elith et al. 2011; Phillips et al. 
2006; Phillips and Dudík 2008). MaxEnt estimates the probability of each pixel of the study area 
to be a presence point rather than a background point and returns a map of the distribution 
probability of the species, a list of the percentage of contribution of each parameter to this 
distribution, and response curves of the species to the environmental variables. The user can 
supply a sample bias grid to account for uneven observations. 

ENFA is a multidimensional factor analysis that uses occurrence points and environmental data 
to characterize the ecological niche of a species (Basille et al. 2008). The ecological space is a 
hyper-volume where each environmental variable defines a dimension, and a species’ 
ecological niche is described by the distribution of its occurrences within the hyper-volume. In 
an ENFA, this model describes the “available habitat” (the quantity of environmental conditions 
accessible to the organisms) and the “used habitat” (the quantity of environmental conditions 
used by the organisms). The model returns a value of “marginality” of the habitat, which is the 
difference between the available and the used habitats and measures the eccentricity of the 
species’ niche relative to the ecological space. It also returns multiple values of “specialization” 
of the habitat, which are ratios of the variance of the available habitat to the used habitat, and 
measure the narrowness of the niche (Basille et al. 2008). Pixels corresponding to the 
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combination of environmental variables that define the ecological niche can be projected on a 
map to represent the suitable habitat distribution (Hirzel et al. 2002). 

MaxEnt was the only SDM algorithm implemented in the MRE context, evaluating suitable 
habitats of the acorn barnacle (Balanus crenatus) and the brown crab (Cancer pagurus) and 
their responses to changes in bed-shear stress due to the presence of tidal turbine arrays (du 
Feu et al. 2019). This study relied on publicly available records (occurrence points for the 
species, depth and substrate types in the study area) and on outputs of a hydrographic model 
(bed-shear stress, distance to shore and flow velocity). The model was run independently for 
each species and did not include species interactions. MaxEnt produced species occurrence 
probability (habitat suitability) maps, environmental variable response curves, and the model 
features retained at the end of the modeling process. These outputs were provided to the 
software OpenTidalFarm. The authors then used scenarios of variation in bed-shear stress 
depending on different designs of tidal arrays to model changes in occurrence probability. 

Combining results of SDM approaches, especially for species of concern, with algorithms to 
design wave and tidal arrays may prove efficient in reducing negative impacts of proposed 
arrays on habitats of interests. Other classes of models like generalized regression models 
(e.g., Generalized Additive Models [GAMs]) or decision-tree ensemble models (e.g., BRT, RF) 
may be used instead of MaxEnt or ENFA to generate species occurrence probability maps (Elith 
et al. 2006; Norberg et al. 2019).  

3.4.2.2 Decision-tree Ensemble Models 

A robust method for modeling spatiotemporal changes in habitats, either at a specific location 
over time or across a wide spatial area, is to use decision-tree ensemble models, which were 
developed for finding patterns and information within large and messy data sets. Decision-tree 
models, also known as Classification and Regression Trees, are sequences of branching 
operations based on comparisons of the dependent variables that split them into two or more 
homogeneous sets (Breiman et al. 1984). Using a set of training data, the algorithm identifies 
the most significant variable(s) and its values that give best homogeneous sets of data. For 
example, a subset of presence and absence data points for a species of interest could be used 
to predict its distribution based on the spatial variation in the environmental variables 
(temperature, current velocity, substrate, etc.) The remaining presence/absence data are used 
for validation. Changes in the environmental variables, e.g., changes in tidal currents and 
sediment distribution expected to follow installation of turbines, can then be used as inputs to 
predict the effect of the turbines on species distribution. These models can make very accurate 
predictions when trained on high-quality data (Kingsford and Salzberg 2008). The method is 
nonparametric, contains no assumptions about the model structure, and performance of the 
model is not affected by nonlinear relationships between variables; it will outperform classical 
linear or logistic regression models when complex relationships are involved (Breiman et al. 
1984). 

Decision-tree ensemble models, also called ensemble learning or machine learning, make 
predictions based on multiple decision trees and tend to be less sensitive to bias and variance 
than single models (Breiman 2001; Kingsford and Salzberg 2008). Because of their high 
accuracy, stability, and ease of interpretation, decision-tree ensemble models such as RF and 
BRT are widely used in a diversity of biological and social science applications. RF has been 
increasingly used for ecological applications since it was developed by Breiman (2001) and 
popularized by Cutler et al. (2007) . RF works as an ensemble of “weak learner” decision trees 
developed from random subsets of the dependent and independent variables in the data set 
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(Breiman 2001; Drew et al. 2011). The predictions from all the decision trees are then averaged 
to obtain the final prediction. The very high classification accuracy of RF and its ability to model 
complex interactions and to deal with missing values make this algorithm one of the most 
powerful statistical classifiers (Cutler et al. 2007). 

RF was applied to MRE in one study characterizing nekton density and patchiness data in a 
tidal inlet under consideration for tidal energy generation. Multiple model approaches (Figure 1) 
were compared for their ability to detect changes in nekton distribution that an operating tidal 
turbine might cause (Linder et al. 2017). In these studies, independent variables were daily tidal 
range, tidal speed, Julian day, and time of day. Dependent variables were mean volume 
backscattering (for nekton density) and aggregation index (for nekton patchiness). In energy 
generation scenarios, tidal speed was changed to represent potential turbine array 
configurations. The models were run for 28-day time frames and assessed for effectiveness at 
detecting, quantifying, and forecasting change. RF was the best model for detecting changes in 
variance (Figure 1) and excellent for interpolating data although less suitable for baseline data 
characterization (e.g., data variability and trends). Other models that scored well in these 
comparative studies were support vector regressions (SVRs) and state-space models (SSMs). 

 
Figure 1. Recommended models for detecting, quantifying, and forecasting changes in density 

(mean volume backscattering strength [Sv]; representative of normally distributed 
data) and patchiness (aggregation index [AI]; representative of non-normally 
distributed data) of nekton organisms in MRE monitoring data. For more details, see 
Linder and Horne (2018). Evaluated models included regression—autoregressive 
moving average (Reg-ARMA), autoregressive moving average—generalized 
autoregressive conditional heteroscedasticity model (Reg-ARMA-GARCH), 
generalized additive mixed model (GAMM), support vector regression (SVR-L), and 
Random Forest (RF).  

The example presented here was very specific to one site with the purpose of comparing 
multiple models. However, RF could be applied to other circumstances in the MRE context, like 
SDM, especially when forecasting changes in distribution due to changes in the physical system 
or cumulative effects with climate change. BRTs would be another efficient decision-tree 
ensemble model to consider for this aspect. 
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3.4.2.3 Trophic Web and Spatial Ecosystem Models 

Organisms in an ecosystem are connected through food webs, networks of trophic (feeding) 
relationships among species. Any habitat change has the potential to alter food webs and 
ecosystem structures. Because characterizing dynamic trophic interactions and their changes 
through field observations and measurements is a complex task, many have turned to modeling 
approaches to assess and quantify direct and indirect changes in an ecosystem network (Brose 
and Dunne 2009). The diversity of trophic web models is broad, and the range of applications is 
even broader (see review in Belgrano et al. 2005). A popular algorithm within the marine 
ecology community is Ecopath, a mass-balanced, carbon-budget trophic model (Christensen 
and Pauly 1992). 

Ecopath is an open-source ecological modeling software that allows users to characterize 
trophic webs and ecological relationships within an ecosystem (Christensen and Pauly 1992). 
The model applies a type of statistics called “path analysis” to estimate the direction and 
strength of all factors influencing the functioning of a system. Ecopath comes with several 
variants, among them Ecosim and Ecospace (Pauly et al. 2000). Because Ecopath is often used 
paired with the Ecosim variant, the model is usually referred to as EwE (for Ecopath with 
Ecosim). Ecopath provides a mass-balanced snapshot of the ecosystem functioning; Ecosim is 
usually implemented to simulate the ecosystem’s evolution through time; and Ecospace adds 
spatiotemporal dynamics to explore cumulative effects and changing environmental conditions 
(Pauly et al. 2000). The EwE package addresses marine policy issues such as the general 
functioning of an ecosystem, ecosystem effects of fishing, effects of management, impact and 
placement of conservation areas, or effects of global environmental changes (Heymans et al. 
2016). 

The EwE modeling approach was implemented by Alexander et al. (2016) for MRE and offshore 
wind and by Raoux et al. (2017) for offshore wind. Both studies used EwE to assess the artificial 
reef effect (i.e., the aggregation of benthic and pelagic organisms around manmade structures) 
of hypothetical MRE and wind turbine arrays. Alexander et al. (2016) also modeled the 
exclusion zone effect and the benefits or drawbacks for the fishing industry. Both studies used 
as receptor groups a combination of individual species (e.g., grey seals, king scallops), higher-
level taxonomic groups (e.g., sharks, crustaceans), and functional groups (e.g., diving seabirds, 
phytoplankton). For each receptor group, the model required a variety of physiological 
parameters such as feeding/growth rate, survival rate, dispersal rate, production over biomass 
ratio, and so on. Sources for all these empirical data were described in the studies. Many were 
available from literature, but others were estimated by the model according to the mass balance 
equations. Parameters for the spatial simulations used by Alexander et al. (2016) came from a 
combination of literature values and “logic” (expert opinion). Alexander et al. (2016) also 
assigned habitats to each receptor group. The models simulated 25 and 30 years, respectively, 
and projected the final changes in biomass per grid cell. In the first study, changes in catch 
value per fishery also projected. These two studies illustrate the interest in using modeling 
approaches like EwE to predict ecosystem-wide changes in trophic relationships and biomass 
over long periods of time caused by the presence of ocean renewable energy devices. They 
also illustrate the complexity of such models and the difficulty of generalizing without good 
knowledge of eco-physiological processes.  

3.4.2.4 Biophysical Models 

Biophysical models (described in more detail in the Displacement section below) can also be 
used to simulate the effects of changes in currents caused by MRE devices, such as the effect 



PNNL-29977 

Results 3.26 
 

 

of tidal turbines on plankton dynamics and connectivity (Schuchert et al. 2018). The physical 
component of these models comes from a 2D or 3D hydrodynamic model that includes current 
velocity, heat balance, river runoff, and other oceanographic variables. The biological 
component can be a biogeochemical flux model describing physiological processes, such as a 
nutrient-phytoplankton-zooplankton-detritus model used by Schuchert et al. (2018) to estimate 
the differences in plankton concentrations with and without an array of tidal turbines. 
Biophysical models have also been used to study how offshore structures acting as artificial 
reefs facilitate the dispersal of larvae across larger geographic areas (Adams et al. 2014; Bray 
et al. 2017; van der Molen et al. 2018). Structures become stepping stones allowing for 
dispersal over longer distances than larval durations would otherwise allow. Studies used 
oil/gas infrastructure (van der Molen et al. 2018), offshore wind farms (Bray et al. 2017) or 
unspecified “offshore renewable energy devices” (Adams et al. 2014) as the artificial reefs. 
Some MRE devices could act in a similar manner and be modeled using the same approach. 
Biophysical models use information from hydrodynamic models and physiological/behavioral 
characteristics of the organisms to estimate how individuals might move throughout the 
landscape. For the larval dispersal studies, the length of time larvae spent in the water column 
before becoming competent to settle was the key biological parameter; the hydrodynamic model 
determined how far the larvae were transported and whether they had access to suitable 
substrate once they were competent to settle. 
 

3.4.3 Relationship of Models to Monitoring 

Each of the habitat modeling approaches requires site-specific input data such as 
occurrence/abundance data for the focal organisms, water column data (e.g., bathymetry, water 
temperature and salinity, current velocity), and seabed characteristics (e.g., substrate types, 
bed-shear stress). Unless a site favored for an MRE deployment has already been surveyed for 
other reasons (e.g., fish-stock assessments, installation of other infrastructure), it is unlikely that 
these data will already be (freely) available to modelers, and specific sampling will be required 
during environmental impact assessment and monitoring surveys. Other site-specific inputs, 
such as bathymetry and water properties, may be obtained from large-scale models or 
databases but local measurements may be needed for sufficient spatial resolution.  

Species occurrence may also be available from existing databases, but baseline data collection 
is recommended. Occurrence data collection methods depend on the species, but may include 
aerial or boat-based visual or photo/video surveys, underwater camera or dive transects, mark-
recapture, or sampling with nets. For early life stages, data from sampling are useful but 
resource-intensive to collect and analyze. An alternative to sampling is the use of underwater 
cameras to capture images of small organisms from micron to millimeter size (Luo et al. 2018; 
Nayak et al. 2018). 

The trophic web and spatial ecosystem models usually require physiological parameters for the 
focal species (e.g., feeding, growth, movement, survival, vulnerability to predation). Biomass, 
diet, and survival data appeared to be available for many species, especially fish. Data 
availability may depend upon region (northern European waters are well-studied in this regard) 
and the taxa being modeled (heavily represented in the EwE literature), and protected and 
commercially valuable species have more data reported in literature. Behavioral data are less 
available and may require assumptions for modeling. Monitoring surveys are rarely designed for 
characterizing such parameters, which can take years to collect for longer-lived species. Some 
physiological parameters required for habitat change modeling are also needed for some model 
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approaches for other stressors, creating potential efficiencies for species-specific data 
collection.  

The studies reviewed here were for fundamental research purposes only, using data from 
specific MRE sites as case studies. None of the model outputs from these studies were used in 
planning and/or monitoring any project, nor were they validated with field monitoring. Validation 
would require the collection of additional species occurrence/abundance data beyond what are 
used to develop the model or evaluate the predicted habitat suitability. In some cases, input 
data limitations made models sufficiently abstract that field validation would not be possible. For 
example, for Alexander et al. (2016), limited fishery data and reliance on modeled 
environmental parameters meant that validation could not be performed. 

Collecting data about benthic/pelagic species diversity, occurrences and abundance, as well as 
seabed characteristics and water properties during the TFiT field campaigns will provide input 
data to develop such models for the sites targeted under the TFiT project. However, a trophic 
web model like EwE may be difficult to implement if inputs such as consumption, growth, and 
mortality rates are not available for the local species (see next point). 

3.4.4 Gaps, Limits, and Uncertainties 

Several predominant constraints are common to models used to assess changes in benthic and 
pelagic habitats. Most models (e.g., BRT, ENFA, GAM, MaxEnt, and RF) rely on species 
occurrence and/or abundance data, usually as response variables. Poor availability or quality 
will impede the strength of the model and reliability of the outputs. Models like BRT, GAM and 
RF require presence/absence data; however, absence data are particularly difficult to reliably 
obtain in the marine environment without extensive sampling. Availability of relevant and 
uncorrelated environmental parameters to serve as predictor variables is another limiting factor. 
A crucial limit for most of these models is the spatial extent and resolution of environmental data 
like seabed characteristics or water properties. In some instances, it may be possible to use as 
input the results from other models (e.g., regional ocean circulation models as used in Hemery 
et al. 2011; Hemery et al. 2016), with the inherent uncertainty of using model outputs to inform 
another model. 

Any trophic web and spatial ecosystem model will require inputs on species’ (or functional 
groups’) growth rate, survival (or mortality) rate, excretion rate, reproduction success rate, 
and/or dispersion rate. These various rates may be difficult to obtain for all but the most well-
studied organisms, requiring repeated monitoring over multiple generations. They may have to 
be estimated from distantly related species. Species-specific data may require adjustments for 
the targeted location (e.g., an enclosed bay may have a higher larval retention rate than a 
nearby open shore). 

Model-specific limitations include the following: 

• EwE needs species or functional groups to be assigned to particular types of habitat, which 
can be difficult without explicit knowledge (Alexander et al. 2016).  

• Generalized regression models such as GAM and the generalized additive mixed model 
(GAMM) can be prone to overfitting and convergence issues, often due to a high “predictor 
to response variable” ratio that would be alleviated with a greater coverage of occurrence 
data (Coolen et al. 2016; Linder and Horne 2018).  
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• Nonparametric models like RF and SVR are excellent models for interpolating data, for 
forecasting, but less so for data characterization to identify variability and trends (Linder et 
al. 2017).  

• Time-series models like SSM are excellent in fitting change scenarios but poor in forecasting 
trended change (Linder et al. 2017).  

• 2D and 3D biogeochemical models can be limited by a lack of data and by the inherent 
complexity of the system, which compel the user to simplify or omit processes or variables 
and reduce the resolution of the model such that the natural variability is not represented 
adequately. Overcoming these limitations requires extensive data collection and increased 
computing capabilities (Schuchert et al. 2018; van der Molen et al. 2018; van der Molen et 
al. 2016). 

Models to detect, quantify, and forecast changes in benthic and pelagic habitats are numerous 
and adapted to all sorts of scientific problems. The shortcomings of a model in a specific 
situation could be strengths in a different situation. Many of these models have been applied to 
contexts other than MRE and the MRE community would benefit from implementing them. For 
instance, some models such as BRT and MaxEnt are particularly interesting for hindcasting and 
forecasting species distributions due to climate change (e.g., Freer et al. 2019; Guillaumot et al. 
2019) and could be more widely applied in conjunction with oceanographic models (see the 
section about Changes in Oceanographic Systems) to forecast changes in species distributions 
due to the operation of MRE arrays (du Feu et al. 2019). 
 

3.5 Displacement of Marine Animals 

This section describes models related to the temporary or permanent change in species 
distribution caused by behavioral responses to the presence of an MRE device, even if physical 
habitat remains suitable. 

3.5.1 Definition and Scope  

Species are displaced when MRE devices or arrays induce a partial or complete loss of habitat 
or changes in migratory routes because of the presence of the device or array (as opposed to 
noise or EMF emitted from the device). The development of anthropogenic structures can cause 
a temporary change in the habitat of marine species (i.e., disturbance) or create a barrier 
disturbing the movement of animals (i.e., barrier effects). Physical characteristics of the habitat 
may still be suitable, but the animals cannot or are unwilling to access it. Displacement is 
described as movement of species from their habitat at a larger temporal and spatial scales 
than considered for collision avoidance. Consequences include the loss of access to resources 
and the energetic costs of longer dispersal or migration routes. Impacts may also arise from 
increased intra- and interspecific competition for prey or exposure to predators. The models 
reviewed for this stressor were mainly applied to tidal environments but can be applied 
elsewhere. The receptor groups covered by these studies were seabirds, marine mammals, and 
fish.  

No models were identified for this review that directly addressed displacement in the absence of 
(or not considering) other stressors, such as noise. There is also limited empirical data from 
situations most likely to displace animals, like extended arrays, because of the lack of operating 
arrays. However, there are modeling approaches for other stressors that could be applied to 
displacement with minor changes. 
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The spatial scale of reviewed models ranged from hundreds of meters to thousands of 
kilometers and the temporal scale from days to years. All the models reviewed for the 
displacement stressor were applied to single devices but are adaptable to arrays and can be 
used at different spatial and temporal scales. Although these models can be applied at different 
locations, they are dependent on site-specific data (hydrodynamic or species-specific). These 
models can also be used in marine spatial planning to predict species distribution and assess 
the effect of physical factors on species movement. 

3.5.2 Model Types and Approaches 

Two modeling approaches were available to study the displacement of marine species in the 
reviewed studies: 

• Biophysical models: computational models consisting of the coupling of hydrodynamic and 
individual-based models (IBMs, also called agent-based or Lagrangian models). They 
simulate movements of individuals in their environment and can be used to predict 
distributions or exposure to stressors. 

• Generalized linear models (GLMs): algorithms used to relate observations to multiple 
predictor variables. GLMs are used to relate data about species distribution to 
environmental factors and then predict how the distribution responds to stressors. 

3.5.2.1 Biophysical Models 

Biophysical models are couplings of hydrodynamic models and IBMs. Hydrodynamic models 
predict oceanic circulation (see the section about Changes in Oceanographic Systems below). 
Outputs from the hydrodynamic model are used as inputs to the IBM. Parameters describing 
behavior are applied to the individuals in the IBM to predict their movement and position as a 
function of life stage and their environmental conditions.  

Several studies specific to MRE used biophysical models to represent harbor porpoise 
movement in tidal environments (Croft et al. 2013; Lake 2017; Lake et al. 2015, 2017; Nabe-
Nielsen et al. 2018). Although these studies focused on how the distribution of food and noise 
affected porpoise behavior, the framework could also be used to simulate the effect of the 
presence of a potential device on animals behavior. Modeled factors affecting harbor porpoise 
behavior were water flow, water depth, food, and noise. Noise thresholds could be replaced by 
distances that individuals are unwilling to approach a device.  

Grippo et al. (2017) used biophysical models to simulate the behavior of fish around a single 
tidal turbine in Cobscook Bay, Maine, United States. The model scale was 50 to 200 m, which is 
much smaller than the models in the previous paragraph but larger than that of collision risk 
models. It essentially focused on avoidance at greater distances. This approach could be used 
in the context of an array to simulate displacement behavior under different assumptions about 
responses to the turbines. Fish density was predicted to decrease with decreasing distances to 
the turbine when it was operating. The decrease in density was also observed in hydroacoustic 
surveys and indicated an avoidance behavior of the turbine. Although it was mentioned that 
avoidance could result in displacement of the fish from their preferred habitat, no distribution 
data were available for the area to confirm this. Authors suggested that installing the turbines in 
a strong current zone may reduce the potential for displacement of the fish (Grippo et al. 2017). 

The hydrodynamic models used in the reviewed studies were the Finite Volume Coastal Ocean 
Model (FVCOM; used by Grippo et al. [2017]) and TELEMAC (used by Lake [2017]) and Lake et 
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al. [2015, 2017]). They allow the representation of the local environment in three dimensions. 
The horizontal resolution of FVCOM and TELEMAC is large (order of meters) in those studies. 
The hydrodynamic model outputs (e.g., current velocities and water temperature) were inputs to 
the IBMs. Croft et al. (2013) and Nabe-Nielsen et al. (2018) did not use hydrodynamic modeling, 
just animal movement in space. Other necessary inputs were the biological parameters used to 
describe the behavior of the individuals; these can be functions of the hydrodynamic parameters 
or based on distance to features in the environment (like turbines). Essential habitat for feeding, 
migration, and breeding also needs to be characterized.  

The outputs from the simulated movement of individuals from a biophysical model are the 
trajectories of the individuals and the predicted spatial distribution of the population. This 
information is useful for predicting distribution changes in the presence of planned or installed 
MRE devices and selecting among alternative array placements or designs. The models can 
also be used to estimate the impacts on life history, for instance the effects on growth, 
reproduction, or survival from reductions in accessible foraging area (e.g., Thompson et al. 
2013) or increased exposure to predators. This application would require additional information 
about demographic rates, e.g., functions relating the food supply to the ability to reproduce. 

3.5.2.2 Generalized Linear Models 

Statistical models such as GLMs are designed to fit models to observational data in order to 
analyze those data and interpret the relationships between the variables of interest (Burch 
2018). Two types of generalized linear models were reviewed for the displacement stressor: 
generalized linear mixed-effect models (GLMMs) and GAMs. Both models are an extension of 
generalized linear models. GLMMs are used when both fixed and random predictor variables 
are needed. Including random effects allows multiple sources of variability to be distinguished. 
GAMs are used to model nonlinear relationships between two variables. They use smoothing 
functions to capture the relationship between the predictor and the variable.  

In ecology, GLMMs and GAMs can be applied to many questions, including those about habitat 
suitability (see the section above about Changes in Habitats). In the MRE context, they have 
been used in project planning to reduce expected impacts on species by characterizing habitat 
use by physical features so that devices can be sited in locations with lower expected impacts. 
Results can be used to inform mitigation measures for the installation or operation of devices 
depending on the location and season. They could be used to evaluate displacement after 
device installation by incorporating distance (and perhaps direction) from devices as a predictor 
variable. No studies using this approach for displacement were found for this review, but given 
sufficient data collected during turbine operation, the same analyses could be applied.  

Waggitt et al. (2016) used GLMMs to assess how turbulence, current speeds, and water 
elevation relate to seabird distribution and to provide insights into the vulnerability of several 
species to displacement due to MRE devices. The model was applied to a tidal stream turbine 
test site at Fall of Warness (Orkney, UK) with capacity for eight turbines. Devices were operated 
occasionally during the study periods (at most, two devices were operated on the same day) but 
were not included in the analysis. In the model, the physical factors were continuous 
explanatory variables and seabird presence/absence was the predicted response. Waggitt et al. 
(2016) found that Atlantic puffins were likely to use the area during their breeding season and 
this should be considered in the post-installation monitoring and mitigation. Because the devices 
were not included in the model, and not representative of a functional array, this study did not 
directly evaluate displacement. A similar data collection protocol conducted in the presence of 
an operating array would allow for an analysis of differential use indicating whether birds were 
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avoiding devices, though factors such as noise and prey availability would also have to be 
considered. 

Gilles et al. (2016) used GAMs to predict harbor porpoise habitat in the North Sea (including 
Denmark, Germany, The Netherlands, and Belgium) where human activities such as offshore 
renewable energy are planned. Information about the location of MRE or other development 
was not included in the GAM itself. Their results provided seasonal distribution maps of harbor 
porpoise that could inform future development of anthropogenic activities such as MRE 
installations; for example, the maps could be used to identify sites for devices and seasonal 
timing of construction that would have the least impact. The results were also used as inputs to 
the IBMs used to further evaluate displacement and underwater noise (Nabe-Nielsen et al. 
2018).  

Variables for predicting the distribution of species are environmental data in the study domain 
that can be extracted from a hydrodynamic model such as FVCOM (e.g., Waggitt et al. 2016) or 
from empirical data (e.g., Gilles et al. 2016). Observed species distribution is required as an 
input to serve as the response variable. Additional or withheld distribution data can be used for 
verification, or cross-validation with the original data set may be performed to evaluate model 
accuracy (Gilles et al. 2016). 

3.5.3 Relationship of Models to Monitoring 

Biophysical models and GLMs require environmental data (e.g., current velocities, temperature, 
depth) that can originate from hydrodynamic models or monitoring data. Biophysical models 
also include biological parameters, typically related to behavior. When data are lacking for a 
species or location, information for a similar species or other location may be substituted, with 
appropriate caveats. The models may also use information about the availability of prey or other 
species. GLMs require data about the spatial distribution of the focal species along with the 
environmental parameters to be used as predictor variables. In the studies reviewed, distribution 
data were collected by vessel-based transect surveys for seabirds (Waggitt et al. 2016) and by 
aerial visual surveys for harbor porpoises (Gilles et al. 2016). Environmental parameters may be 
physical or biological aspects of habitat suitability. 

Biophysical models would benefit from the collection of empirical data to refine the inputs 
required, particularly data about the swimming behavior of the individuals under typical 
conditions, and their response to the presence of devices. Species distribution data can be used 
for model validation. Monitoring for adult stages could be achieved through tagging techniques, 
acoustic surveys (e.g., Grippo et al. 2017), or sampling (for fish).  

3.5.4 Gaps and Uncertainties 

The models reviewed focused on predicting the behavior and distribution of individuals for a 
given species but did not assess their probability of displacement based solely on the physical 
presence of a device. This is partly due to a lack of behavioral data about the response of 
individual organisms to devices. Individual test devices may be less likely to cause displacement 
than arrays, which are currently scarce, and distinguishing behavioral responses among 
possible stressors is also difficult. Moreover, the potential consequences of displacement on the 
overall population were not considered. However, models such as those used to evaluate 
population responses to noise (e.g., Nabe-Nielsen 2018) could be adapted such that proximity 
to the device (and possibly related factors, such as visibility) rather than noise affected the 
behavior of individuals. In those instances, the PCoD model framework (King et al. 2015; New 
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et al. 2014; Pirotta et al. 2018) could also be adapted to assess population and/or community 
effects of devices.  

Models that use local environmental data as inputs require such information to be available from 
field monitoring or hydrodynamic modeling for the model domain. Currently, hydrodynamic 
model outputs are available for the entire ocean system but at very low resolution (i.e., HYCOM, 
horizontal resolution of 8 km). To study the displacement of marine species at MRE locations, 
hydrodynamic models require a high resolution (order of meters), which in most cases need to 
be developed by the program conducting the study. The other limitation observed in the 
reviewed models was the use of 2D rather than 3D hydrodynamic models. 3D models allow for 
representation of the current velocities along the water column that can affect the behavioral 
patterns of the individuals. 

The biological components of the reviewed models were also poorly described. Few models 
have realistic biological parameters to describe the biology and ecology of the species of 
interest. For the biophysical models in which behavior was included, species-specific data were 
often limited and information from similar species was used. Behavioral data can vary by both 
species and location/habitat type. Similarly, biological inputs were limited in GLMs. Distributions 
of the modeled species were obtained from the literature or from a few tracked individuals. Key 
research needs to apply these types of models at the scale of MRE devices are high-resolution 
hydrodynamic models and knowledge of species characteristics such as swimming velocities 
and behavior to refine the biological parameters and distribution of individuals to validate the 
model outputs. 
 

3.6 Changes in Oceanographic Systems 

This section describes models that estimate how MRE devices change the physical 
environment in their vicinity, including changes to water elevation and currents, water 
properties, waves, and sediment. 

3.6.1 Definition and Scope 

The placement and operation of MRE devices can change currents, water surface elevation 
(WSE), water temperature, salinity, and other waterborne constituents or biota. Devices can 
also affect geomorphology and the formation and propagation of wind waves. Hydrodynamic 
and transport models, wave propagation models, and computational fluid dynamics (CFD) 
models have been used to estimate these physical effects. The models are based on the 
conservation of mass, momentum, and/or energy in the water column.  

MRE devices are designed to harvest energy, reducing the energy in the currents or waves. 
They may also redirect momentum and change the strength and path of currents. In turn, 
changes in energy and flow direction alter the transport of sediment or other particles. The goal 
of oceanographic systems modeling for MRE devices is first to quantify how the balance of 
momentum or energy is altered by the MRE device placement and operation. Then, models can 
estimate the consequences to the environment due to the redistribution or harvesting the energy 
in the system. The models also provide information about velocity, temperature, salinity, and 
particle transport to numerous other models included in this review. In this way, physical models 
can improve the accuracy of models for other stressors while reducing the need for extensive 
field data collection. 
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3.6.2 Model Types and Approaches 

Several types of numerical models have been applied to assess MRE-related oceanographic 
change. Generally, the distinction between the models is their underlying numerical solution 
scheme, level of spatial integration/resolution, and the nature of coupling with other types of 
models (e.g., wave propagation, sediment, and constituent transport submodels). Numerical 
models can be fully 3D or configured for vertically integrated, 2D simulations (i.e., depth along 
an x-y transect). Wave models may solve the wave action equation in the frequency domain (a 
form of the conservation of energy flux equation), which models a single point in time. There are 
also time-domain wave models that are more computationally intensive and applied at smaller 
scales around devices. Currently, most numerical approaches are based on variable spatial 
resolution in their simulations. They implement irregular meshes that conform to the topography, 
allowing for finer resolution in areas of higher complexity and coarser resolution in more 
homogeneous areas for efficiency. 

For assessments of MRE device effects on waves, sediment transport, or geomorphology, the 
specific models can be applied as stand-alone models, coupled directly with a coastal 
hydrodynamic model, or they can incorporate coastal hydrodynamic model results as an input. 
The models may be run using the same numerical discretization of the environment or the 
discretizations may differ among models in a study. 

3.6.2.1 Coastal Hydrodynamic Models 

Coastal hydrodynamic models use bathymetry, tides, river discharges, wind forcing, bottom 
friction, and the impact of the Earth’s rotation to model water properties and movement. In 
cases where the distribution of temperature and salinity are thought to significantly affect water 
circulation (e.g., stratification), coastal hydrodynamic models also need to account for surface 
heat loss and gain. They then estimate the effects of temperature and salinity on water density 
and density-driven flow. The studies summarized below are examples of hydrodynamic models 
and their applications and not an exhaustive list.  

Five different coastal hydrodynamic models were implemented in the evaluated studies: 
FVCOM (Chen et al. 2003), Delft3D (Deltares), MIKE 3 (DHI Water and Environment), 
TELEMAC 2D (National Laboratory of Hydraulics and Environment, France), and Fluidity 
(Piggott et al. 2008). These models solve the Reynolds-averaged Navier-Stokes equations1 with 
depth dependence, except for TELEMAC 2D, which solves the depth-averaged version of the 
equations. The 3D models mainly differ in their spatial and temporal solution schemes, 
boundary conditions, energy dissipation schemes, inclusion of sediment transport models, and 
biogeochemical models. Models have strengths in different areas or submodules; for example, 
FVCOM is strong for evaluations of changes in flow and circulation, while Delft3D is strong in 
modeling sediment transport. 

There are several approaches to evaluating the effect of tidal devices using these models. A 
momentum sink can be used such that the velocity is reduced based on the flow-facing area of 
the turbines and an associated momentum extraction coefficient (Ashall et al. 2016; Yang et al. 
2013). Another way to simulate turbines is by implementing porous plates that will reduce flow 
velocity (e.g., Waldman et al. 2017). The advantage of these approaches is that the turbines are 

 
1 The Reynolds-averaged Navier-Stokes equations are the time-averaged version of the equations of 
motion. To solve the equations, the high-frequency turbulent flow is parameterized using turbulent closure 
models.  
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abstractions. The parameters for their effects on flow can come from laboratory studies, small-
scale numerical simulations of the turbine structure, or field data. With these abstractions, the 
mesh does not need to be fine enough to resolve the structures, which may be small relative to 
the model domain. 

Coastal hydrodynamic models require finely detailed bathymetry to represent the study system 
at relevant scales. The model mesh is constructed to represent the features of the bathymetry 
and to optimize the numerical simulation (e.g., by using coarser resolution in open areas). For 
depth-resolving 3D models, the pressure gradient error that results from the vertical 
discretization of a stratified ocean can generate spurious density-driven currents; therefore, 
having knowledge of the stratification and bathymetry gradients can inform mesh generation.   

Tidal elevation or velocity time series at the open ocean nodes are necessary inputs. These are 
usually taken from a global database such as the Oregon State University TPXO model (Egbert 
et al. 1994; Egbert and Erofeeva 2002). Information about salinity, temperature, and heat fluxes 
can be added to the 3D models to simulate density-driven currents. To evaluate the impacts of 
tidal devices on sediment transport, the models will require spatial maps of sediment 
composition/grain sizes. 

At a minimum, models provide outputs of WSE and current velocity. Additional outputs may 
include estimates of turbulent kinetic energy and bed-shear stresses. The latter can be used to 
estimate sediment mobility if a physics-based sediment transport model is not included. Other 
common outputs are time series of temperature and salinity or other constituents. 

Many researchers have used FVCOM (Adams et al. 2014; De Dominicis et al. 2017; Smith et al. 
2013; Wang et al.; Yang and Wang 2015; Yang et al. 2013) for hydrodynamic modeling and 
assessment of effects based on the change in flow patterns. For instance, Yang et al. (2013) 
investigated the effects of tidal turbine farm on the flushing time of a bay. They used an 
idealized setting of a tidal channel and bay to validate a tidal turbine module in FVCOM relative 
to an analytical solution using the momentum sink approach. They also compared 1D, 2D, and 
3D model formulations to find that less-than-3D models overestimate the effects of turbines on 
tidal flux. De Dominicis et al. (2017) used a similar modeling approach for tidal turbine arrays in 
the real-world setting of Pentland Firth, Scotland. They include estimates of farfield effects and a 
brief review of other modeling studies of farfield effects of tidal energy extraction. MIKE 3 and 
Delft3D have also been implemented for analysis of tidal turbines in Pentland Firth (Gallego et 
al. 2017; Waldman et al. 2017). 

Delft3D is well-known for its capability to simulate sediment transport. Multiple studies used 
Delft3D to evaluate the impacts of tidal or wave energy devices on erosion or sediment 
transport (e.g., Ashall et al. 2016; Jones et al. 2018; Rodriguez-Delgado et al. 2018; Smith et al. 
2013). Ashall et al. (2016) used Delft3D coupled with Simulating WAves Nearshore (SWAN) 
wave model (see the Wave Propagation Models section below) to evaluate the impacts that 
high- and low-density tidal turbine arrays, represented as semi-porous plates, would have on 
suspended sediment transport in the Minas Basin (Bay of Fundy, Canada). They showed the 
impacts of the high-density array were considerable but the impacts of the low-density array 
were minimal. The model was validated for WSE, currents, and suspended sediment 
concentration without turbines but not for nearfield effects around turbines. Jones et al. (2018) 
used a coupled hydrodynamic-wave model framework, Delft3D-FLOW-SNL-SWAN, to evaluate 
the effects of a wave energy buoy array on near-bed sheer stress and seabed elevation, both 
considered indicators of benthic habitat quality. 
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TELEMAC 2D was used in applications to those of Delft 3D, where researchers investigated the 
effect of a proposed array of tidal turbines, explicitly modeled, on bed-shear stresses and the 
potential for scouring or accumulation of sediment and sediment transport volumes (Haverson 
et al. 2018). They noted that 2D depth-averaged models may underestimate the flow velocity 
below turbines and underestimate nearfield bed-shear stress. Robins et al. (2014) used 
TELEMAC 2D coupled with the SWAN wave model to investigate changes in bed-shear stress 
and sediment context caused by tidal turbines in the context of changes due to natural variability 
in wave dynamics. Martin-Short et al. (2015) used Fluidity, another 2D model, similar to how 
Haverson et al. (2018) used TELEMAC 2D, with similar caveats about modeling nearfield 
effects using a depth-averaged model. 

3.6.2.2 Wave Propagation Models 

Most wave modeling for MRE evaluation has used models suitable for larger scales. The most 
common software is SWAN (Delft) and models derived from SWAN. The software has been 
used together with hydrodynamic models (Abanades et al. 2014; Bergillos et al. 2018; Iglesias 
and Carballo 2014; Jones et al. 2018; Robins et al. 2014; Rodriguez-Delgado et al. 2018) or for 
stand-alone wave modeling (O'dea et al. 2018). SWAN is a spectral model developed to 
simulate wave activity from deep to shallow water. It includes wave breaking induced by the 
seabed and allows for complex interactions between waves. This model is suitable for 
evaluating farfield effects of MRE devices on waves such as changes in a coastline (O’Dea et 
al. 2018).  

An example application of SWAN evaluated how the distance from wave energy converter 
(WEC) arrays to the shoreline would affect nearshore wave energy and where on the coastline 
the impacts would occur (Iglesias and Carballo 2014). The model uses a nested grid, with a 
resolution smaller than the WECs to accurately represent diffraction and the wakes of individual 
devices. It has also been used to assess whether wave farms could provide coastal protection 
in areas with erosion problems by coupling SWAN, or its derivative Delft-WAVE, to a 
morphodynamic model (XBeach) that models sediment dynamics of the nearshore and beaches 
(Abanades et al. 2014; Bergillos et al. 2018). O’Dea et al. (2018) provide a generic study of the 
nearshore effects of WECs and a review of previous applications of SWAN.  

SWAN can be directly coupled with hydrodynamic models so that waves and currents interact, 
allowing waves to affect the sediment transport in the hydrodynamic model. Ashall et al. (2016) 
used a coupled Delft3D-SWAN model to assess turbine impacts on suspended sediment as 
described above; the model coupling allowed waves to increase bed-shear stress, turbulent 
dissipation, and other factors important to sediment dynamics in intertidal mudflats. A 
modification of SWAN, also coupled with Delft3D-FLOW (Delft3D-FLOW-SNL-SWAN; Sandia 
National Laboratories), was used to show the effects of wave shadowing from WECs on 
sediment deposition (Jones et al. 2018).  

The SWAN model requires time series of incoming wave spectra, sea level, and wind, as well 
as bathymetry and bottom drag coefficient(s). Because wave events are far more unpredictable 
than tides, characterizing the directionality and variance in wave height and period is important 
for realistic modeling and may require extended observational data and probabilistic analyses 
(e.g., Jones et al. 2018). If coupled with a hydrodynamic model, SWAN can also use horizontal 
and vertical eddy viscosity parameters. WECs have been incorporated in SWAN by using a 
transmission coefficient that is either independent or dependent of the wave frequency and 
determines how the WEC alters the waves as they pass the device. Realistic values of the 
transmission coefficient can come from CFD models (below), field measurements, or laboratory 
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measurements. Some studies have used very fine grids to model wave dynamics near the 
WECs in more detail (e.g., Iglesias and Carballo 2014). 

Nearfield effects where diffraction of the waves is important—i.e., the effects of the device on 
the structure of a wave that passes by or through it—cannot be accurately modeled with 
spectral models like SWAN. The performance of SWAN is also limited when the obstacles, 
including WECs, are smaller than the resolution of the model grid, and for oscillating WECs that 
create radiated waves. The model WAMIT (MIT) is a “wave-structure interaction solver” that has 
the capability to simulate diffraction and include source terms that account for the wave 
reflection, absorption, and radiation associated with the presence of WECs (Sjökvist et al. 
2017). WAMIT is a Boundary Element Method model that, like the CFD models described 
below, are only computationally practical for small domains and also must be used with constant 
water depths.   

Models that simulate the sea surface as a function of time can overcome some limitations of 
spectral models (Beels et al. 2010). These models are based on conservation of mass and 
momentum and can be used to model the effect of specific device geometries and operations 
on waves. One model, MILDwave, is described as a mild-slope wave propagation model. It has 
been used at fine scales to model the impact of overtopping WECs, alone and in arrays, over a 
distance of approximately 2 km (Beels et al. 2010). The model is specialized for modeling 
diffraction accurately as linear waves move from deep to shallow water. MILDwave also been 
used together with simulations of Oscillating Surging WEC device arrays over a 6 km model 
domain (Balitsky et al. 2019).   

Wave models can be combined to simulate both nearfield interactions between WECs and 
farfield effects (Stratigaki et al. 2019). In this approach, a wave propagation model is used to 
estimate the incident waves arriving at a WEC. A wave-structure interaction solver models the 
wave as it is perturbed around the WEC. Then the perturbed waves (including the diffracted 
waves and radiated waves, if applicable) are returned to the original propagation model to travel 
over longer distances and varying bathymetry; the process is repeated for additional WECs. 
This approach can be used with different model combinations. Stratigaki et al. (2019) 
demonstrated it with a coupling of MILDwave as the propagation model and WAMIT as the 
wave-structure interaction model. MILDwave is able to calculate the diffracted waves from the 
WECs, so the additional information provided by WAMIT is the radiated waves from a heaving 
WEC.  

Another wave model, MIKE21 SW, has been implemented together with the hydrodynamic 
model MIKE3 in the simulations of WECs (Gallego et al. 2017; Venugopal et al. 2017). The 
model accommodates nonlinear waves in shallow water with high accuracy (Beels et al. 2010). 
MIKE21 SW does not have a built-in WEC module, so in these instances WAMIT was used to 
characterize the WEC arrays to provide parameters for MIKE21 SW. This was not a coupled 
model as in Stratigaki et al. (2019) because there was no feedback between models; WAMIT 
was used separately to provide parameters about the effects of the WECs for MIKE21 SW run 
separately. 

3.6.2.3 Computational Fluid Dynamics Models 

CFD models are designed for smaller, higher-resolution spatial domains than the numerical 
models discussed above. CFD models can characterize flows in the immediate area of a device 
or array, and thus can resolve flow characteristics that the other models do not. Conversely, 
they are not typically used to model large-scale flow phenomena because of the computational 
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complexity and time involved. These models can be used in complementary ways: CFD models 
can inform larger-scale models about the effect of specific MRE devices or arrays on local flows 
(allowing the abstractions of devices described above); the large-scale models can inform CFD 
models by specifying boundary conditions.  

There are numerous examples of small-scale evaluations of the design and performance of 
MRE devices and site-specific energy potential estimates using CFD. Laín et al. (2019) reviews 
applications of CFD models to tidal turbines. Software included ANSYS FLUENT (Li et al. 
2019), which was used to model the nearfield effects of a tidal turbine on surface waves. The 
local changes in wave height and length were used to parameterize an FVCOM model for 
larger-scale simulation. COMSOL Multiphysics was used to characterize hydrodynamics around 
a wave buoy in comparison with the WAMIT model (Sjökvist et al. 2017). 

3.6.3 Relationship of Models to Monitoring 

Hydrodynamic and wave models require some fundamental physical characteristics of the 
system being modeled, such as bathymetry (preferably at a relatively fine scale) and the bottom 
friction or drag. CHD models with sediment modules require additional details about sediment 
type and distribution. They also require time-series inputs. CHD models require, at minimum, 
tides, river discharge, wind, and current velocity at the open-ocean boundary conditions. Initial 
conditions of temperature, salinity, etc. are also necessary. Wave models require, at minimum, 
the WSE from observations or CHD model output, wind, and incoming wave spectra. Ocean 
currents and tidal forcing should also be included in wave models if they are strong enough to 
affect the waves. Descriptions of the MRE devices being studied are also needed, and the level 
of detail required varies depending on the model approach and resolution.  

Information such as tides and open ocean conditions can be obtained from global databases, 
and many river discharges are measured. Incoming wave spectra may be the most difficult to 
obtain for a site, because wave patterns are driven by numerous variables and typically require 
extended observations to accurately capture weather patterns and storm events. All of these 
data must be site-specific but some may be readily available, albeit not necessarily at a 
sufficient resolution. CFD models require data similar that for CHD models, depending on 
location, but may require much finer-scale data for a smaller area. 

Model calibration and validation require observations of the modeled metrics, such as water 
temperature, salinity, WSE, velocities, and wave spectra. Ideally validation data would be 
collected across seasons and the spatial extent of the model. When modeling MRE devices, 
observations need to be made both upstream and downstream of the array to provide complete 
model validation. Bathymetric surveys before and after the deployments are necessary to 
validate the model predictions and quantify the effects of devices on sediment transport. It has 
been suggested, through numerical modeling, that suspended sediment concentrations 
increase along the array sides and decrease upstream and downstream (Ahmadian et al. 2012). 
Active monitoring of the sediment concentrations can complement bathymetric surveys. 
 
Most of the information needed for oceanographic modeling is straightforward to collect via 
surveys or observation stations (e.g., buoys) but may require investment to collect data at the 
resolutions required and for the duration necessary to adequately characterize natural 
variability. Nearshore data are especially important. Shallow and/or bathymetrically complex 
areas tend to be more challenging for hydrodynamic models than open/deep water, but routine 
data collection, with sufficient resolution, does not usually occur in the nearshore as often as it 
does in open water.  
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3.6.4 Gaps and Uncertainties 

Our review of the literature did not locate a comprehensive discussion of uncertainty for 
hydrodynamic modeling, and it is not addressed in the publications as frequently as for other 
types of models. Some studies validate the models for the existing conditions extensively (e.g., 
Haverson et al. 2018), while others consider idealized conditions. Li et al. 2019 provided 
extensive validation of the CFD model based on experimental studies. Besides Contardo et al. 
(2018), who validated their numerical model during a short period (less than a month) for a two 
device array, no study compared effects of operational full-scale devices with their model 
results, presumably because of lack of publicly available data.  

Most studies evaluated the effects that large arrays would have on the physical environment, 
which included changes in waves and currents due to the presence of the devices. Multi-device 
arrays have not been deployed and thus no data for validation currently exist. Phase-averaged 
wave models like SWAN have been the most widely used to evaluate the effects of WECs in the 
wave field, however their ability to resolve highly variable wave fields at short time scales (less 
than an hour) has been questioned (Contardo et al. 2018). 
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4.0 Synthesis 
This section contains a brief summary of the results of the model review discussed across 
stressor groups to identify commonalities and themes important to advancing model 
development and integrating modeling with monitoring. 

4.1 Availability and Maturity of Models and Applications 

Models that have been used to evaluate environmental impacts of MRE devices vary in the level 
of model development for different stressors (Table 2). Collision risk models have been 
developed specifically for MRE devices, but the lack of data about species avoidance and 
evasion behavior and sublethal effects have limited the conclusions that can be drawn from 
those models. Many underwater noise models are available, but only a few MRE-specific 
applications are available. Similarly, the physical modeling of EMF is relatively straightforward, 
but  related information, modeling of species interactions with EMF, and MRE-related models 
are scarce. The ecological modeling literature for habitat change is extensive, but model studies 
involving MRE remain largely theoretical and have not been validated with operating devices. 

Displacement of marine animals, according strictly to the definition used in this review, has not 
yet been modeled for MRE. Other modeling approaches used for underwater noise and habitat 
change could be adapted to model displacement. However, application of all models that 
include behavioral aspects (collision risk, noise, and displacement) has been hindered by lack of 
species-specific data, especially regarding behavior at various distances from MRE devices.  
 
Physical models are well-established and have been applied to assess the environmental 
impacts of tidal and wave MRE devices, but models that thoroughly model the effects of devices 
on currents and waves at fine resolutions are new and relatively unusual. The accuracy of 
physical models in predicting effects near MRE devices or arrays and the propagation of these 
effects is very important because hydrodynamic or wave model outputs may be used as inputs 
for many models in the other stressor categories. 

Each stressor has at least one example that could be used as a starting point for modeling the 
environmental effects of MRE devices. Tidal energy devices were addressed for all stressors 
except EMF, and wave devices for all but EMF and displacement. Arrays and single devices 
have all been modeled. Models would require varying degrees of adaptation for specific MRE 
devices, along with any adjustments needed for the particular site. EMF models have been 
applied to DC cables, which are not as complex to model as the AC cables likely to be used for 
MRE, and software may not accommodate the structure at an MRE site. Additional work may be 
needed to assure the MRE system (generators on devices and transmission lines) is properly 
represented. Displacement models have had very limited MRE application; future modeling may 
be best accomplished by adapting from approaches used for population disturbance by 
underwater noise or statistical models of habitat change.  
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Table 2. Model applications identified in this review, by stressor. 

Applications 
Collision 

Risk 

Under-
water 
Noise EMF 

Habitat 
Changes 

Displace-
ment of 
Animals 

Oceano-
graphic 
Systems 

Theoretical systems X X X X  X 
Actual devices (planned) X X  X  X 
Actual devices 
(implemented) 

X X X(a)  X X(b) 

       
Use of field data to 
parameterize/initiate 

X X    X 

Model validation with field 
data 

 X X   X 

Model of stressor range or 
propagation 

 X X   X 

Model of biological effects X X  X   
Used in environmental 
assessment for MRE 
devices 

X X    X 

Used with post-installation 
monitoring of MRE devices 

X    X  

       
Tidal turbine X X  X X X 
Tidal kite X      
Wave energy  X  X  X 
Offshore wind   X X X X X 
Pile driving  X     
Single device X X  X X X 
Array of devices X X  X X X 
(a) Submarine electrical cables that are not part of MRE projects. 
(b) Includes laboratory-scale devices. 

For a number of models, software is available that requires only input data for the site of interest 
and minimal adjustments or calibration. It would be unlikely, however, to find ready-to-use 
models for all stressors that would work for a specific project without modification or further 
development. Nor would the same suite of models be appropriate for all projects. The choice of 
some models, especially for oceanographic systems and underwater noise, depends not just on 
the type of device and the receptor species but also on the physical setting of the site and its 
complexity. Finally, clear statements of the questions to be answered using models are 
important for determining the best model(s) to use. 

We reviewed models that could apply to multiple stressors. Two examples are Nabe-Nielsen et 
al. (2018) and Middel and Verones (2017), who modeled the effects of underwater noise on 
species distribution. A similar approach could be used for predicting displacement of species by 
changing the behavioral responses to noise to responses to distance from the device itself. 
Approaches to modeling habitat change could also be adapted to model displacement. 
Generally, however, studies addressing two or more stressors were rare (Adams et al. 2014). A 
number of studies used the output of hydrodynamic models as inputs to models for other 
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stressors (e.g., Adams et al. 2014; Goodwin et al. 2006; Rossington et al. 2013; Waggitt et al. 
2016), but these studies evaluated the  effects of the focal stressor (habitat change, noise) and 
not the full range of physical changes.  

4.2 Model Information Needs 

The information required for implementing various models can be grouped into parameters that 
must be site-specific and others where site-specific data are ideal but not obligatory (Table 3). 
Site-specific inputs can be further categorized as static or dynamic, the latter requiring for more 
data to characterize. Inputs that are static or nearly so include bathymetry, sediment type and 
roughness, and sediment material properties (e.g., bed-shear stress). These inputs can change 
over time but do so relatively slowly. For many planning assessments, a single survey may be 
sufficient. Additional surveys would be needed after devices have been operational if physical 
changes were expected, e.g., in sediment distribution.  

Dynamic inputs are temporally variable and include water properties like temperature and 
salinity and weather factors like wind. Tides are mostly predictable, but river discharge and 
incoming wave spectra are partly determined by weather and thus highly variable. To be 
realistic, many models would require time-series data long enough to include key sources of 
variability.  

Site-specific data of either type may be found in existing data sets or collected as baseline 
monitoring data. It was common among the models we reviewed for at least some data about 
bathymetry, sediment type, and/or water properties to be publicly available, but the spatial 
resolution was too coarse (e.g., on the order of kilometers rather than the necessary resolution 
on the order of meters). The appropriate spatial resolution of a model is not easily known a 
priori. It depends on the resolution of the inputs and the variability of the system. Thus, it is 
recommended that convergence analyses be performed during the model development stage.  

Hydrodynamic models may be used to simulate water properties for habitat or noise at the 
necessary temporal and spatial resolutions, and may have been developed for other purposes 
at the site. However, the quality of physical model output depends on the accuracy of the inputs 
and sufficient model calibration and validation. Data used as inputs for hydrodynamic models 
and observations for comparison may be prioritized because their accuracy carries forward to 
other models. 

Environmental input data can also be used directly for underwater noise, habitat change, and 
displacement models. The common need for many physical data sets to parameterize models 
for multiple stressors suggests that it is worth the resources required to collect them. The 
possibility of using similar data sets should be coordinated in advance to make sure surveys 
collect data suitable for all models and avoid redundancies. 

The distributions of the receptor animal(s), and possibly their prey/food resources, are also site-
specific. For well-studied species or locations, some information may already be available. 
Larger animals, as well as birds and mammals that spend time on the surface, are more easily 
surveyed visually or through tagging studies. Fish and other smaller animals may require more 
extensive sampling. The role of seasonality and other conditions must be kept in mind; site-
specific data may also be specific to the time of year. Resource distribution has been inferred in 
some studies to match the distribution of the receptor animal when undisturbed, because of the 
greater difficulty in mapping the distribution of typically smaller prey organisms. This simplifying 



PNNL-29977 

Synthesis 4.4 
 

 

assumption may work if the resource is not also affected by the MRE devices; important prey 
that are also expected to respond to devices may also need to be surveyed and/or modeled.  

Table 3. Input data and parameters used in reviewed (existing) models by stressor, indicated 
by ‘X’. Not all reviewed models, within a stressor category, used all of the inputs or 
parameters. Shaded cells indicate information used by most or all of the models.  

Site 
specificity 

Time/ 
species 

specificity 
Inputs/ 

Parameters 
Collision 

Risk 

Under- 
water 
Noise EMF 

Habitat 
Changes 

Displace-
ment of 
Animals 

Oceano-
graphic 
Systems 

Site-
specific 

Static Bathymetry X X  X X X 
Sediment 
type/roughness 

 X X X  X 

Sediment 
material 
properties 

 X X X  X 

Model of 
device  

X X X(a)   X 

Dynamic 
(empirical/
modeled) 

Water 
temperature 

 X  X X X 

Salinity  X  X X X 
Water velocity X   X X X 
Tides/Depth X X  X  X 
Wind  X   X X 

Species-
specific 
 

Distribution of 
organisms or 
food 

X X  X X  

Not site-
specific 

Organism 
shape/size 

X      

Animal 
swimming/divin
g behavior 

X X   X  

Animal vital 
rates  

X X  X X  

Audiograms  X     
(a)  Study modeled the transmission cable, not the device. 

Most non-site-specific input is biological. Some parameters for physiology, behavior, and 
reproduction and survival can be obtained from literature. Use of data from similar and/or 
nearby locations is helpful, to account for genetic differences between populations and 
behavioral changes such as those that may occur near coastlines vs. the open ocean (Nabe-
Nielsen et al. 2018). However, it is usually challenging enough to acquire data for the species of 
interest from any location. In reviewed studies that could not obtain data for their focal species 
from the literature, most, but not all,  used data from similar species rather than collecting new 
data for the project. A few studies have used tagging (Thompson et al. 2016), recordings of 
porpoise clicks (Nabe-Nielsen et al. 2018; Williamson et al. 2016), video or acoustic cameras 
(Bevelhimer et al. 2016; Grippo et al. 2017; Hammar et al. 2015), or other means of observation 
to estimate behavior. 
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Collision risk, displacement, and some noise models were most reliant on behavioral 
parameters. Models simulating the effects of EMFs on populations will also need a unique set of 
behavioral parameters, but such models have not yet been developed. Reproduction and 
survival rates are required for studies examining population-level effects of stressors. Baseline 
values may be available from the literature, but the effects of the stressors may require expert 
opinion and/or simplifying assumptions unless adequate studies have been conducted. For 
many species, long-term information would likely be too time-consuming and expensive to 
collect for individual MRE projects. However, to achieve the goal of understanding how MRE 
affects populations in the long term, this information is an important research topic that could 
benefit many future assessments. 

Physical (hydrodynamic and wave), collision risk, and underwater noise models were used in 
environmental assessments for specific MRE projects identified for our review. Models of 
changes in habitat relative to MRE were only conducted for research purposes and were not 
part of the planning or monitoring of specific projects. We did not find examples of EMF models 
applied to MRE. 

Model validation is rare, especially in studies specific to MRE devices (Table 3), and is most 
often done for baseline conditions rather than in the presence of operating devices. Validation is 
more common for the physics-based models (i.e., oceanographic systems and underwater 
noise propagation) than for the more biology-oriented models. This is reasonable considering 
the nature of the data and the relative difficulty in collecting physiological and demographic data 
compared to measuring physical characteristics. Underwater noise studies had several model 
validation examples but most were for pile driving, which differs in nature and duration from 
device operation, so their applicability is limited. A limited amount of validation has been 
conducted for EMF models for submarine cables.  

Collision risk, displacement, and habitat change studies did not include validation with field data 
for MRE-specific models, but habitat change modeling approaches have examples of validation 
in other contexts. Overall, validation has been limited by the small number of devices deployed 
for operation and testing. Continuing efforts to validate models will be important for improving 
their usefulness in project planning and evaluation. Monitoring that is designed in coordination 
with model development and application will facilitate model validation in the future. 
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5.0 Next Steps 
This review has provided an overview of models relevant to the environmental effects of MRE 
devices, their strengths and weaknesses, and their data requirements. Each stressor has 
multiple modeling approaches. One or more may be suitable for a project depending on the 
device technology, site characteristics, existing information about the projects and any previous 
deployments, and if there are specific receptors of interest (e.g., protected or commercially 
important species).  

To apply this review to inform field testing and monitoring, a first step would be to describe the 
project site, the device and the receptors, and align those characteristics with the modeling 
options and examples. This comparison and other considerations (e.g., time, software 
requirements) help to determine the most suitable approach and the degree of adaptation that 
may be necessary. In some cases, software may be commercially or freely available for 
applying models once provided with input information. In others, particularly for less-studied 
stressors or devices, some additional development may be necessary. After selecting an 
approach, existing information can be compared to data needs for the model to determine what 
needs to be collected, at what resolution, and to what spatial and temporal extents. Describing 
the types and levels of uncertainty to be expected is also helpful for future decision-making.  

Choosing appropriate models prior to baseline data collection can provide scenarios based on 
different data inputs for developers and regulators to constructively consult on. After baseline 
data are collected, appropriate models can be used to predict the effects of stressors on 
receptors in the project area. These predictions are useful for consultation, and provide a 
foundation for discussion of possible project impacts and how to prevent or mitigate them.  

Furthermore, the modeling can inform development of a salient and efficient monitoring program 
related to the impact concerns from consultation once a device is installed and operating. 
Models can also be employed during operation to evaluate environmental status, estimate the 
effects of changes in the project, and periodically evaluate the value of monitoring information 
and identifying improvements. 

A significant effort for the TFiT project is testing field data collection methods at various sites to 
inform guidelines for future efforts. Doing so will streamline the process of choosing appropriate 
sensors, data collection methods, and data processing and analysis steps. The choice of sensor 
and data collection method will consider this modeling review and choose the most appropriate 
model based on the site characteristics, stressors, receptors, and known concerns of regulators. 
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