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A B S T R A C T

In this study, we recorded the noise radiating from a wind farm and evaluated its potential impact on the fishes
and Indo-Pacific humpback dolphins (Sousa chinensis) residing in the Pearl River Estuary. The pile driving pulses,
recorded 30 m from the construction site, had a mean zero-to-peak sound pressure level of 195.1 dB (re 1 μPa) (n
¼ 238), exceeding the hearing thresholds of both fishes and Indo-Pacific humpback dolphins. The operational
noise from the wind farm was significantly lower in amplitude; therefore, our analysis primarily focused on the
radiation of pile driving noise. Acoustic measurements taken at three different distances during pile driving events
supported the development of an acoustic propagation model, which was then used to predict the sound exposure
levels of pile driving pulses radiating from 5 m below the water surface. By referring to established noise exposure
metrics, we estimated an impact zone of 12.8 m for fishes. For the Indo-Pacific humpback dolphins, the permanent
and temporary threshold shift zones were predicted to be 32.4 m and 580.9 m, respectively. Our findings un-
derscore the importance of increasing our understanding on hearing sensitivities of the local inhabitants in the
Pearl River Estuary and identify their core habitats. This approach enabled us to use the model to estimate impact
zones and better protect the local marine life from the effects of pile driving noise radiation.
1. Introduction

The use of fossil fuels has led to significant issues such as global
warming, affecting both land and ocean environments (Burrows et al.,
2011; Doney et al., 2012; Hoegh-Guldberg et al., 2019; Arneth et al.,
2020). This has created a growing need for clean and affordable energy
sources to reduce greenhouse gas emissions (U.S. Energy Information
Administration, 2019; Umar et al., 2021). Offshore wind energy, as a
form of blue energy, presents a promising solution (Bailey et al., 2014;
Gielen et al., 2019) and has been generating commercial electricity since
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2002 (Breton and Moe, 2009; Corbetta et al., 2014). The share of elec-
tricity generated by offshore wind farms is projected to reach 1000 GW
by 2050 (Global Wind Energy Council, 2020; IRENA, 2020). The coming
years will likely witness a substantial expansion of offshore wind farms
(Deng et al., 2022), and the associated infrastructure and operations will
inevitably impact local ecosystems (Koschinski et al., 2003; Cook et al.,
2018; Niu et al., 2023). There are still significant gaps in scientific
knowledge regarding the ecological impacts of wind turbines during both
construction and operation, which need to be addressed through further
research.
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Most existing studies addressing the impact of wind farms on animals
focus on marine mammals, birds, and fishes (Hall et al., 2020). Pile
driving releases strong acoustic energy into both the substrate and water,
disrupting the natural habitats of local fauna and affecting the presence
of biota. After construction, turbine towers provide additional shelter for
benthic organisms and resting areas for birds (Wilson et al., 2010; Fur-
ness et al., 2012; Vanermen et al., 2015; Causon and Gill, 2018). This may
increase biomass and biodiversity and increase food availability for top
predators like odontocetes (Wilhelmsson et al., 2006; Langhamer et al.,
2018). Scheidat et al. (2011) found that after construction, harbor por-
poises (Phocoena phocoena) showed resilience to the operation of wind
turbines, with increased occurrences within the wind farm area. How-
ever, they cautioned that these conclusions might be specific to that case
and should not be uncritically generalized to other wind farms. In most
studies, the noise produced during construction and long-term operation
exerts pressure on animals, potentially masking their communication and
reducing their fitness (Debusschere et al., 2016; Neo et al., 2016; Stanley
et al., 2017).

Many marine animals, including odontocetes, fishes, squid, snapping
shrimp, and lobsters can hear sounds underwater and use acoustic cues to
navigate their environment (Nachtigall and Supin, 2008; Mooney et al.,
2010; Hughes et al., 2014; Popper et al., 2019; Dinh and Radford, 2021;
J�ez�equel et al., 2021). The hearing sensitivities of fish and marine in-
vertebrates are generally confined to frequencies below 1000 Hz, which
overlaps with the spectrum of pile-driving pulses (Jones et al., 2021;
Cones et al., 2022; Niu et al., 2023). Although odontocetes have their best
hearing sensitivity in the high-frequency range, they can still be affected
by the intense noise from pile driving. Branstetter et al. (2018) reported a
significant reduction in target detection performance in bottlenose dol-
phins (Tursiops truncatus) when exposed to pile-driving noise at 140 dB
(re 1 μPa), which exceeded their hearing thresholds at 2 kHz (Accomando
et al., 2020). The impact of such noise can extend over a considerable
distance due to its slow attenuation at low frequencies. For instance, the
sound exposure level of a pile-driving pulse was measured at 140.1 dB (re
1 μPa2s) even at 4573 m from the construction site, causing injuries to
local aquaculture fish (Niu et al., 2023). Additionally, the intervals be-
tween echolocation events in harbor porpoises increased after pile
driving, with this effect observed at distances exceeding 20 km (Car-
stensen et al., 2006; Tougaard et al., 2009). For bottlenose dolphins,
disturbances may occur up to 50 km away (Bailey et al., 2010).

This raises an important issue regarding the evaluation and mitiga-
tion of the impact of pile-driving events during construction. Reducing
the radiated energy of pile-driving noise is crucial to minimizing its
impact on marine life. One effective mitigation method involves the use
of bubble structures, which have been employed to protect harbor por-
poises (Lucke et al., 2011). A bubble curtain is created by placing a
perforated hose on the seabed and pumping air into it at the construction
site. For large monopiles, a double bubble curtain system can create a
stronger noise barrier, further reducing the radiated energy (Koschinski
and Lüdemann, 2020). In some cases, sound barriers are fabricated by
using gas-filled elastic balloons or robust foam (Elmer, 2018). However,
the range of influence from pile-driving events at different sites remains
to be thoroughly investigated, even with the use of these bubble miti-
gation techniques.

In this paper, we evaluated the impact of pile-driving noise on the
animals inhabiting the Pearl River Estuary, which includes a natural
reserve area for Indo-Pacific humpback dolphins (Sousa chinensis). This
wind farm is in one of several sites along the Chinese coastline selected by
the government to supply long-term electricity (Guangdong Provincial
Development and Reform Commission, 2018; Tu et al., 2021; Lian et al.,
2022). The estuary is home to a diverse range of aquatic animals (Huang
et al., 2012; Wang et al., 2017, 2022; Song et al., 2023b), and it is crucial
to address the potential impact of wind farm noise on these species to
inform management practices that can mitigate such effects. This study,
guided by criteria outlined in the technical report by the National Marine
Fisheries Service (2018), investigates the impact of operational noise on
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fishes and Indo-Pacific humpback dolphins.

2. Materials and methods

2.1. Acoustic recording and analysis on animal sounds at the wind farm

We used an offshore wind farm located in the eastern part of the Pearl
River Estuary (PRE) (Fig. 1A). The PRE is characterized by high biodi-
versity, including dolphins, finless porpoises, crustaceans, fishes, and
benthic animals (Huang et al., 2002; Zhang et al., 2017; Cheang et al.,
2020; Kuang et al., 2021), with many of these inhabitants capable of
producing sounds (Fig. 1B). The wind power plant comprises over 30
wind turbine generators, covering a total area of more than 30 km2. Each
turbine has a diameter of 8.25 m, a length of 84 m, a weight of 1200 tons,
and a power output of 3 MW. The northern part of the plant area is
located 4.9 km away from the natural reserve of Indo-Pacific humpback
dolphins in the PRE.

Sounds produced by Indo-Pacific humpback dolphins and fishes were
recorded during a field survey conducted in August 2021 using a compact
recording system, the SoundTrap recorder (ST 300 HF, Ocean In-
struments Ltd, New Zealand). The recorder featured a linear frequency
range of 20 Hz–150 kHz (�3 dB), with a sensitivity of -188.7 dB (re 1 V/
μPa) in low gain mode and a sampling rate ranging from 48 kHz to 576
kHz. The internal noise level was less than 37 dB (re 1 μPa) above 2 kHz,
and the data were saved in.wav files. Although the PRE is one of the
critical habitats for Indo-Pacific humpback dolphins in China, encounters
with the dolphins were somewhat opportunistic during our survey.

Our survey, titled “2021 OCEAN-HK (TRS) Cruise Plan”, took place
from August 26 to September 2, 2021, with the primary aim of collecting
water samples and background noise. We encountered dolphins on
several occasions, but since the vessel was cruising during most of these
encounters, deploying the recorder was challenging. However, on August
29, 2021, while the vessel was anchored for a 4-h duty cycle at a specific
location (22.080� N, 113.592� E), we encountered the dolphins again.
This time, we successfully deployed the SoundTrap recorder, capturing
dolphin clicks with a sampling rate of 576 kHz. At each duty location,
which typically lasted 4–5 h, the acoustic recorder was suspended 1.5 m
below the water surface to collect sounds.

The dolphin clicks were analyzed using customized MATLAB codes. A
Butterworth high-pass filter with a cutoff frequency of 5 kHz was applied
to filter out low-frequency noise, such as seawater fluctuations. To
extract individual clicks from the click trains, the trains were transformed
into the time-frequency domain using the following formulas:

Fðf ;mÞ¼ STFTfx½n�gðm; f Þ ¼
XN
n¼0

x½n�ω½n�m�e�j2πfn (1)

Pðf ;mÞ¼ 10 log10ðabsðFðf ;mÞÞÞ (2)

In this analysis, F(f,m) represents the short-time Fourier transform (STFT)
of the click signal x[n], calculated using a 1024-point fast Fourier
transform with a 43.5% overlap and a Hann window (Yang et al., 2017;
Song et al., 2023a). To isolate the clicks from the surrounding back-
ground noise, a pixel threshold was applied to the spectrogram, setting
values below the threshold to zero. This allowed for the precise deter-
mination of the time location of each click for extraction.

The PRE is also recognized as a site rich in fish diversity, with recent
reports confirming a high abundance of fish in the offshore wind farm
area (Wang et al., 2022). However, fish calls can be easily masked by
background noise, especially after long-range propagation. To address
this, we manually examined the fish calls and compared them to those
produced by the Chinese bahaba (Bahaba taipingensis) recorded at a local
fish aquaculture facility (Li et al., 2023). Both dolphin clicks and fish calls
were manually reviewed to ensure the collection of clean, high-quality
acoustic datasets for subsequent analysis.



Fig. 1. (A) Location of the offshore wind farm recording sites in the Pearl River Estuary for normal operation measurement in Guishan waters (red circle) and pile
driving events in Jinwan waters (red triangle). (B) An illustration of the biodiversity in the wind farm region, with three marine taxa that can both produce and sense
sounds: snapping shrimp, fishes, and Indo-Pacific humpback dolphins.
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2.2. Acoustic recording of the operation and pile driving noise

Measurements of the operational noise were conducted within the
wind farm, where the first set of 31 turbines was running in Guishan
waters (south of the PRE) on April 18, 2019 (Fig. 2). These turbines
represent the majority of the wind farm facilities constructed during the
first phase from 2016 to 2019. Upon arrival at the site, we anchored the
vessel and turned off the engine to eliminate any noise interference from
the vessel. The distance between the turbine and the vessel was esti-
mated. A hydrophone (RHSA10, Applied Acoustics Research Institute,
Hangzhou, China) with a linear working frequency of 20 Hz–200 kHz
(�3 dB), a sensitivity of �185 dB (re 1 V/μPa), and a preamplifier of 26
dB was used for the recordings. The recordings were transmitted to a
computer via a DAQ Card (6216, National Instruments, USA) for storage,
with the sampling rate set at 240 kHz.

On April 18, 2019, we deployed the hydrophone 3 m underwater and
measured the noise produced by a specific turbine. Themeasurement was
Fig. 2. (A) The recording site of a wind farm turbine in Guishan waters, Pearl River E
in Jinwan waters, Pearl River Estuary. (C) The recording vessel.

3

conducted 20 m from the turbine foundation in water with a depth of 8
m. Recording began at 0900 and lasted approximately 10 min under
Beaufort sea state level 2, with a wind speed of 5.28 m/s. The noise data
were segmented into 10-s intervals, and the mean power spectral density
was calculated for each segment. For comparison, background noise was
measured 4.9 km away from the wind farm, ensuring it was free from
operational noise. These background recordings were also segmented
into 10-s intervals for parallel analysis.

The pile-driving noise was measured within the wind farm on
January 17, 2020, in Jinwan waters, west of the PRE. A microMARS
recorder (Desert Star System, Marina, CA, USA) with a sensitivity of
�177 dB (re 1V/μPa) was deployed 3 m underwater, where the water
depth was 14.8 m. Noise measurements were taken at distances of 30, 60,
and 90 m from the pile-driving site. The recordings began at 1400 and, at
each location, lasted approximately 30 min, capturing one pile-driving
session per location. The sampling rate was set at 64 kHz. During the
recording period, the Beaufort sea state level ranged from 2 to 3, with
stuary. (B) The pile driving site during the construction of the offshore wind farm
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wind speeds between 5.6 m/s and 6.2 m/s.
The construction produced periodic pulses, and we initially manually

examined the recorded files before using customized MATLAB (Math-
Works, Cambridge, MA) codes to extract the pile-driving pulses from the
background noise. Each pulse had a duration of approximately 400 ms.
Background noise was measured after the pile-driving events had ceased
and was segmented into 400 ms pieces for comparative analysis.

2.3. Estimation of pile-driving pulse radiation

To assess the impact of pile-driving noise, we estimated the acoustic
radiation field by developing a propagation model. The model used a
water layer depth of 11 m (Fig. 3), with an omnidirectional point sound
source placed at a depth of 5 m to initiate sound propagation at various
frequencies. The water density was set at 1.024 g/cm3, and the sound
speed profile, derived from previous measurements, ranged from 1531.4
m/s at the sea surface to 1536.9 m/s at the sea bottom. The silty sand
sediment layer was characterized by a density of 1.83 g/cm3, a sound
speed of 1677 m/s, and an attenuation coefficient of 0.75 dB/λ.

Pile driving generates Mach waves in the water (Reinhall and Dahl,
2011; Song et al., 2023c). However, the dynamic nature of this process
cannot be fully incorporated into the propagation model. As a simplifi-
cation, we used a point sound source and employed a parabolic propa-
gation model to predict the acoustic fields of the pile-driving noise. The
horizontal resolution was set at 0.1 m, while the vertical resolution
varied with frequency to ensure at least six samples per wavelength.

2.4. Estimation of pile driving noise impact zone on fish

The hearing sensitivities of red drum (Sciaenops ocellatus), a species
inhabiting the PRE, range between 100 and 1200 Hz (Horodysky et al.,
2008). Consequently, we calculated the transmission loss (TL) field of the
pile-driving pulse noise within this frequency range. The range was
divided into 100-Hz width bands, resulting in a total of 12 bands. The
center frequency of each band was used to model the TL for that specific
band.

We incorporated our acoustic analysis of the pile-driving noise with
the weights at each center frequency determined by the spectral distri-
butions. Given that the pile-driving noise was measured at a distance of
30 m from the construction site, we estimated the source level for each
frequency band at 1 m from the sound source using the following
method:

SLi ¼ 10 log10

 Z fHi

fLi

Sðf Þdf
!

þ TLiðr0; d0Þ (3)

where SLi and TLi are the source level and TL distribution of the ith fre-
quency band in dB, with fHi and fLi as the upper and lower frequencies
respectively. S(f) is the power spectrum density. The overall sound
pressure level (PL) at each frequency band was calculated using:

PLi ¼ SLi � TLi (4)
Fig. 3. Settings of the sound propagation model.
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And then we calculated:

SELss ¼ 10 log10

 
t ⋅
Xi¼N

i¼0

10ðPLiÞ=10
!

(5)

where SELss represents the sound exposure level of a single pile driving
strike.

To evaluate the impact of pile-driving exposure over time, the cu-
mulative sound exposure level (SELcum) field was calculated by inte-
grating the squared sound pressure P(t) over period T (Martin et al.,
2019):

SELcum ¼ 10 log10

�
1

T0p20

Z T

0
PðtÞ2dt

�
dB re 1 μPa2 ⋅ s (6)

where T0 and p0 are set as 1 s, and 1 μPa, and T is the signal duration. We
recorded 636 pile pulses at 30 m, with each pulse lasting 0.4 s and with
the pulse interval approximately 1.0 s.

SELcum can also been estimated using the formula from Halvorsen
et al. (2011):

SELcum ¼ SELss þ 10 log 10ðNÞ (7)

where N represents the total number of the pulses that are produced
throughout the period.

The biological impact of pile driving sounds on fishes was related to
both SELcum and the number of strikes, which can be described according
to Halvorsen et al. (2011, 2012) as:

lnðRWIþ 1Þ¼ 0:149� SELcum-30:050-0:000171� N (8)

According to equation (7), equation (8) can be converted as follows:

lnðRWIþ 1Þ¼ 0:149� ðSELssþ 10 log 10ðNÞÞ-30:050-0:000171� N (9)

where RWI is the response weighted index, defined as:

RWI¼
Xm
i

ðWi � TiÞ (10)

where i, and m represent the injury type index and number of injury
types, respectively (Halvorsen et al., 2011, 2012). Wi is the trauma
category weight that corresponds to injury type i. Injury types were
defined as mortal, moderate, and mild, with respective Wi values of 5, 3,
or 1. The proportion of the sample of fish exposed to a treatment that
experienced injury type i determines Ti.

In equation (9), RWI is merely dependent on SELss and the number of
strikes N. To determine the weight for each injury type, we used previ-
ously published data on exposure experiments conducted on fish. Hal-
vorsen et al. (2011, 2012) determined an RWI of 2 was the acceptable
threshold for juvenile Chinook salmon (Oncorhynchus tshawytscha) under
which no life-threating effects were induced from 1 or 2 mild injuries.
Using this, we then calculated a safety threshold of SELss for fish under a
strike number of 636, which was 181.74 dB (re 1 μPa2⋅s). This value was
further used to estimate the impact zone for fish by emphasizing the
zones with SELss values over 181.74 dB (re 1 μPa2⋅s).

To evaluate the accuracy of the model, we used the data recorded
from 30, 60, and 90 m away from the pile driving site. The modeled
sound exposure level at these distances were compared to field
measurements.
2.5. Estimation of the pile driving noise impact zone on dolphins

SELcum is an important indicator for evaluating the impact of
anthropogenic noise on odontocetes as well. To do this, the noise power
spectrum was split into several 1/3 octave bands (National Marine
Fisheries Service, 2018; Martin et al., 2019; Tougaard and Beedholm,



Z. Song et al. Water Biology and Security 4 (2025) 100318
2019; Southall et al., 2019). The sound pressure fields of all the bands
were weighted by an auditory weighting function Waud(f) given by the
National Marine Fisheries Service (2018), to emphasize the frequencies
where the dolphins are sensitive and de-emphasize the frequencies where
the animals are insensitive. The equation is expressed here in linear units
of power:

Waudðf Þ¼ 10C=10 ⋅
ðf =f1Þ2a�

1þ ðf =f1Þ2
�a�

1þ ðf =f2Þ2
�b (11)

where f is the frequency in Hz, C is the gain parameter in dB, f1 and f2 are
cut off frequencies in Hz, and a and b are frequency exponents. These
parameters vary with the marine mammal hearing group. For the Indo-
Pacific humpback dolphin, the values of C, a, b, f1, and f2 are 1.2 dB
(re 1 μPa), 1.6, 2, 8800 Hz, and 110,000 Hz, respectively (Southall et al.,
2019; Martin et al., 2019). To reflect the overall noise exposure impact on
these dolphins, the weighted sound pressure of all the bands were then
integrated to get the weighted sound exposure level (Martin et al., 2019):

SELw cum ¼ 10 log10

 R fs=2
0 WaudðfÞSðf Þdf

T0Pref
2

!
(12)

where fs is the sampling rate in Hz, S(f) is the power spectrum density, T0
is the reference time of 1 s, and Pref is the reference pressure for 1 μPa.
The temporary threshold shift (TTS) represents changes in hearing
sensitivity that can recover over time, while the permanent threshold
shift (PTS) describes a permanent loss in hearing. Indo-Pacific humpback
dolphins belong to the high-frequency cetaceans (Martin et al., 2019),
and the SELw_cum thresholds of the TTS and PTS under the impulsive noise
radiation are 170 and 185 dB, respectively (Southall et al., 2019). We
used these values to estimate the TTS and PTS zones.

3. Results

3.1. Biological acoustics

The fishes and dolphins produced signals (Fig. 4A, B and 4C). A total
of 18 fish calls and 375 dolphin clicks were recorded. No whistles were
Fig. 4. The example waveforms of (A) a fish call, and (B) a whistle and (C) a click of
ambient noise, dolphin whistles, fish calls, and dolphin clicks, where the shadows d

5

captured during the recording in the PRE, so we used 10 whistles
recorded from another reserve for Indo-Pacific humpback dolphins
(Zhang et al., 2024).

An example fish call exhibited oscillations of three cycles, with most
of the energy confined below 2 kHz (Fig. 4D). Fish calls peaked at 562.5
Hz with a power spectral density of 103.5 dB (re 1 μPa), which dropped
by 10 dB at 1.6 kHz. An example dolphin click demonstrated its short
duration and broadband characteristics (Fig. 4C). The click waveform
showed several oscillations, with a peak frequency of 84.9 kHz and a
spectral density of 87.4 dB (1 μPa2/Hz). The �10 dB bandwidth was
114.4 kHz, ranging from 27.3 kHz to 141.7 kHz. Whistles, which have a
longer duration than clicks, overlapped with background noise above 4
kHz. Ambient noise was higher between 250 Hz and 1 kHz, decreasing
above 1.2 kHz.

Overall, the biological soundscape in the PRE covered a broad range.
These data hold great value to examine the influence of wind farm noise
on animals.

3.2. Acoustics of wind farm noise

The spectrogram and time series of the operation noise showed a
higher amplitude than the background noise below 2.5 kHz (Fig. 5), with
a distinct peak at 281.3 Hz. It was difficult to find any pattern either in
the spectrogram or the time domain (Fig. 5A and B).

The pile driving pulse showed a sharp amplitude onset and a gradient
decrease (Fig. 6), with amplitude consistently higher than the back-
ground noise. The majority of the energy was confined between 77.6 and
217.2 Hz, with a power spectral density level of 158.7 dB (1 μPa2/Hz) at
its peak frequency (155.0 Hz).

The pile driving pulse recorded 30 m away from the construction site
was much stronger than the signals produced by the animals and their
hearing thresholds (Fig. 7). These analyses demonstrated that if the an-
imals were at the same spot where the noise was measured, their
conspecific detection and communication ranges would have been
reduced due to pile driving sounds. As the operation noise was lower than
the hearing thresholds of the animals, we focused on addressing the
impact zone of pile driving pulses.
an Indo-Pacific humpback dolphin. (D) The mean power spectral densities of the
epict the standard deviations.



Fig. 5. Acoustic characteristics of the noise produced during the operation phase at Guishan waters in the Pearl River Estuary. The operation noise is illustrated in (A)
the time-frequency domain and (B) time domain. (C) The mean power spectral densities (PSD) of operation noise (N ¼ 11) and background noise.

Fig. 6. Acoustic characteristics of the pile driving signal recorded at the wind
farm located at Jinwan waters in the Pearl River Estuary, approximately 30 m
from the construction site. (A) Spectrogram of impact driving events illustrating
time-frequency domain. (B) The waveform of the pile driving events. (C) The
illustration of a specific pile driving pulse. (D) The mean power spectral den-
sities (PSD) of pile driving pulses (n ¼ 81) and background noise.

Fig. 7. (A) The mean power spectral densities of dolphin whistles (n ¼ 10) and
clicks (n ¼ 375), fish calls (n ¼ 18), pile driving pulses (n ¼ 81), operation noise
(n ¼ 11), and background noise. (B) The comparison between the noise (pile
driving pulse, operation noise, and background noise) and the hearing thresh-
olds of red drum (Horodysky et al., 2008) and IPHD (Indo-Pacific humpback
dolphins, Li et al., 2012).
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3.3. The radiation field of pile driving noise and its impact zone

The transmission loss, sound pressure level, and sound exposure level
fields we estimated did not simply follow a monotonic decrease.
Generally, we found an attenuation with distance but this was accom-
panied by local increases (Fig. 8).

We used our field data recorded at 30, 60, and 90 m away from the
pile driving site to validate the modelling results by comparing the mean
SELss of the pile driving pulses at each distance to the value estimated by
the model (Fig. 8C). We found differences of 1.56, 2.65, and 1.01 dB
between the field data and modeling at 30, 60, and 90 m respectively
(Table 1), resulting in an average error of 1.74 dB, lower than those in
previous studies (Han and Choi, 2022; Xie et al., 2024) thus verifying our
model.

The SELss field in Fig. 8C was recalculated for the frequency range
between 100 Hz and 1200 Hz, where fish are most sensitive. SELss values
below the exposure threshold of 181.74 dB were set to null, creating the
blank areas seen in Fig. 9. SELss values exceeding this threshold were used
to estimate the impact zone for fish. The pile driving was found to have
an impact range of 12.8 m for fish (Fig. 9).

The propagation modes were complex, and the amplitude of the SELss
did not follow a simple monotonic decrease with increasing distance
6

from the source, even at different depths. Salas et al. (2022) demon-
strated that at specific frequencies, deeper waveguides support more
propagatingmodes. As the number of modes increases, wave propagation
becomes more complex, and the superposition of these modes results in
non-spherical or non-cylindrical spreading. The safety range at each
water depth was defined as the farthest point where the SELss exceeded
181.74 dB (re 1 μPa2s). Consequently, the null space representing the safe
region was not uniform across different depths. The maximum impact
range was estimated to be 12.8 m at a depth of 2.5 m.

3.4. Estimation of impact zone on dolphins

We referred to the criteria of the permanent and temporary hearing
threshold shifts to estimate the respective PTS and TTS zones (Southall
et al., 2019). The sound exposure level was calculated up to 8000 m
(Fig. 10). The PTS impact zone covered a range of 32.4 m while the TTS
zone was predicted as 580.9 m at a water depth of 2.65 m.



Fig. 8. (A) Predicted transmission loss (TL). The predicted (B) sound pressure
level (PL) and (C) sound exposure level (SEL) fields for a single pile driving
pulse. These fields were incorporated from 100 Hz to 32,000 Hz.

Table 1
Validation of the propagation model.

Distance/
m

Depth
/m

Mean SELss (Field
Measurement)
/dB re 1 μPa2⋅s

SELss
(Model)
/dB re 1
μPa2⋅s

Error
/dB

Percentage
Error

30 3 176.36 177.92 1.56 0.88%
60 3 176.14 178.79 2.65 1.50 %
90 3 174.60 175.61 1.01 0.58%

Fig. 10. (A) The predicted weighted sound exposure level (SELw_cum) field of the
pile driving pulse from a source at a depth of 5 m. Estimated (B) temporary and
(C) permanent threshold shift zones using 170 and 185 dB as criteria respec-
tively (Southall et al., 2019).
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4. Discussion

Although pile-driving noise is identified as the main threat in this
study, it is important to note that, over time, the cumulative operational
noise could reach a SELcum high enough to impact animals, especially at
Fig. 9. (A) The predicted sound exposure level (SEL) field of a single pile driving pulse
100 Hz to 1200 Hz. (B) The predicted impact zone of pile driving for fish, where th
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close ranges. For instance, if a fish was located at the same site as the
hydrophone, the operational noise measured 20 m from the turbine was
higher than fish calls below 300 Hz (Fig. 7A). It is reasonable to
extrapolate that at closer distances, operational noise may mask an ani-
mal's vocalizations and hearing, particularly for species sensitive to low-
frequency sounds below 1.5 kHz. Although the exact locations where
animals produce or hear sounds are unknown, it is possible that opera-
tional noise could mask fish vocalizations below 200 Hz within 20 m of
the turbine (Fig. 7A). At close ranges, this noise may mask fish commu-
nication, leading to negative effects (de Jong et al., 2020; Zhang et al.,
2021; Siddagangaiah et al., 2022).

The current study was based on recordings from a single operating
turbine, but there are dozens of turbines in the Guishan waters wind
. These fields were predicted in a broadband scale, which was incorporated from
e SELss values are higher than the fish safety threshold of 181.74 dB.
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farm. The cumulative contribution from multiple turbines could create a
larger impact zone and exert a considerable effect on local aquatic ani-
mals, which cannot be ignored (Tougaard et al., 2020).

In comparison, pile-driving noise significantly masks animal's vocal-
izations and hearing if they are within the range where acoustic mea-
surements were taken (Fig. 7A and B), and this masking effect could
extend over long distances. Niu et al. (2023) reported a peak-to-peak
sound pressure level of 170.9 dB (re 1 μPa) at 3563 m from the
pile-driving site, where large yellow croaker (Pseudosciaena crocea)
exhibited acute behavioral responses to the noise. The disturbance
caused by pile-driving noise can extend up to 50 km for bottlenose dol-
phins and 20 km for harbor porpoises from the construction site (Bailey
et al., 2010; Tougaard et al., 2009). The response distance may vary
among species due to differences in hearing and environmental factors
(Ellison et al., 2012). Collecting baseline information is crucial for
developing appropriate noise exposure criteria for marine mammals
(Southall et al., 2008; Leunissen et al., 2019).

It is important to note that the formula SELcum¼ SELssþ 10log10(N) is
applicable when the sound exposure level of a single pulse exceeds the
threshold that induces hearing or physical impacts in animals (Halvorsen
et al., 2011). Halvorsen et al. (2011) highlighted the insufficiency of
using a single metric, SELcum, to determine noise impact. SELss and the
total number of strikes remain critical parameters in evaluating overall
noise exposure. If the SELss of any noise type is below the impact
threshold, continuous noise accumulation would not lead to detrimental
effects on animals. In our study, the pile-driving pulse had a mean SELss of
176.4 dB (re 1 μPa2 s) at 30 m from the construction site, while the model
estimated the SELss at 0.1 m could be as high as 219.3 dB (re 1 μPa2 s).
Therefore, the SELss of the pile-driving pulse is strong enough to impact
fish at close range. Using the biological response metric, RWI, derived by
Halvorsen et al. (2011, 2012), and an RWI of 2, we estimated a maximum
impact range of 12.8 m for fish. Considering that pile-driving events may
occur simultaneously in the wind farm during construction, the spatial
superposition of these noises could result in a large area of impact.

The spatial distribution of acoustic fields was estimated under several
assumptions, including the source location. Since the acoustic field varies
with the depth of the source and frequency (Oliveira et al., 2021; Salas
et al., 2022; Zhou et al., 2022), the impact areas would differ if we
applied the same lethal, injury, and TTS criteria to acoustic fields esti-
mated with sources at different depths. This study simplified the model
by using a point sound source at a specific water depth, as the dynamic
process of pile driving and Mach waves were not incorporated into the
propagation simulation (Reinhall and Dahl, 2011; Song et al., 2023c). In
the future, this issue could be addressed by setting a series of sound
sources at different depths with respective amplitude weights. The
resulting fields could then be combined into an overall field to estimate
lethal, injury, and TTS impact zones.

Although we did not measure the particle motion component of the
pile-driving and operational noise, it is likely that the noise interferes
with the detection of particle motion by fish and invertebrates (Ladich
and Fay, 2013; Popper and Hawkins, 2018). Sigray et al. (2022) reported
a strong zero-to-peak particle acceleration of up to 129 dB (re 1 μm/s2) at
580 m from the piling operation site. If animals such as fish, squid, and
snapping shrimp are exposed to strong particle motion stimuli, it may
lead to physiological and behavioral changes (Jones et al., 2021;
Davidsen et al., 2019). Extending findings from previous studies to the
PRE region (Hawkins and Popper, 2017; Popper et al., 2022) suggests
that wind farm noise could interfere with animals through strong particle
motion inputs. Much more research is needed to address particle motion
from wind farm activities.

The TTS zone for Indo-Pacific humpback dolphins in the PRE was
estimated to be 580.9 m, comparable to the 500-m safety zone proposed
by Wang et al. (2014). The pile-driving pulses in this study had a much
higher SELw_cum than vibratory pile sounds reported by Wang et al.
(2014). The duration used to calculate SELss for their vibratory pile pulses
was 1 s, compared to 0.4 s in our study. The maximum sound pressure
8

level (zero-to-peak) and the number of piling events were 153.1 dB (re 1
μPa) and 125, respectively, in their study, compared to 195.1 dB (re 1
μPa) and 636 in our study. This resulted in a higher SELw_cum and a longer
impact range in our study. Both studies lacked behavioral evidence to
examine an animal's acute responses to pile-driving events. Future in-
vestigations should combine field experiments, model estimations, and
behavioral observations to comprehensively assess pile-driving impacts
and provide references for management.

Acoustic monitoring is a promising tool for effectively assessing local
biodiversity in wind operation areas during different phases (Pijanowski
et al., 2011; Mooney et al., 2020a, 2020b). Both biological sounds (an
indicator of biodiversity) and anthropogenic sounds, including wind
farm noise, are major components of the overall soundscape (Krause,
2008; Sueur and Farina, 2015). If wind farm noise disrupts animal
behavior or displaces sound-producing animals, it will directly alter the
biological proportion of the soundscape while increasing anthropogenic
input. The characteristics of signals produced by animals and wind farm
noise may vary in frequency, bandwidth, duration, and repetition rate,
showing distinct properties in time and frequency domains. Therefore,
long-term monitoring of the soundscape, particularly comparing sound-
scapes across different phases of wind farm development, is likely to
reflect changes and inform policies to better manage wind farm
development.

The acoustic abundance in the PRE wind farm should be carefully
monitored, especially over the long term, to better understand the pros
and cons and to develop strategies that balance local power input with
minimizing impacts on aquatic taxa. The coming years will see the
extension of wind farm construction into the western PRE, an area with
high biodiversity (Wang et al., 2017, 2022; Zhang et al., 2017; Song et al.,
2023b), making it urgent to evaluate the influence of wind farm noise.
There are still knowledge gaps to fill concerning bioacoustics in the PRE
and other areas where wind farms are or will be located. The two PRE
wind farms mentioned in this study are expected to provide 1.5 GW of
electricity when operational, a small portion of the total 66.9 GW plan-
ned by Guangdong Province (Deng et al., 2022; Guangdong Provincial
Development and Reform Commission, 2018).

In China, offshore wind farms will play a vital role in replacing
traditional energy sources (Zheng et al., 2016; Zhang et al., 2020). This
study offers several key recommendations for policymakers. First,
acoustic monitoring is essential for tracking biodiversity during different
phases of wind farm construction. Second, the impact zone can be better
estimated by collecting data on animal vocalization, distribution, and
sensitivity. A combination of acoustic measurements, hearing examina-
tion, and modeling will help establish safe zones for animals during the
construction phase. Finally, collaboration between scientists and gov-
ernment agencies is crucial for developing long-term plans.

5. Conclusions

The connection between anthropogenic activities and animal behavior
is crucial for managing ocean-based economic activities. This research
documented signals from fishes and Indo-Pacific humpback dolphins in
the Pearl River Estuary (PRE) and analyzed the spectral and temporal
properties of wind farm noise. During the construction phase, pile-driving
events generated significantly stronger pulses compared to the normal
operation phase, surpassing the vocalization and hearing thresholds of
animals within 30 m of the turbine. These baseline data supported the
development of a propagation model that predicted the impact zones of
pile-driving noise on local animals in the PRE. The pile-driving pulses were
found to have a maximum impact range of 12.8 m for fish, a temporary
threshold shift zone of 580.9 m, and a permanent threshold shift zone of
32.4 m for Indo-Pacific humpback dolphins. We recommend establishing
long-term acoustic monitoring stations to continuously assess the sound-
scape within the wind farm and to develop mitigation methods to protect
the local wildlife. Implementing these measures will enable the formula-
tion of effective management policies that allow for the construction of
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wind farms with minimal impact on animals.
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