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Abstract

Birds are essential components of most ecosystems and provide many services valued by

society. However, many populations have undergone striking declines as their habitats

have been lost or degraded by human activities. Terrestrial grasslands are vital habitat for

birds in the North American Prairie Pothole Region (PPR), but grassland conversion and

fragmentation from agriculture and energy-production activities have destroyed or degraded

millions of hectares. Conservation grasslands can provide alternate habitat. In the United

States, the Conservation Reserve Program (CRP) is the largest program maintaining con-

servation grasslands on agricultural lands, but conservation grasslands in the PPR have

declined by over 1 million ha since the program’s zenith in 2007. We used an ecosystem-

services model (InVEST) parameterized for the PPR to quantify grassland-bird habitat

remaining in 2014 and to assess the degradation status of the remaining grassland-bird hab-

itat as influenced by crop and energy (i.e., oil, natural gas, and wind) production. We com-

pared our resultant habitat-quality ratings to grassland-bird abundance data from the North

American Breeding Bird Survey to confirm that ratings were related to grassland-bird abun-

dance. Of the grassland-bird habitat remaining in 2014, about 19% was degraded by crop

production that occurred within 0.1 km of grassland habitats, whereas energy production

degraded an additional 16%. We further quantified the changes in availability of grassland-

bird habitat under various land-cover scenarios representing incremental losses (10%,

25%, 50%, 75%, and 100%) of CRP grasslands from 2014 levels. Our model identified 1 mil-

lion ha (9%) of remaining grassland-bird habitat in the PPR that would be lost or degraded if

all CRP conservation grasslands were returned to crop production. Grassland regions

world-wide face similar challenges in maintaining avian habitat in the face of increasing com-

modity and energy production to sate the food and energy needs of a growing world popula-

tion. Identifying ways to model the impacts of the tradeoff between food and energy

production and wildlife production is an important step in creating solutions.
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Introduction

Birds perform a variety of supporting, provisioning, regulating, and cultural services as defined

by the Millennium Ecosystem Assessment [1]. Thus, the preservation of avian biodiversity has

numerous positive benefits to society. Birds are important culturally in arts and literature;

recreationally to birdwatchers and hunters; and economically as pollinators, pest predators,

seed dispersers, and nutrient cyclers [2]. However, for over two decades, ornithologists have

been raising the alarm about the precipitous decline of grassland birds, driven primarily by the

loss and degradation of habitat by anthropogenic means [3, 4]. Despite acknowledgment of

the issue, grassland-bird habitat continues to be lost and degraded [5–7], and avian popula-

tions continue to decline [8].

The Prairie Pothole Region (PPR) of North America is home to 38 of the 41 species classi-

fied by Sauer et al. [8] as grassland birds. However, most of the grasslands that these species

rely upon for habitat have been converted to alternate uses [5]. Two primary causes of contem-

porary habitat loss are crop production and energy development that result in grassland con-

version and fragmentation [6, 9, 10]. Neither of these drivers, (i.e., crop production or energy

development), are waning. Lark et al. [6] estimated that total net cropland area increased

nationwide by 2.98 million acres from 2008 to 2012, with the greatest increases occurring in

the PPR. The largest regional crude-oil-production growth through 2025 in the United States

is expected to come from the Bakken formation in North Dakota, USA [11]. The International

Energy Agency [12] forecasts that the largest growth in world power-generating capacity will

be from renewable energies, with the United States the second-biggest market after China.

Regionally, the states of North Dakota and South Dakota have abundant wind resources, rou-

tinely ranking in the top 20 wind-producing states [13, 14].

A primary cause of habitat degradation is the fragmentation of remaining expanses of grass-

land habitat. Habitat fragmentation refers to the reduction in area of some original habitat, a

change in spatial configuration (that is, spatial arrangement), and an increasing distance

between the patches of what remains, through the subdivision of continuous habitat into

smaller pieces [15, 16]. Fragmentation, while increasing overall heterogeneity within a land-

scape, can decrease the heterogeneity of individual habitat types within blocks of remaining

grasslands. With the loss of heterogeneity within grasslands comes an associated loss of biodi-

versity. Fragmentation also lowers habitat quality because of edge effects, such as lower avian

reproductive success near the edge than the interior of remaining habitat [17]. The indirect

effects on habitat quality can be much larger than the direct effects of habitat loss. For example,

McDonald et al. [18] found that 5% of habitat impacts to grassland birds were due to the direct

effects of land-clearing activities associated with natural gas and petroleum development, but

95% were the result of habitat fragmentation and species-avoidance behavior. For wind tur-

bines, they found similar direct and indirect impacts, 3–5% direct and 95–97% indirect. Thus,

any evaluation of grassland-bird habitats should include an assessment of the indirect effects

on the quality of remaining habitats.

To offset the loss and degradation of native habitats, and the services they provide, both

governmental and nongovernmental organizations have made significant monetary invest-

ments to restore and protect grassland habitats in the PPR. Given the prominence of agricul-

ture throughout the PPR, the most wide-reaching conservation efforts have been associated

with various programs of the U.S. Department of Agriculture (USDA). Within the USDA, the

Conservation Reserve Program (CRP) has had the largest impact in terms of establishing

perennial grasslands on areas previously used for crop production (S1 Table) [19]. These con-

servation grasslands provide numerous ecosystem services, including climate regulation, water

purification, and erosion regulation [20]. Habitat created by the conservation grasslands is
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important in maintaining populations of wildlife, including grassland-bird species [21–24].

These conservation grasslands can also buffer other adjacent grasslands from the indirect

effects of crop production and energy development activities. However, payments to agricul-

tural producers participating in the CRP and other conservation programs have often failed to

keep pace with rising values of agricultural commodities and land-rental rates [25]. The dispar-

ity of profits between participation in a conservation program versus production of agricul-

tural commodities or the rental of land for crop production has resulted in a recent exodus of

agricultural producers from conservation programs [6, 20, 26]. Since peak enrollment of 14.9

million ha in 2007, CRP grasslands have declined 25% nationally [20]. CRP grasslands in the

four states comprising the PPR declined from more than 3.5 million ha in 2007 to just over 2.3

million ha in 2012, a 35% decline [27]. Additionally, new varieties of pesticide-tolerant and

drought-resistant crops, as well as the rising popularity of corn (Zea mays) and soy (Glycine
max) as biofuels, have resulted in the production of row crops in many areas previously domi-

nated by small-grain production and conservation grasslands [27].

In addition to the current loss of conservation grasslands to crop production, increasing

demand for domestic energy sources will likely have a negative impact on grassland quantity

and quality. McDonald et al. [18] estimated that 20.6 million ha of new land will be required to

meet U.S. energy demands by 2030, with temperate grasslands projected to be one of the most

highly impacted terrestrial habitat types. The most intact grassland landscapes in the PPR are

generally located on high-elevation geological features that are too rugged for mechanized

agricultural equipment or too dry for row-crop agriculture, but even these grasslands are

threatened due to their potential as sites for wind facilities or for oil and gas development [9,

10].

To increase our understanding of how crop production and energy development has

affected the integrity of avian habitat, we quantified suitable grassland-bird habitat across the

three Level III ecoregions (Northern Glaciated Plains, Northwestern Glaciated Plains, and

Lake Agassiz Plain) [28] and one level IV ecoregion (Des Moines Lobe) [28] that constitute the

United States portion of the PPR (Fig 1). We did not attempt to quantify the impact of historic

habitat losses in the PPR on grassland birds. Instead, we focused on the contemporary impacts

that crop production and energy development activities have on remaining habitats and the

role of conservation grasslands in mitigating these impacts. Our specific research objectives

were to: 1) quantify the current (2014) grassland-bird habitat within the PPR using a modeling

approach that incorporates indirect impacts to habitat integrity, 2) verify that the resultant

habitat-quality rankings are related to grassland-bird abundance, 3) quantify the contribution

of oil, natural gas, and wind development to the degradation of the remaining grassland habi-

tat, and 4) quantify the habitat degradation that would occur if various percentages of CRP

conservation grasslands in the PPR were returned to row-crop production. Recognizing that

crop production and energy development will likely continue to cause loss and degradation of

the remaining grassland-bird habitats, and that CRP grasslands continue to decline across the

PPR, we provide a baseline scenario against which future habitat projections can be compared.

Material and methods

Study area

The PPR covers approximately 82 million ha of the United States and Canada (Fig 1). Glacial

processes shaped the region and created a landscape consisting of millions of palustrine wet-

lands (often termed prairie potholes) interspersed within a grassland matrix [29, 30]. The PPR

is recognized as one of the largest grassland/wetland complexes in the world [31]. It is a glob-

ally important ecosystem for a wide variety of flora and fauna including grassland and wetland
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plants [32], grassland birds [33], shorebirds [34], waterbirds [35], waterfowl [36], small mam-

mals [37], amphibians [38], and aquatic and terrestrial invertebrates, including pollinators [30,

39, 40]. Despite the biological value of the PPR, grassland loss continues, and conservation

efforts are not keeping pace [5, 6, 40, 41].

In addition to supporting grassland- and wetland-dependent biota, the combination of the

region’s rich glacial soils and temperate climate has made it an ideal area for agricultural com-

modity production [42]. To facilitate crop production, approximately 95% of the native tall-

grass prairie and 60% of native mixed-grass prairie have been converted to croplands since

European settlement (Fig 1) [43]. In an effort to increase our understanding of how this land-

cover change has affected the integrity of avian habitat, we quantified suitable grassland-bird

habitat across the three Level III ecoregions (Northern Glaciated Plains, Northwestern Glaci-

ated Plains, and Lake Agassiz Plain) [28] and one level IV ecoregion (Des Moines Lobe) [28]

that constitute the United States portion of the PPR (Fig 1).

Modeling approach

We used the Habitat Quality Module of the Integrated Valuation of Ecosystem Services and

Tradeoffs (InVEST) modeling suite version 3.2.0 [44] to quantify grassland-bird habitat.

InVEST is a suite of spatially based modeling tools that quantify services derived from ecosys-

tems, including the maintenance of wildlife habitats [45]. Using InVEST, we modeled grass-

land-bird habitat for the year 2014. We chose 2014 because it is the most current year for

which we could obtain both energy-development and CRP data layers. We created land-cover

Fig 1. Distribution of cropland (Map A) and suitable grassland-bird habitat with an InVEST habitat-quality ranking� 0.3 (indicated in black) (Map B) in

the Prairie Pothole Region of the United States in 2014. Ecoregions are the Northern Glaciated Plains (NGP), Northwestern Glaciated Plains (NWGP), Lake

Agassiz Plain (LAP), and Des Moines Lobe (DML) ecoregions [28].

https://doi.org/10.1371/journal.pone.0198382.g001
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data layers by combining the 2014 National Agricultural Statistics Service (NASS) cropland

data layer (raster, 30 m2) and a shape file obtained from USDA Farm Service Agency’s Eco-

nomics and Policy Analysis Staff that identified areas enrolled in the CRP in 2014. A complete

description of our development of the land-cover layers used in InVEST runs is provided

online in S2 Table.

To develop a baseline habitat layer, we assigned habitat suitability weights from 0–1 to each

land-cover pixel in the cropland data layer (overall accuracy > 83%). Weights were assigned

relative to one another, with higher weights representing the most suitable habitat. Suitable

grassland-bird habitat was defined as any land-cover category of grassland (i.e., herbaceous

grassland [e.g., native prairie], CRP grassland, hayland) and specific categories of small-grain

cropland (S3 Table). For example, native prairie and CRP grassland were equally highly

weighted (i.e., 1.0), small-grain cropland received a weight half that of grasslands (i.e., 0.5), fal-

low land received the lowest weight for habitats (i.e., 0.3), and non-habitat land-cover classes

received a weight of 0. For our analysis, suitable grassland-bird habitat was defined as any pixel

with a habitat rating� 0.3, (i.e., the lowest weight assigned to a land-cover class identified as

habitat). InVEST takes habitat models one step beyond relative habitat-suitability rankings by

incorporating threats to habitat integrity, weighting those threats relative to one another,

incorporating the linear distance that those threats influence adjacent habitats, and ranking

the sensitivity of habitats to each threat. We identified threats to grassland-bird habitat as the

primary causes of fragmentation and degradation of large tracts of grasslands. The primary

habitat threats identified were: 1) woodland, 2) urbanization, 3) cropland, 4) roads, and 5)

energy development [5, 46–54]. We weighted each threat from 0–1 by expected impact to

grassland-bird habitat, with higher weights representing greater habitat degradation (S4

Table). We determined the distance that threats acted upon nearby habitats based on pub-

lished literature [9, 10, 47, 48, 50, 51, 55, 56]. We used InVEST to apply these threats to our

baseline habitat raster to account for their degradation of nearby habitat.

We assigned the greatest threat value to woodland and urbanized areas because grassland

birds find these land-cover types virtually unsuitable for all aspects of their life cycle and they

harbor predators and nest parasites that affect quality of nearby habitats [17]. Cropland can

serve as habitat, (e.g., grains and berries serve as food sources and vegetation serves as escape

and shade cover), but disturbance associated with weed control, tillage and harvest usually pre-

cludes successful nesting, if nesting is even attempted [57]. Roads, well pads and turbine pads

accompanying energy development generally have a small relative footprint on a landscape

level, and species show varying degrees of tolerance to these types of disturbances [9,10].

At a pixel level in the InVEST model, a pixel’s original habitat-ranking value can decrease

because of its proximity to a threat, causing one of two outcomes: a decrease in value such that

the pixel no longer maintains a value� 0.3, (i.e., is lost as suitable habitat), or a decrease in

value but not below 0.3, (i.e., a degradation in quality but still available as suitable habitat).

Thus, loss of habitat can occur under two situations: 1) when a pixel becomes converted from

a habitat land-use category to a non-habitat category, as in the situation whereby native prairie

gets converted to corn, or 2) when a pixel itself does not change land-use category, but a

change in a nearby pixel triggers the threat distance to decrease the focal pixel’s value below

0.3. Subsequently, we chose to isolate and examine the impact of two of our five threats, crop-

land and energy development, because cropland has the greatest footprint in the PPR (Fig 1A)

and is the traditional and ongoing major cause of habitat loss for grassland birds, whereas

energy development is a more recent, but still developing, threat, and its impact is more

localized.

We created binary rasters of each threat’s location across the PPR. We developed cropland

and woodland threat layers through a reclassification process of land-cover layers using R
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(version 3.2.0, packages rgdal, raster, sp, and rgeos) [58]. We developed urban and road threat

layers using a combination of 2015 Tiger/Line city census data and NASS and developed the

energy threat layer by downloading 2014 locations publicly available through the U.S. Geologi-

cal Survey (S2 Table). We buffered the turbine locations by 30 m [59] and the gas and oil well

locations by 100 m [9] to represent surface impact. When threat locations were applied to the

landscape in the model, every threat’s weight decayed linearly over the maximum distance of

its impact, representing greater impact at closer proximity to the threat.

To verify that habitat-quality scores are positively associated to grassland-bird abundance,

we related the habitat-quality scores output by the model to breeding-bird abundance data

using negative binomial regression due to the over-dispersed nature of the count data [60]. We

validated the use of InVEST to calculate our habitat covariate by comparing the performance

of the InVEST habitat model (InVEST) to an intercept-only model (Null) and a baseline habi-

tat rank model (Baseline). We based our bird-abundance estimates on ten avian species that

represent mixed-grass prairie endemics and that are considered grassland birds as categorized

by Sauer et al. [8]: upland sandpiper (Bartramia longicauda), Sprague’s pipit (Anthus spra-
gueii), chestnut-collared longspur (Calcarius ornatus), clay-colored sparrow (Spizella pallida),

savannah sparrow (Passerculus sandwichensis), vesper sparrow (Pooecetes gramineus), grass-

hopper sparrow (Ammodramus savannarum), Baird’s sparrow (Ammodramus bairdii), bobo-

link (Dolichonyx oryzivorus), and western meadowlark (Sturnella neglecta). We acquired count

data for these species from the North American Breeding Bird Survey (BBS), a continental,

road-side survey conducted annually since 1966 [8, 61]. We pooled the sum of the counts of all

ten species from 2013–2015 (N = 2100) by BBS stop for North Dakota, the state for which spa-

tial coordinates by stop were available [62]. We included the years on either side of 2014 to

capture the full temporal shift in bird response to disturbance caused by initial development of

threats as well as potential temporal lags in grassland-bird responses to threat establishment,

respectively. We buffered each survey stop by 400 m, the distance at which birds are assumed

to be detected in the surveys and calculated the mean habitat quality within this buffer from

our InVEST output and compared these values to the grassland-bird abundance estimate for

that point.

We next used InVEST to quantify current (2014) grassland-bird habitat quality and quan-

tity, and grassland-bird habitat quality and quantity among our various scenarios of CRP loss

for the PPR within the United States. For our CRP grassland loss scenarios, we created polygon

sets containing 100%, 75%, 50%, 25%, 10% and 0% of the CRP fields in our 2014 baseline

land-cover layer using a random, successive subsetting method so that CRP fields included in

lower percentage sets were also included in the higher percentage sets. Using each set of poly-

gons as a mask, these fields were converted to row crops in our baseline land-use layer to simu-

late the conversion of CRP grassland habitat to agriculture. By removing percentages of fields

rather than total area in our baseline data layer, we followed the assumption that if an agricul-

tural producer decided to remove land from a conservation program, this decision would be

made on a field-by-field basis rather than on an unrealistic pixel-by-pixel basis. We compared

land-cover layers for each percentage-loss scenario to total CRP grassland area in the 0% loss

layer to verify that the correct percentage of CRP grassland was converted to cropland. We

used an output cell size of 30 m. A half-saturation constant of 0.20 was selected by comparing

multiple runs of the InVEST model and was used to optimize visual display of the resulting

layer [63]. In each run (i.e., scenario), the model worked to erode the quality value of identified

grassland-bird habitats (initial value�0.3) based on spatial proximity to a threat, susceptibility

to that threat, and the threat’s strength (i.e., threat weight). Output data layers from the model

were used to create maps depicting changes in grassland-bird habitat quality among scenarios
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of CRP loss. From our habitat quality maps, we produced summary tables quantifying changes

in suitable-habitat quantity (ha) by ecoregions.

Results

Compared to the intercept-only model and the baseline model, the InVEST habitat model bet-

ter accounted for increases in breeding-bird abundance (ΔAIC > 2; Table 1). We verified that

resultant InVEST habitat-quality ratings were positively related to abundance of grassland

birds in North Dakota (coefficient = 1.76, ±97.5% C.I. = 0.15, Fig 2). The relationship between

abundance estimates from BBS surveys and our modeled bird abundance was significantly dif-

ferent from zero (C.I. range: 1.61–1.92). We calculated a pseudo R-squared of 0.29 (±97.5% C.

I. = 0.03), indicating fair model fit but suggesting that unmeasured covariates in addition to

habitat quality influenced actual bird occurrence. Also, of note, BBS stops with a habitat

score < 0.3 had an average abundance of 5, and those with scores� 0.30 had an average abun-

dance of 15. Thus, while points with high habitat-quality ratings were associated with both low

and high bird abundance, points with low quality ratings were almost always associated with

low bird abundance (Fig 2).

From our baseline (2014) model and our definition of suitable habitat as any land-cover

type with a habitat-quality ranking higher than 0.3, we estimated that around 12 million ha of

suitable grassland-bird habitat (i.e., habitat quality score�0.3) remained within the four PPR

ecoregions in 2014 (Table 2; Fig 1B). The Northern Glaciated Plains and Northwestern Glaci-

ated Plains ecoregions accounted for over 80% of the suitable grassland-bird habitat. Availabil-

ity of suitable grassland-bird habitat was lowest in the Des Moines Lobe ecoregion. The area of

cropland (8.9 million ha) greatly exceeded the area devoted to energy development (44.5 thou-

sand ha, Table 2).

Our application of the InVEST model to quantify effects of cropland and energy develop-

ment demonstrated low impact (65,800 ha) in causing original habitat-quality rankings to

become unsuitable, (i.e., falling below 0.3) due to the influence of nearby cropland or energy

development threats (Table 3). However, cropland and energy development had a much

greater impact in terms of degrading the quality of habitat when habitats that did not drop

below a score of 0.3 are included. In this case, cropland degraded 19% (2.1 million ha) of the

available grass-land bird habitat, whereas energy development degraded 16% (1.9 million ha,

Table 3). Among ecoregions, remaining grassland-bird habitats in the Northern Glaciated

Plains and the Des Moines Lobe were degraded the most by cropland and the Northwestern

Glaciated Plains the least, whereas the Northern Glaciated Plains and the Northwestern Glaci-

ated Plains were degraded the most and the Des Moines Lobe the least by energy development.

Although not nearly as ubiquitous in distribution as cropland, where energy development

occurs, its localized impact can be significant (S1 Fig). Land within the PPR is surveyed

according to the Public Land Survey System of dividing land into parcels, one division of

which is a township comprised of thirty-six 1-mi2 (259 ha) sections [64]. We found entire

townships were rendered unsuitable habitat by the clustering of oil wells in close proximity

Table 1. Results of model selection among intercept-only, baseline-habitat score, and InVEST habitat-score models.

Response Model K AICc Weight ΔAICc LogLikelihood

BBS Counts InVEST� 4 12368.18 1 0 -6180.08

Baseline 4 12375.95 0.02 7.77 -6183.96

Null 3 12852.43 0 484.25 -6423.21

�Selected model

https://doi.org/10.1371/journal.pone.0198382.t001
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(S1 Fig). Our scenario quantifying the impact of cropland on the suitability of current (2014)

CRP conservation grassland as grassland-bird habitat showed suitable habitat loss of less than

1%, although it caused degradation of 13% of the grassland-bird habitat (Table 3). The largest

decline in habitat quality occurred in the Northern Glaciated Plains and the least in the Des

Moines Lobe.

Our scenario-based CRP modeling revealed a loss in suitable grassland-bird habitat (-2%

across the PPR) if 25% of CRP grasslands present in 2014 are returned to agricultural produc-

tion. This loss of suitable habitat increases to 9% (a loss of approximately 1 million ha) if all

Fig 2. Scatter plot of habitat-quality rating versus bird abundance (with 95% confidence interval band) for 2100 points surveyed during the 2013–

2015 North American Breeding Bird Survey.

https://doi.org/10.1371/journal.pone.0198382.g002
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CRP grasslands within the PPR are returned to agricultural production (Table 4; Fig 3A and

3B). Our modeling also reveals that the Des Moines Lobe would have the greatest relative loss

of suitable grassland-bird habitat (-36% in our scenario in which all CRP grasslands are con-

verted to cropland) and the Northwest Glaciated Plain the least at 3% (Table 4; Fig 3A and 3B).

Table 2. Area (ha) of suitable (i.e., a relative habitat-quality ranking� 0.3 out of a maximum value of 1.0) grassland-bird habitat and of non-suitable habitat that

was devoted to cropland and energy development in 2014 within the Northern Glaciated Plains (NGP), Northwestern Glaciated Plains (NWGP), Lake Agassiz Plain

(LAP), and Des Moines Lobe (DML) ecoregions of the United States. Areas were quantified using the National Agricultural Statistics Service Cropland Data Layer.

Ecoregion Grassland-bird Habitat Non-habitat Cropland Energy Development Land

NGP 5,256,338 3,571,532 22,502

NWGP 4,751,716 980,650 21,290

LAP 1,070,396 1,350,374 3

DML 457,953 3,015,641 799

Total 11,536,402 8,918,197 44,595

https://doi.org/10.1371/journal.pone.0198382.t002

Table 3. Model results of the area (ha) of suitable grassland-bird habitat lost and degraded in four ecoregions of the United States under three threat scenarios: 1)

influence of cropland, 2) influence of energy development, and 3) impact on Conservation Reserve Program (CRP) habitat value based on cropland threat. Baseline

suitable habitat was quantified using the National Agricultural Statistics Service (NASS) Cropland Data Layer for 2014. Lost habitat indicates suitable habitat that fell below

the relative habitat-quality rating of 0.3 on a maximum-scale value of 1.0. Degraded habitat indicates suitable habitat that dropped in habitat-quality ranking but stayed

above 0.3 (i.e., was not lost). Values in parentheses represent the percentage of current (2014) suitable habitat degraded under the different scenarios. The ecoregions are

the Northern Glaciated Plains (NGP), Northwestern Glaciated Plains (NWGP), Lake Agassiz Plain (LAP), and Des Moines Lobe (DML).

NASS 2014 Application of the Habitat Quality Module of InVEST

Scenario 1: Cropland Threat Scenario 2: Energy Threat Scenario 3: Threat to CRP value by Cropland

Suitable

Grassland

Bird Habitat

Habitat that

became

unsuitable

(lost) due to

cropland

threat

Suitable

habitat

degraded by

cropland

threat

Grassland

bird habitat

remaining

Habitat that

became

unsuitable

(lost) due to

energy threat

Suitable

habitat

degraded by

energy

Grassland

bird habitat

remaining

Habitat that

became

unsuitable

(lost) due to

loss in CRP

value

Suitable

habitat

degraded by

impact of

cropland on

CRP value

Grassland

Bird Habitat

Remaining

NGP 5,256,338 1,784 1,131,551

(-21%)

5,304,588 29,188 1,011,304

(-19%)

5,277,184 265 835,229

(-16%)

5,306,107

NWGP 4,751,716 617 605,376

(-13%)

4,783,109 29,883 732,798

(-15%)

4,753,843 84 505,944

(-11%)

4,783,642

LAP 1,070,396 936 228,064

(-18%)

1,244,091 6 125,821

(-10%)

1,245,021 76 137,199

(-11%)

1,244,951

DML 457,953 2,644 183,393

(-31%)

587,968 0.8 20,800

(-4%)

589,812 526 24,994 (-4%) 590,086

Total 11,536,402 5,981 2,148,384

(-19%)

11,919,756 59,877 1,890,723

(-16%)

11,865,860 951 1,503,366

(-13%)

11,904,786

https://doi.org/10.1371/journal.pone.0198382.t003

Table 4. Area (ha) of suitable grassland-bird habitat with a relative habitat-quality ranking� 0.3 on a maximum-scale value of 1.0 in the Northern Glaciated Plains

(NGP), Northwestern Glaciated Plains (NWGP), Lake Agassiz Plain (LAP), and Des Moines Lobe (DML) ecoregions of the United States in the baseline year of

2014 and under five scenarios reflecting the conversion of 10%, 25%, 50%, 75%, and 100% of Conservation Reserve Program (CRP) grasslands to row crops. Values

in parentheses represent the percentage of current (2014) suitable habitat lost under the different scenarios of CRP conversion.

Scenarios

Current (2014) -10% CRP -25% CRP -50% CRP -75% CRP -100% CRP

NGP 5,256,073 5,201,350 (-1%) 5,117.941 (-2.6%) 4,982,635 (-5.2%) 3,849,494 (-7.7%) 4,713,048 (-10.3%)

NWGP 4,751,631 4,736,025 (-0.3%) 4,713,506 (-0.8%) 4,675,765 (-1.6%) 4,635,920 (-2.4%) 4,597,735 (-3.2%)

LAP 1,070,319 1,049,800 (-1.9%) 1,019,354 (-4.8%) 968,130 (-9.6%) 915,492 (-14.5%) 865,272 (-19.2%)

DML 457,427 440,827 (-3.6%) 415,275 (-9.2%) 373,533 (-18.3%) 332,627 (-27.3%) 291,988 (-36.2%)

Total 11,535,451 11,428,001 (-0.9%) 11,266,075 (-2.3%) 11,000062 (-4.6%) 10,733,532 (-7.0%) 10,468,042 (-9%)

https://doi.org/10.1371/journal.pone.0198382.t004
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Discussion

We demonstrated both the utility of applying the InVEST-modeling approach to quantifying

habitat suitability for grassland birds and for estimating the effects of land-cover conversion

scenarios on these habitats. An important distinction between InVEST and other approaches

is that InVEST allows for not only the modeling of land-cover conversion scenarios, but also

the quantification of how habitat “threats” impact landscape-level habitat availability to an

organism. This allows for more robust quantifications of how matrices of land cover, some of

which are suitable habitat for birds and some of which are habitat threats, interact to affect

overall landscape integrity, in our case for grassland birds.

We did not attempt to forecast grassland-bird population sizes, but rather quantified habitat

quality as influenced by threats and susceptibility to those threats. Multiple factors in addition

to summertime nesting habitat affect grassland-bird populations; some (e.g., condition of win-

tering habitat) are far removed from our study region. Thus, prediction of population sizes

was beyond the scope of our work. However, habitat-quality information derived from the

methodology described here could play an important role in the development and improve-

ment of grassland-bird population models. We also did not attempt to quantify a monetary

aspect to the losses in grassland-bird habitat. While the estimation of monetary gains or losses

associated with loss or degradation of habitats and effects on ecosystem services is useful in

guiding decisions, such quantifications were well beyond the scope of our research effort.

Rather, we focused on the preliminary step necessary to calculate the monetary effects of losses

and degradation, that being the quantification of habitat losses and degradation itself. We

Fig 3. Distribution of suitable habitat with an InVEST habitat-quality ranking� 0.3 under a scenario in which all Conservation Reserve Program (CRP)

grasslands present in the Prairie Pothole Region of the United States in 2014 are intact (Map A) and a scenario in which all CRP grasslands are converted to

row-crop production (Map B).

https://doi.org/10.1371/journal.pone.0198382.g003
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provide methodology to obtain such quantifications. Additionally, in most cases, monetary

gains or losses resulting from losses and degradation of habitat need to be calculated on a case-

by-case basis as each “project” has its own, often very different, inputs in terms of costs (e.g.,

converting land, installing wind turbines, constructing roads, loss of birding opportunities,

degradation of other ecosystem services) and benefits (e.g., food production, energy produc-

tion, restoration of bird populations).

To illustrate our method, we chose to quantify the degree to which one traditional and

widespread threat, cropland, and one nascent but more localized threat, energy development,

influenced the availability of suitable grassland-bird habitat in the current (2014) matrix of

land cover in the PPR. We further illustrate the differences that these two threats have to a spe-

cific area. It is key to note that, with the exception of our CRP-conversion scenarios, we did

not quantify the direct loss of habitat resulting from conversion of grasslands to cropland or

due to energy development. Rather, we quantified the effects of habitat threats within the cur-

rent (2014) landscape configuration on the remaining area of suitable grassland-bird habitat

within that landscape. Because of cropland’s pervasiveness throughout the PPR, its cumulative

impact as a threat to remaining grassland-bird habitat is great, degrading remaining grassland-

bird habitat at rates varying from 13–31% across the region (Table 3). Energy development, as

a much more localized threat, had a smaller impact at 4–19% degradation rates across the

region. However, in places where energy development has occurred, the localized impact has

affected entire blocks of 36 mi2 (93.2 km2) townships (S1 Fig). By examining these threats at

the ecoregion level, we were able to determine those ecoregions in which grassland-bird habi-

tats have been the most impacted by either cropland or energy development.

Cropland and energy development threats caused <1% of remaining grassland-bird habitat

to fall from “suitable” to “unsuitable” as habitat. This may be explained in terms of where crop-

land and energy development occur, which is in rural areas where, when a land-cover change

occurs (i.e., a crop/non-crop interface), that other edge is most likely to be grassland, which

will have a fairly high relative suitability ranking. The impact to watch, therefore, is the degree

to which remaining suitable habitat is degraded due to its proximity to cropland and energy

development. It is in this category that we see the influence of cropland and energy take a

marked toll on the integrity of grassland-bird habitat. It is also important to note that not all

cropland areas are unsuitable as grassland-bird habitat. Grassland-like crops and small-grains,

such as alfalfa and wheat, have some value as avian habitat, whereas row crops such as corn

and soybeans do not (S3 Table). Therefore, we would expect highest degradation in highly

fragmented areas, (e.g., where grassland and cropland edges regularly abut, and where those

cropland edges are row crops). The highest degradation, 31%, occurred in the Des Moines

Lobe, which includes the extensive corn and soy fields of Iowa. A final point is that the low

amount of habitat that fell below 0.3 indicates that the greatest threat to grassland integrity is

not degradation, but the more direct effects of conversion to row crops, in which pixels that

rank as high as 1 immediately fall below 0.3 upon conversion.

As to energy development, the largest congregation of oil and gas wells in the PPR is in the

Bakken Region of northwestern North Dakota, and it is in the Northern Glaciated Plains that

energy development has caused the greatest degradation in remaining grassland-bird-habitat

quality. The threat of cropland to CRP habitat quality is fairly uniform across all ecoregions

except the Des Moines Lobe, which has minimal degradation, which would occur if very little

CRP occurred in that ecoregion. In ecoregions in which CRP is a large component of the grass-

land landscape, its adjacency to cropland threatens its integrity. In these areas, maintaining

primarily grassland landscapes, either of CRP or native prairie, will be important for the main-

tenance of grassland-bird-habitat quality.
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Our application of InVEST’s Habitat Quality Module to the CRP-conversion scenario

revealed that if all-remaining CRP lands are returned to crop production, losses of suitable

grassland-bird habitat would equal approximately 9% of the total suitable habitat available

across the PPR in 2014. The CRP is a long-acknowledged driver in the maintenance and stabi-

lization of grassland-bird populations [65–67]. The effects on grassland birds of losing close to

one-tenth of their remaining suitable habitat in the PPR would undoubtedly be significant,

and each ecoregion would face unique circumstances. The Des Moines Lobe and Lake Agassiz

Plain ecoregions have already lost most of their natural grassland habitat due to intensive agri-

cultural development. The Des Moines Lobe, which would lose 36% of its remaining suitable

grassland-bird habitat, and the Lake Agassiz Plain, which would lose 19%, can each barely

afford to lose additional habitat. Even with CRP intact, several grassland-bird species in these

regions are in decline and species of federal conservation concern [68]. The loss of CRP could

plausibly facilitate the extirpation of several grassland-bird species and render those regions

species depauperate.

The Northern and Northwestern Glaciated Plains each have significantly more remaining

grassland-bird habitat than the other two ecoregions. However, our model results demonstrate

that loss of CRP would affect them at different levels; amount of suitable habitat in the North-

ern Glaciated Plains (10% loss of grassland-bird habitat under 100% CRP loss scenario) was

more dependent on CRP lands than in the Northwestern Glaciated Plains (3% loss under the

same CRP loss scenario). Most of the Northwestern Glaciated Plains is made up of an area

known as the Missouri Coteau. The topography of the Missouri Coteau is varied, with greater

local relief and rockier, less fertile, soils than in the Northern Glaciated Plains to the east. As a

result, croplands, while still the major land cover-type, are less abundant, and native grassland

pastures form a larger component of the Northwestern Glaciated Plains landscape than do

conservation grasslands. CRP grasslands still provide significant habitat in this ecoregion, but

native pastures also contribute to the maintenance of the ecoregion’s avian biodiversity. Even

so, loss of CRP grasslands in the Northwestern Glaciated Plains are compounded by the impact

of oil and gas development prevalent in this region and likely have a negative impact on species

of conservation concern, such as the Sprague’s Pipit, Baird’s Sparrow, and McCown’s Long-

spur (Rhyncophanes mccownii) [67].

The results of our modeling efforts identify recent past and potential future bird habitat

losses in the PPR of the United States. However, they also identify opportunities for the

improvement of habitats if current trends can be reversed, either through gains in CRP or

through other conservation programs that lead to increases in grassland habitats on the PPR

landscape (e.g., USDA Natural Resources Conservation Service’s Agricultural Conservation

Easement Program). The potential of conservation grasslands to mitigate grassland-bird habitat

loss in the PPR has been demonstrated by the amount of suitable habitat that has been created

on the landscape through a single conservation program, the CRP. If the CRP was not as suc-

cessful as it has been in providing avian habitat on the PPR landscape, we would not see losses

of these lands from the landscape resulting in such significant declines in suitable grassland-

bird habitat in our modeled scenarios, and our validation work demonstrated that declines in

habitat-quality ratings are related to declines in overall grassland-bird abundances. Thus, the

CRP and other conservation programs can play a significant role in restoring grassland-bird

populations in the PPR. However, care must be taken to recognize the transitory nature of con-

servation lands that are not protected through fee-title ownership or through long-term ease-

ments. As seen through recent losses of CRP conservation grasslands across the PPR landscape,

lands protected through short-term contracts will likely revert to other uses during periods

when conservation payments lag behind profits that can be realized through conversion back

to crop production. The CRP is subject to shifting political priorities. In recent years, the CRP
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enrollment cap as enacted by the U.S. Congress has fallen from the peak of 14.9 million hect-

ares in 2007 to 9.7 million hectares in 2018 and may slightly rise to 11 million hectares with the

passage of the 2018 Farm Bill. Although the value of the CRP to grassland birds is irrefutable,

developing other programs to sustain grassland-bird populations could provide a buffer to the

transitory nature of CRP grasslands. Populations of grassland birds would be expected to rise

with increasing CRP conservation grasslands but maintaining that population growth when

CRP conservation grasslands are converted back to cropland if Farm Bill caps again drop will

be a challenge without the existence of grasslands created in other programs.

An economic climate driven by demands for commodities has resulted in marked losses of

grassland-bird habitat not just in the PPR, but worldwide. The resulting impact on species

dependent upon habitat provided by natural and conservation lands could be substantial as

these lands are converted to commodity production. Conversely, providing perennial grass-

land cover on agricultural lands through conservation programs has great potential to reverse

these trends. Our results are applicable beyond the PPR in areas where grassland-bird habitats

consist of grasslands embedded in a cropland matrix and economic pressures favor the conver-

sion of natural and conservation grasslands to crop production and energy development. The

application of scenario-based models such as InVEST to quantify grassland-bird habitats can

identify potential regional effects of land-cover change. This knowledge will be needed to facil-

itate the improvement and ultimate success of grassland-bird conservation efforts.

Supporting information

S1 Table. Area (ha) of land within Minnesota (MN), North Dakota (ND), South Dakota

(SD), and Iowa (IA) enrolled in the U.S. Department of Agriculture’s Conservation

Reserve Program, 2007 to 2014 (USDA 2016).

(DOCX)

S2 Table. Sources of information for all spatial layers used to model grassland-bird habitat

in the Prairie Pothole Region of the United States.

(DOCX)

S3 Table. InVEST habitat and sensitivity table. Rankings of National Agricultural Statistics

Service land-cover habitat categories by suitability as breeding habitat for grassland-bird spe-

cies (Habitat column) and ranking of sensitivity of those habitat categories to each of five

threats to grassland-bird species in the Prairie Pothole Region of the United States.

(DOCX)

S4 Table. InVEST threat table. Land-use categories treated as threats to the integrity of grass-

land-bird habitat in the Prairie Pothole Region of the United States are organized by their rela-

tive threat value, or weight. Distance reflects how far an influence a pixel of a threat exerts on

surrounding pixels.

(DOCX)

S1 Fig. Distribution of unsuitable habitat due to the impact of oil development in the Bak-

ken Region of northwestern North Dakota, United States of America, showing the negative

impact on habitat suitability of oil wells, the black squares.

(DOCX)

Acknowledgments

Financial support for this effort came from the USDA’s Natural Resources Conservation Ser-

vice through their Conservation Effects Assessment Project (CEAP—Wetlands) and the Farm

Modeling grassland-bird habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198382 January 9, 2019 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198382.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198382.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198382.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198382.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198382.s005
https://doi.org/10.1371/journal.pone.0198382


Service Agency’s Economics and Policy Analysis Staff. Deb Buhl provided advice in statistical

modeling, Neal Niemuth in modeling BBS data, Lawrence Igl in grassland-bird threats, Clint

Otto and Max Post van der Burg in theoretical considerations, and Skip Hyberg in CRP infor-

mation. Eric Lonsdorf and three anonymous reviewers provided critical reviews of an earlier

draft of this manuscript. Any use of trade, firm, or product names is for descriptive purposes

only and does not imply endorsement by the U.S. Government. All data used in support of

this manuscript are publicly available through USGS at https://doi.org/10.5066/F72J69RM.

Author Contributions

Conceptualization: Jill A. Shaffer, Cali L. Roth, David M. Mushet.

Data curation: Jill A. Shaffer, Cali L. Roth.

Formal analysis: Cali L. Roth.

Funding acquisition: David M. Mushet.

Investigation: Jill A. Shaffer, Cali L. Roth.

Methodology: Jill A. Shaffer, Cali L. Roth, David M. Mushet.

Project administration: David M. Mushet.

Resources: David M. Mushet.

Software: Cali L. Roth.

Supervision: David M. Mushet.

Validation: Jill A. Shaffer, Cali L. Roth.

Visualization: Jill A. Shaffer, Cali L. Roth, David M. Mushet.

Writing – original draft: Jill A. Shaffer.

Writing – review & editing: Jill A. Shaffer, Cali L. Roth, David M. Mushet.

References
1. Millennium Ecosystem Assessment. 2003. Ecosystems and human well-being: a framework for assess-

ment. Washington: Millennium Ecosystem Assessment; 2003.

2. Sekercioglu CH, Wenny DG, Whelan CJ. Why birds matter: avian ecological function and ecosystem

services. Chicago: University of Chicago Press; 2016.

3. Askins RA. Population trends in grassland, shrubland, and forest birds in eastern North America. Cur-

rent Ornithol. 1993; 11: 1–34.

4. Knopf FL. Avian assemblages on altered grasslands. In: Jehl JR Jr, Johnson NK, editors. A century of

avifaunal change in western North America: studies in avian biology. Los Angeles: Cooper Ornithologi-

cal Society; 1994. pp. 247–257.

5. Doherty KE, Ryba AJ, Stemler CL, Niemuth ND, Meeks WA. Conservation planning in an era of change:

state of the U.S. Prairie Pothole Region. Wildl. Soc. Bull. 2013; 37: 546–563.

6. Lark TJ, Salmon JM, Gibbs HK. Cropland expansion outpaces agricultural and biofuel policies in the

United States. Environ. Research Lett. 2015; 10: 055004. https://doi.org/10.1088/1748-9326/10/4/

044003

7. Gage AM, Olimb SK. Nelson J. Plowprint: tracking cumulative cropland expansion to target grassland

conservation. Great Plains Research. 2016; 26: 107–116.

8. Sauer JR, Link WA, Fallon JE, Pardieck KL, Ziolkowski DJ Jr. The North American breeding bird survey

1966–2011: summary analysis and species accounts. North Am. Fauna 2013; 79: 1–32.

9. Thompson SJ, Johnson DH, Niemuth ND, Ribic CA. Avoidance of unconventional oil wells and roads

exacerbates habitat loss for grassland birds in the North American Great Plains. Biol. Conserv. 2015;

192: 82–90.

Modeling grassland-bird habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198382 January 9, 2019 14 / 17

https://doi.org/10.5066/F72J69RM
https://doi.org/10.1088/1748-9326/10/4/044003
https://doi.org/10.1088/1748-9326/10/4/044003
https://doi.org/10.1371/journal.pone.0198382


10. Shaffer JA, Buhl DA. Effects of wind-energy facilities on breeding grassland bird distribution. Conserv.

Biol. 2016; 30: 59–71. https://doi.org/10.1111/cobi.12569 PMID: 26213098

11. United States Energy Information Administration (USEIA). U.S. crude oil production to 2025: updated

projection of crude types. Washington: U.S. Department of Energy; 2015. https://www.eia.gov/analysis/

petroleum/crudetypes. Cited 9 April 2018.

12. International Energy Agency. World Energy Outlook 2016. Paris: OECD/IEA; 2016. http://www.iea.org/

newsroom/news/2016/november/world-energy-outlook-2016.html. Cited 9 April 2018.

13. Fargione J, Kiesecker J, Slaats MJ, Olimb S. Wind and wildlife in the Northern Great Plains: identifying

low-impact areas for wind development. PLoS One 2012; 7: e41468. https://doi.org/10.1371/journal.

pone.0041468 PMID: 22848505

14. United States Department of Energy (USDOE). 2015 wind technologies market report. DOE/GO-

10216-4885. Energy efficiency and renewable energy. Washington: U.S. Department of Energy; 2016.

https://energy.gov/sites/prod/files/2016/08/f33/2015-Wind-Technologies-Market-Report-08162016.pdf.

Cited 9 April 2018.

15. Villard M.A. Habitat fragmentation: major conservation issue or intellectual attractor? Ecol. Applic.

2002; 12: 319–320.

16. Andrén H. Effects of habitat fragmentation on birds and mammals in landscapes with different propor-

tions of suitable habitat: a review. Oikos 2004; 71: 355–366.

17. Ribic CA, Koford RR., Herkert JR, Johnson DH, Niemuth ND, Naugle DE, et al. Area sensitivity in North

American grassland birds: patterns and processes. Auk 2009; 126: 233–244.

18. McDonald RI, Fargione J, Kiesecker J, Miller WM, Powell J. Energy sprawl or energy efficiency: climate

policy impacts on natural habitat for the United States of America. PLoS ONE. 2009; 4: e6802. https://

doi.org/10.1371/journal.pone.0006802 PMID: 19707570

19. United States Department of Agriculture (USDA). CRP contract summary and statistics: annual sum-

mary. 2016. http://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=crp-st. Cited 9

April June 2018.

20. Morefield PE, LeDuc SD, Clark CM, Iovanna R. Grasslands, wetlands, and agriculture: the fate of land

expiring from the Conservation Reserve Program in the Midwestern United States. Environ. Research

Lett. 2016; 11: 094005. https://doi.org/10.1088/1748-9326/11/9/094005

21. Riffell S, Scognamillo D, Burger LW. Effects of the conservation reserve program on northern bobwhite

and grassland birds. Env. Monitor. Assess. 2008; 146: 309–323.

22. Herkert JR. Response of bird populations to farmland set-aside programs. Conserv. Biol. 2009; 23:

1036–1040. https://doi.org/10.1111/j.1523-1739.2009.01234.x PMID: 19438871

23. Allen AW, Vandever MW. Conservation Reserve Program (CRP) contributions to wildlife habitat, man-

agement issues, challenges and policy choices—an annotated bibliography. Scientific Investigations

Report 2012–5066: U.S. Geological Survey; 2012

24. Uden DR, Allen CR, Mitchell R., McCoy TD, Guan Q. Predicted avian responses to bioenergy develop-

ment scenarios in an intensive agricultural landscape. GCB Bioenergy 2015; 7: 717–726.

25. Rashford BS, Walker JA, Bastian CT. Economics of grassland conversion to cropland in the Prairie Pot-

hole Region. Conserv. Biol. 2011; 25: 276–284. https://doi.org/10.1111/j.1523-1739.2010.01618.x

PMID: 21166716

26. Wright CK, Wimberly MC. Recent land use change in the Western Corn Belt threatens grasslands and

wetlands. Proc. National Acad. Sci. 2013; 110: 4134–4139.

27. Mushet DM, Neau JL, Euliss NH Jr. Modeling effects of conservation grassland losses on amphibian

habitat. Biol. Conserv. 2014; 174: 93–100.

28. United States Environmental Protection Agency (USEPA). Level III and IV ecoregions of the continental

United States. 2013. https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-

states. Cited 9 April 2018.

29. Kantrud HA, Krapu GL, Swanson GA. Prairie basin wetlands of the Dakotas: A community profile. Bio-

logical Report 85(7.28): US Fish and Wildlife Service; 1989.

30. Euliss NH Jr, Wrubleski DA, Mushet DM. Wetlands of the prairie pothole region: invertebrate species

composition, ecology, and management. In: Batzer DP, Rader RB, Wissinger SA, editors. Invertebrates

in Freshwater Wetlands of North America: Ecology and Management. New York: John Wiley and

Sons; 1999. pp. 471–514.

31. van der Valk AG. The prairie potholes of North America. In: Fraser LH, Keddy PA, editors. The world’s

largest wetlands: ecology and conservation. Cambridge: Cambridge University Press; 2005. pp 393–

423.

Modeling grassland-bird habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198382 January 9, 2019 15 / 17

https://doi.org/10.1111/cobi.12569
http://www.ncbi.nlm.nih.gov/pubmed/26213098
https://www.eia.gov/analysis/petroleum/crudetypes
https://www.eia.gov/analysis/petroleum/crudetypes
http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html
http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html
https://doi.org/10.1371/journal.pone.0041468
https://doi.org/10.1371/journal.pone.0041468
http://www.ncbi.nlm.nih.gov/pubmed/22848505
https://energy.gov/sites/prod/files/2016/08/f33/2015-Wind-Technologies-Market-Report-08162016.pdf
https://doi.org/10.1371/journal.pone.0006802
https://doi.org/10.1371/journal.pone.0006802
http://www.ncbi.nlm.nih.gov/pubmed/19707570
http://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=crp-st
https://doi.org/10.1088/1748-9326/11/9/094005
https://doi.org/10.1111/j.1523-1739.2009.01234.x
http://www.ncbi.nlm.nih.gov/pubmed/19438871
https://doi.org/10.1111/j.1523-1739.2010.01618.x
http://www.ncbi.nlm.nih.gov/pubmed/21166716
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://doi.org/10.1371/journal.pone.0198382


32. Northern Great Plains Floristic Quality Assessment Panel (NGPFQAP). Coefficients of conservatism

for the vascular flora of the Dakotas and the adjacent grasslands. Inform. Tech. Rep. USGS/BRD/ITR-

2001-0001: U.S. Geological Survey; 2001.

33. Rosenberg KV, Kennedy JA, Dettmers R, Ford RP, Reynolds D, Alexander JD, et al. Partners in Flight

landbird conservation plan: 2016 revision for Canada and continental United States. Partners in Flight

Science Committee; 2016. http://www.partnersinflight.org. Cited 9 April 2018.

34. Brown S, Hickey C, Harrington B, Gill R. The U.S. Shorebird Conservation Plan. Manomet: Center for

Conservation Sciences; 2001. http://www.shorebirdplan.org. Cited 9 April 2018.

35. Beyersbergen GW, Niemuth ND, Norton MR. Northern Prairie & Parkland Waterbird Conservation

Plan. Denver: Prairie Pothole Joint Venture; 2004. https://www.fws.gov/mountain-prairie/refuges/

hapetResources/updatedFiles/publications/Beyersbergen.et.al.2004.waterbird.plan.PPJV.pdf. Cited 9

April 2018.

36. NAWMP. North American Waterfowl Management Plan. 2012. https://nawmp.org/nawmp-udpate/

north-american-waterfowl-management-plan-2012-revision. Cited 9 April 2018.

37. Fritzell EK. Mammals in prairie wetlands. In: van der Valk AG, editor. Northern Prairie Wetlands. Ames:

Iowa State University Press; 1989. pp. 268–301.

38. Larson DL, Euliss NH Jr, Lannoo MJ, Mushet DM. Amphibians of northern grasslands. In: Mac MJ, Opler

PA, Puckett Haecker CE, Doran PD, editors. Status and trends of the Nation’s biological resources. Vol-

ume 2. Reston: U.S. Department of the Interior, US Geological Survey; 1998. pp. 450–451.

39. Swengel AB, Swengel SR. Tall-grass prairie butterflies and birds. In: Mac MJ, Opler PA, Puckett

Haecker CE, Doran PD, editors. Status and trends of the Nation’s biological resources, Volume 2. Res-

ton: US Department of the Interior, US Geological Survey; 1998.

40. Otto CRV, Roth CL, Carlson BL, Smart MD. Land-use change reduces habitat suitability for supporting

managed honey bee colonies in the Northern Great Plains. PNAS. 2016; 113: 10430–10435. https://

doi.org/10.1073/pnas.1603481113 PMID: 27573824

41. Stephens SE, Walker JA, Blunck DR, Jayaraman A, Naugle DE, Ringelman JK, et al. Predicting risk of

habitat conversion in native temperate grasslands. Conserv. Biol. 2008; 22: 1320–1330. https://doi.org/

10.1111/j.1523-1739.2008.01022.x PMID: 18717691

42. Leitch JA. Politicoeconomic overview of prairie potholes. In: Van der Valk AG, editor. Northern prairie

wetlands. Ames: Iowa State University Press; 1989. pp. 2–15.

43. Higgins KF, Naugle DE, Forman JR. A case study of changing land use practices in the northern Great

Plains, U.S.A.: an uncertain future for waterbird conservation. Waterbirds. 2002; 25 (Special Publication

2): 42–50.

44. Natural Capital Project. InVEST Version 3.2.0. Natural Capital Project; 2015. http://www.

naturalcapitalproject.org/invest. Cited 9 April 2018.

45. Nelson E, Cameron DR, Regetz J, Polasky S, Daily GC. Terrestrial biodiversity. In: Kareiva P, Tallis H,

Ricketts TH, Daily GC, Polasky S, editors. Natural capital: theory and practice of mapping ecosystem

services. New York: Oxford University Press; 2011.

46. Haire SL, Bock CE, Cade BS, Bennett BC. The role of landscape and habitat characteristics in limiting

abundance of grassland nesting songbirds in an urban open space. Land. Urban Plan. 2000; 48: 65–82.

47. Grant TA, Madden E Berkey GB. Tree and shrub invasion in northern mixed-grass prairie: implications

for breeding grassland birds. Wildl. Soc. Bull. 2004; 32: 807–818.

48. Cunningham M, Johnson DH. Proximate and landscape factors influence grassland bird distributions.

Ecol. Applic. 2006; 16: 1062–1075.

49. Claassen R, Carriazo F, Cooper JC, Hellerstein D, Ueda K. Grassland to cropland conversion in the

Northern Plains: the role of crop insurance, commodity, and disaster programs. Economic Research

Report No. 120. Washington: US Department of Agriculture, Economic Research Service; 2011.

50. Sliwinski MS, Koper N. Grassland bird responses to three edge types in a fragmented mixed-grass prai-

rie. Avian Conserv. Ecol. 2012; 7: 6. http://dx.doi.org/10.5751/ACE-00534-070206.

51. McLaughlin ME, Janousek WM, McCarty JP, Wolfenbarger LL. Effects of urbanization on site occu-

pancy and density of grassland birds in tallgrass prairie fragments. J. Field Ornithol. 2014; 85: 258–273.

52. Ludlow SM, Brigham RM, Davis SK. Oil and natural gas development has mixed effects on the density

and reproductive success of grassland songbirds. Condor Ornithol. Applic. 2015; 117: 64–75.

53. Rodgers JA, Koper N. Shallow gas development and grassland birds: the importance of perches. J.

Wildl. Manage. 2017; 81: 406–416.

54. Tack JD, Quamen FR, Kelsey K, Naugle DE. Doing more with less: removing trees in a prairie system

improves value of grasslands for obligate bird species. Journal of Environ. Manage. 2017; 198: 163–

169.

Modeling grassland-bird habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198382 January 9, 2019 16 / 17

http://www.partnersinflight.org
http://www.shorebirdplan.org
https://www.fws.gov/mountain-prairie/refuges/hapetResources/updatedFiles/publications/Beyersbergen.et.al.2004.waterbird.plan.PPJV.pdf
https://www.fws.gov/mountain-prairie/refuges/hapetResources/updatedFiles/publications/Beyersbergen.et.al.2004.waterbird.plan.PPJV.pdf
https://nawmp.org/nawmp-udpate/north-american-waterfowl-management-plan-2012-revision
https://nawmp.org/nawmp-udpate/north-american-waterfowl-management-plan-2012-revision
https://doi.org/10.1073/pnas.1603481113
https://doi.org/10.1073/pnas.1603481113
http://www.ncbi.nlm.nih.gov/pubmed/27573824
https://doi.org/10.1111/j.1523-1739.2008.01022.x
https://doi.org/10.1111/j.1523-1739.2008.01022.x
http://www.ncbi.nlm.nih.gov/pubmed/18717691
http://www.naturalcapitalproject.org/invest
http://www.naturalcapitalproject.org/invest
http://dx.doi.org/10.5751/ACE-00534-070206
https://doi.org/10.1371/journal.pone.0198382


55. Forman RTT, Reineking B, Hersperger AM. Road traffic and nearby grassland bird patterns in a subur-

banizing landscape. Environ. Manage. 2002; 29: 782–800. https://doi.org/10.1007/s00267-001-0065-4

PMID: 11992171

56. Kalyn Bogard HJ, Davis SK. Grassland songbirds exhibit variable responses to the proximity and den-

sity of natural gas wells. J. Wildl. Manage. 2014; 78:471–482.

57. Best LB. Conservation tillage: ecological traps for nesting birds? Wildl. Soc. Bull. 1986; 14:308–317.

58. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Sta-

tistical Computing; 2016. http://www.R-project.org. Cited 9 April 2018.

59. WE Energies. Developing and constructing wind energy; 2018. http://www.we-energies.com/

environmental/windenergy.pdf. Cited 9 April 2018.

60. Hilbe JM. Negative binomial regression. 2nd edition. New York: Cambridge University Press; 2011.

61. Bystrak D. The North American Breeding Bird Survey. Studies in Avian Biol. 1981; 6: 34–41.

62. Niemuth ND, Estey ME, Fields SP, Wangler B, Bishop AA, Moore PJ, et al. Developing spatial models

to guide conservation of grassland birds in the U.S. Northern Great Plains. Condor. 2017; 119: 506–

525.

63. Sharp R, Tallis HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, et al. InVEST 3.1.1 User’s

Guide; 2014. The Natural Capital Project, Stanford University, Palo Alto, California.

64. White CA. A history of the rectangular survey system. Washington: U.S. Department of the Interior,

Bureau of Land Management; 1983.

65. Hohman WL, Halloum DJ. A comprehensive review of farm bill contributions to wildlife conservation

1985–2000. Technical Report USDA/NRCS/WHMI-2000: US Department of Agriculture; 2000.

66. Haufler JB. Fish and wildlife benefits of farm bill conservation programs: 2000–2005 update. Tech Rev

05–2: The Wildlife Society; 2005. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_

013260.pdf. Cited 9 April 2018.

67. Veech JA. A comparison of landscape occupied by increasing and decreasing populations of grassland

birds. Conserv. Biol. 2006; 20: 1422–1432. https://doi.org/10.1111/j.1523-1739.2006.00487.x PMID:

17002760

68. United States Fish and Wildlife Service (USFWS). Birds of conservation concern. Arlington: United

States Department of Interior, Fish and Wildlife Service, Division of Migratory Bird Management; 2008.

https://www.fws.gov/migratorybirds/pdf/grants/BirdsofConservationConcern2008. Cited 9 April 2018.

Modeling grassland-bird habitat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198382 January 9, 2019 17 / 17

https://doi.org/10.1007/s00267-001-0065-4
http://www.ncbi.nlm.nih.gov/pubmed/11992171
http://www.R-project.org
http://www.we-energies.com/environmental/windenergy.pdf
http://www.we-energies.com/environmental/windenergy.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_013260.pdf
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_013260.pdf
https://doi.org/10.1111/j.1523-1739.2006.00487.x
http://www.ncbi.nlm.nih.gov/pubmed/17002760
https://www.fws.gov/migratorybirds/pdf/grants/BirdsofConservationConcern2008
https://doi.org/10.1371/journal.pone.0198382

