Using the MRSea Package

Statistical Modelling of bird and cetacean distributions in
offshore renewables development areas

November 7, 2013

Lindesay Scott-Hayward
Cornelia Oedekoven
Monique Mackenzie

Eric Rexstad

This review constitutes work carried out at the Centre for Research into
Ecological and Environmental Modelling (CREEM) at the University of
St. Andrews, performed under contract for Marine Scotland (SB9
(CR/2012/05)).

Contents

1 Introduction 5
2 Worked Example with Distance Sampling 6
2.1 Introduction 6
2.2 Two-Stage Modelling of Distance Sampling Data 6
2.2.1 A brief introduction 6

2.3 Preparing to conduct an analysis with MRSea 7
2.4 Data Requirements 8
2.4.1 Data requirements: columns 8

2.4.2 Data Requirements: rows 9

2.5 Distance Analysiso 11
2.5.1 Fitting detection functions 11

252 Model Selection 12

253 Goodnessof fit 13

2.5.4 Adjusting counts for imperfect detection 15

2.5.5 Creating Count Data from Distance Data 15

2.6 Introduction to Spatial Modelling 15
2.7 Loadingthe Data 16
2.7.1 Exploratory Data Analysis (EDA) 16

2.7.2 Checking for Collinearity 19

2.8 Fittinga Model 20

CONTENTS CONTENTS

2.8.1 Fitting a Smooth Term 20
2.8.2 Checking for Correlation 21
2.8.3 Model Selection oL 25
2.8.4 Checking p-values 33
2.8.5 Assessing covariate relationships 35

2.9 Diagnostics 37
2.9.1 Cumulative Residuals and runs profiles 40
2.9.2 COVRATIO and PRESS statistics 42
293 RawResiduals 0oL 45

2.10 Prediction and Inference 46
2.10.1 Data requirements for predicting 46
2.10.2 Making predictions 47
2.10.3 Visualising the redistribution using predictions 48

2.11 Bootstrap Confidence Intervals 49
2.11.1 Visualising Bootstrap Confidence Intervals 50

2.12 lIdentifying Differenceso 51
2.12.1 Visualising differences 52

2.13 Comparison to the Truth 54
2.13.1 Detection function. 54
2.13.2 Overdispersion and correlation 54
2133 Typeofimpact, 55

3 Worked Example without Distance Sampling 56
3.1 Introduction 56
3.2 Preparing to conduct an analysis with MRSea 57
3.3 LoadingtheData 57
3.3.1 Data Requirements, 57
3.3.2 Exploratory Data Analysis (EDA) 58
3.3.3 Checking for Collinearity 61

University of St. Andrews 2 October 2013

CONTENTS CONTENTS

3.4

3.5

3.6

3.7

3.8

3.9

4 Tips
4.1

4.2

Fittinga Model 62
3.4.1 Fitting a Smooth Term 62
3.4.2 Checking for Correlation 63
343 Model Selection oL 66
3.4.4 Checking p-values 72
3.4.5 Assessing covariate relationships 75
Diagnostics 78
3.5.1 Cumulative Residuals and runs profiles 80
3.5.2 COVRATIO and PRESS statistics 83
353 RawResiduals o0 85
Prediction and Inference L. 87
3.6.1 Data requirements for predicting 87
3.6.2 Making predictions 88
3.6.3 Visualising the redistribution using predictions 88
Bootstrap confidence intervals 90
3.7.1 Visualising bootstrap confidence intervals 92
Identifying differences oL 93
3.8.1 Visualising significant differences 94
Comparison to the Truth 94
3.9.1 Overdispersion and correlation 95
392 Typeofimpact 95

and Tricks for analyses in R related to the MRSea Package 97

Distance Tips and Tricks, 97
4.1.1 Analysing binned distancedata 97
4.1.2 Plotting side by side detection function plots for different
factor covariate levels 97
Spatial Modelling Tips and Tricks 98
421 General 98

University of St. Andrews 3 October 2013

CONTENTS CONTENTS

422 SALSA 99
4.2.3 SALSA1D with more than one smooth covariate. 102
107

424 Bootstrapping

University of St. Andrews 4 October 2013

Chapter 1

Introduction

The MRSea package was developed for analysing data that was collected for
assessing potential impacts of renewable developments on marine wildlife, al-
though the methods are applicable to other studies as well. This user guide
consists of three sections following this introduction.

We present two worked examples of which one is segmented line transect
data (offshore scenario, Chapter 2) and one is grid count data (nearshore sce-
nario, Chapter 3). Both examples are simulated data based on actual studies.
The type of impact artificially imposed for these data sets was a redistribution
of animals within the study area and the data are included in the package. The
package also includes additional datasets simulated under no impact and overall
decrease scenarios. All the coding necessary to reproduce the worked examples
is given in the respective sections.

Following these examples, Chapter 4 provides extra tips and tricks for coding
in R that might be useful in case the user needs to adjust the code for their
OWN purposes.

A full description of each of the functions within the MRSea package can be
found in the reference manual at: http://creem2.st-and.ac.uk/software.aspx.
The manual and this document use version 0.1.1 of MRSea.

Please reference this document as:

Scott-Hayward, L.A.S., Oedekoven, C.S., Mackenzie, M.L. and Rexstad E.
(2013). User Guide for the MRSea Package: Statistical Modelling of bird and

cetacean distributions in offshore renewables development areas. University of
St. Andrews contract for Marine Scotland; SB9 (CR/2012/05).

http://creem2.st-and.ac.uk/software.aspx

Chapter 2

Worked Example with Distance
Sampling

2.1 Introduction

This chapter takes you through the process of fitting a detection function model
to distance sampling data (section 2.5) and then fitting spatial models using the
CReSS method in a GEE framework with SALSA for model selection (section
2.8). Section 2.10 uses the fitted count model to make predictions across the
entire study area - including those areas not surveyed - which we use to draw
inference from our study. We use simulated segmented line transect data as our
case study. The type of impact was a redistribution of animals within the study
area.

2.2 Two-Stage Modelling of Distance Sampling Data

2.2.1 A brief introduction

For distance sampling data, we recognise that the number of observed animals
along transect lines is a result of two underlying processes:

1. Observation process: not all animals in the covered area are detected
2. Distribution of animals
These two processes are modelled in two stages. In a first stage we fit a detec-

tion function to the observed perpendicular distances from the transect to the
detection. This detection function enables us to estimate the average detection

2.3. PREPARATION CHAPTER 2. DISTANCE DATA EXAMPLE

probability in the covered area used to adjust observed counts for imperfect
detection. We describe how to use the code from this package to fit detection
functions in section 2.5.1, how to select between contending models in section
2.5.2 and to assess models in section 2.5.3.

These adjusted counts are then modelled in a second stage count model us-
ing covariates that relate to how animals distribute themselves in the study area.

Interest generally lies in the count model, while the detection function model
involves nuisance parameters that need to be taken into account by estimating
the average detection probability in the covered area in a first stage detection
model.

We do this for two main reasons:

e The observed counts need to be adjusted for imperfect detection

e To estimate the uncertainty associated with the observation process

The latter requires non-parametric bootstrapping for propagation of uncertainty
from the first-state detection model into count model. Non-parametric boot-
strapping for distance sampling data is explained in section 2.11.

2.3 Preparing to conduct an analysis with MRSea

Before we start, we load the MRSea package and its dependencies. This may
require installing the following packages if they are not already installed on your
computer:

e mrds, lawstat, car, mvtnorm, splines, geepack, ggplot2, calibrate, Matrix
and fields.

After installing these packages, the following command will load package MRSea
and these packages into the active workspace.

require()

To find what data sets are available for testing use the following command:

University of St. Andrews 7 October 2013

2.4. DATA REQUIREMENTS CHAPTER 2. DISTANCE DATA EXAMPLE

data(package=

Data sets in package MRSea:

dis.data.de
dis.data.no
dis.data.re
knotgrid.ns
knotgrid.off
ns.data.de
ns.data.no
ns.data.re
ns.predict.data.de
ns.predict.data.no
ns.predict.data.re
predict.data.de
predict.data.no
predict.data.re

Line transect data
Line transect data
Line transect data
Knot grid data for
Knot grid data for

with decrease post-impact

with no post-impact consequence
with redistribution post-impact
nearshore example

offshore example

Nearshore data with decrease post-impact

Nearshore data with no effect of impact

Nearshore data with redistribution post-impact

Prediction grid data for nearshore post-impact decrease
Prediction grid data for nearshore no post-impact consequence
Prediction grid data for nearshore post-impact redistribution
Prediction grid data for post-impact decrease

Prediction grid data for no post-impact consequence
Prediction grid data for post-impact redistribution

2.4 Data Requirements

Distance sampling data generally contains three types of information on the
observed animals. Our example consists of segmented line transect data, i.e.
line transect data where the lines were divided into segments. The three types
of information on the observed animals are:

e Observed perpendicular distances for each detection
e Total number of detections for each segment

e Cluster size for each detection

We begin with a data frame that contains all the information necessary. Columns
can be divided into three levels, the observation, segment and transect level.

2.4.1 Data requirements: columns

Observation level

e object Object number, no repeats allowed

University of St. Andrews 8 October 2013

2.4. DATA REQUIREMENTS CHAPTER 2. DISTANCE DATA EXAMPLE

e distance Perpendicular distance in metres (for this example) for line tran-
sects, required if distances were recorded as exact

e Optional covariates for detection function modelling

Segment level

segment.id Segment ids, no repeats of the same segment ids for different
transects or different visits to the same segments allowed

segment.label Segment label

length Length of segment in km

Optional covariates for detection function and count modelling

Transect level

e transect.id Transect id

e Optional covariates for detection function and count modelling

2.4.2 Data Requirements: rows

e One record for each detection

e One record for each visit to a segment in case no detections were made

We note that information entered at the respective levels is assumed to be
the same for each entry for the respective object, segment.id or transect.id.
Information entered at the observation level may vary. Information entered at
the segment level needs to be the same for all records with the same segment.id.
Information entered at the transect level needs to be the same for all records
with the same transect.id.

To illustrate we load the data.

University of St. Andrews 9 October 2013

2.4. DATA REQUIREMENTS CHAPTER 2. DISTANCE DATA EXAMPLE

Loading the data
data()
head(dis.data.re)

transect.id transect.label season impact segment.id

1 1 1 1 0 1

2 1 1 1 0 2

3 1 1 1 0 3

4 1 1 1 0 4

5 1 1 1 0 5

6 1 1 1 0 6
segment.label length x.pos y.pos depth object distance

1 1-1 0.306 656250 6043750 -27.359 NA NA

2 1-2 0.500 656250 6044250 -27.561 NA NA

3 1-3 0.500 656250 6044750 -28.608 NA NA

4 1-4 0.500 656250 6045250 -27.999 NA NA

5 1-5 0.500 656250 6045750 -27.519 NA NA

6 1-6 0.500 656250 6046250 -27.223 NA NA

We note that the first six records, contain the information for six different
segment.ids where no detections were made. Hence, we have one record for
each visit to a segment and NA's in the columns pertaining to the observation
level.

dis.data.re[214:218,]
transect.id transect.label season impact segment.id

214 6 6 1 0 183

215 6 6 1 0 183

216 6 6 1 0 183

217 6 6 1 0 184

218 6 6 1 0 185
segment.label length x.pos y.pos depth object distance

214 6-22 0.5 666250 6046250 -11.302 41 74.13493

215 6-22 0.5 666250 6046250 -11.302 42 154.87536

216 6-22 0.5 666250 6046250 -11.302 43 192.34939

217 6-23 0.5 666250 6046750 -9.283 NA NA

218 6-24 0.5 666250 6047250 -6.870 NA NA

From these records we can see that for segment.id 183, three detections were
made, hence we have three records, one for each detection.

University of St. Andrews 10 October 2013

2.5. DISTANCE ANALYSIS CHAPTER 2. DISTANCE DATA EXAMPLE

2.5 Distance Analysis

2.5.1 Fitting detection functions

We begin by fitting a half-normal detection function to our datal. We will
consider other models and compare the relative fit of these models using AIC.

Fitting a half-normal detection function
width refers to the segment width
result <- ddf(dsmodel="mcds (key= , formula="1),
data = dis.data.re, method="ds", meta.data=list(width=250))

The ddf function
A summary of the object created by ddf can be obtained using:

summary(result)

Summary for ds object

Number of observations : 2373
Distance range : 0 - 260
AIC : 25446.68

Detection function:
Half-normal key function

Detection function parameters
Scale Coefficients:

estimate se
(Intercept) 4.754715 0.02068034

Estimate SE Ccv

Average p 0.5639511 0.009623902 0.01706513
N in covered region 4207.8115128 91.704527557 0.02179388

Conclusion

We conclude that the average detection probability in the covered region was
0.56 with a coefficient of variation of 1.7%.

We can also use the ddf object for plotting our detection function with a his-
togram of the detections.

'The ddf function is from the mrds package. See the reference material for the mrds
package for more details on distance sampling with R

University of St. Andrews 11 October 2013

2.5. DISTANCE ANALYSIS CHAPTER 2. DISTANCE DATA EXAMPLE

plot(result,showpoints=F,breaks=seq(0,250,10),

main=)
ny
2 o N
2 ° T
.
5 3 - NS
g 3 AR
g 5] T
o 2 T T T T T
0 50 100 150 200 250
Distance

Figure 2.1: Half-normal detection function

2.5.2 Model Selection

More detection models can be fitted to determine if any of these provide a
better relative fit to the data.

Using a hazard-rate detection function
result.hr <- ddf (dsmodel="mcds (key= , formula=~1),
data = dis.data.re, method="ds", meta.data=1list(width=250))
Using a half-normal function with <mpact as a covariate
result.imp <- ddf (dsmodel="mcds (key= , formula="1+impact),
data = dis.data.re, method="ds", meta.data=1list(width=250))

The ddf function

Changing the key function from half-normal to hazard-rate is done using the
argument key.
Adding covariates to the model is done by altering the argument formula.

Using minimum AIC for model selection
The AIC value for each detection model can be printed using the summary
function. These may also be extracted from the ddf object in this manner:

Half-normal model
result$criterion
[1] 25446.68

Hazard-rate model
result.hr$criterion
[1] 25454.93

University of St. Andrews 12 October 2013

2.5. DISTANCE ANALYSIS CHAPTER 2. DISTANCE DATA EXAMPLE

Half-normal model with <mpact as a covariate
result.imp$criterion
[1] 25448.21

Conclusion

The half-normal model has the lowest AIC. Results are slightly ambiguous as
the difference in AIC is less than 2 when compared to the impact-model.

2.5.3 Goodness of fit

There are several goodness of fit tests for detection function models included in
the mrds package. We show how to use them in this section.

The \? - Test

A chi-square test is performed by the ddf.gof function. The object this function
returns contains various results that can be extracted individually:

fit.test <- ddf.gof (result)

Chi-square statistic, p-value and degrees of freedom
fit.test$chisquare$chil$chisq

[1] 41.64964

fit.test$chisquare$chil$p

[1] 0.6931487

fit.test$chisquare$chil$df

[1] 47

Conclusion

The large p-value provides no evidence against the null hypothesis that the
model fits the data.

QQ-plot

We may wish to assess the model fit using a QQ-plot. This plot allows identifying
potential problems related to our distance data such as rounding of distances
or overdispersed distance data.

The qqplot.ddf function

This function plots the observed distribution of the distance data vs. the fitted
distribution of the distance data.
In addition, it performs the Kolmogorov-Smirnov and Cramér-von Mises tests.

University of St. Andrews 13 October 2013

2.5. DISTANCE ANALYSIS CHAPTER 2. DISTANCE DATA EXAMPLE

qq.result <- qgplot.ddf(result)

Fitted cdf

Empirical cdf

Figure 2.2: QQ plot for half-normal detection function fitted to our data

Conclusion

The points lie on the diagonal line, we conclude that the fit of our half-normal
model is adequate.

K-S and C-v-M tests
The Kolmogorov-Smirnov and Cramér-von Mises test results are extracted using:

Kolmogorov-Smirnov statistic and p-value
qq.resultksDn

(1] 0.01503729

qq.resultksp

[1] 0.6566394

Cramér-von Mises statistic and p-value
qq.resultCvMw

[1] 0.07091705

qq.resultCvMp

[1] 0.7459479

Conclusion

Both p-values are large, hence we conclude that our model fits the data.

University of St. Andrews 14 October 2013

2.6. SPATIAL MODELLING CHAPTER 2. DISTANCE DATA EXAMPLE

2.5.4 Adjusting counts for imperfect detection

We use the create. NHAT function to add two new columns to our distance
data: NHAT and area. NHAT is the estimated number of animals (as opposed
to the observed number of animals) for each detection and area is the size of
the covered area for the respective segment.id.

dis.data <- create.NHAT(dis.data,result)

The create.NHAT function

We inflate our number of detected animals by dividing the size of each detection
by its probability of being detected which was estimated by the ddf function.

We also calculate the covered area in km? for each segment.id by multiplying the
length of the segment by twice the truncation distance(for two-sided transects).

2.5.5 Creating Count Data from Distance Data

We create a new data frame in which we sum the NHATs for each segment.id
and discard the columns from the observation layer because the observations
themselves are not modelled with the count modelling to follow.

count.data <- create.count.data(dis.data)

The create.count.data function

We aggregate the data by segment.id. This reduces the number of records in
the count data to one for each visit to a segment.

2.6 Introduction to Spatial Modelling

Introduction

Aim

Produce a density surface map along with estimates of uncertainty and identify
significant effects of an event (e.g. offshore renewable installation)

The following sections detail the following:

1. model fitting

University of St. Andrews 15 October 2013

2.7. LOADING THE DATA CHAPTER 2. DISTANCE DATA EXAMPLE

2. checking diagnostics

3. making predictions and inference

Note: This example assumes that any distance sampling analysis has taken
place and we begin with the adjusted counts in each segment.

2.7 Loading the Data

Loading the Data

Either continue from the previous section with count .data or, load count.data
if it was saved.

Requirements:

The coordinates must be labelled x.pos and y.pos, there must be a column
for segment area labelled area and the estimated counts from the detection
process must be labelled NHAT. Both are manufactured by create.NHAT.

make effort column segment length * 0.5 (width of
transect) - twice truncation distance
attach(count.data)

head(count.data)

transect.id transect.label season impact segment.id

1 1 1 1 0 1
2 1 1 1 0 2
3 1 1 1 0 3
4 1 1 1 0 4
5 1 1 1 0 5
6 1 1 1 0 6

segment.label length x.pos y.pos depth area NHAT

1 1-1 0.306 656250 6043750 -27.36 0.153 0
2 1-2 0.500 656250 6044250 -27.56 0.250 0
3 1-3 0.500 656250 6044750 -28.61 0.250 0
4 1-4 0.500 656250 6045250 -28.00 0.250 0
5 1-5 0.500 656250 6045750 -27.52 0.250 0
6 1-6 0.500 656250 6046250 -27.22 0.250 0

2.7.1 Exploratory Data Analysis (EDA)

Assess the data inputs for the modelling process.

University of St. Andrews 16 October 2013

2.7. LOADING THE DATA

CHAPTER 2. DISTANCE DATA EXAMPLE

e Check estimates from distance sampling process

e Check for unusual covariate values

counts)

6055000
L

8045000
L

8035000

660000

670000 620000 690000 700000

60585000

6045000

6035000

Identify possible relationships between covariates and the response (animal

| | | ‘ |I HH 10
| |
|||)
|
T T T T T

660000

680000

700000

Figure 2.3: Estimated bird counts before (left) and after (right) an impact event. Each cell
is 0.5 km? and the colour represents mean animal counts across four seasons.

Assessing the relationships of available covariates and our response (animal
counts).

EDA

30 40 50 60 70
L I

Estimated Counts

10

Figure 2.4: Plot of depth against the estimated bird counts.

e Birds were seen predominantly in shallow waters (Figure 2.4).

e Few birds were seen in waters deeper than 15m.

University of St. Andrews

17

October 2013

2.7. LOADING THE DATA CHAPTER 2. DISTANCE DATA EXAMPLE

70

60

40

Estimated Counts
30

20

10

Season

Figure 2.5: Plot of Season against the estimated bird counts.

70

Estimated Counts
30 40 50 60

20

10

Impact
Figure 2.6: Plot of Impact against the estimated bird counts. Zero is pre impact and one is
post impact.
e Non-linear relationship between depth and bird counts.

e Difficult to identify any relationship between season/impact and bird
counts due to the large number of zeros in the data (Figures 2.5 & 2.6).

University of St. Andrews 18 October 2013

2.7. LOADING THE DATA CHAPTER 2. DISTANCE DATA EXAMPLE

2.7.2 Checking for Collinearity

Variance Inflation Factors (VIFs)

These are used to assess collinearity between covariates and to tell us by how
much the standard error is inflated by the other variables in the model (

,)-

e Generalised VIFs (GVIFs) are calculated, because the covariates have more
than one degree of freedom, and adjusted (GVIF,q; = GVIF/2+DFY for
the number of degrees of freedom.

e GVIF,g4; gives us the decrease in precision of estimation due to collinearity

(equivalent to VVIF).

e For example, a GVIF,4; of 2 means that the confidence intervals are twice
as wide as they would be for uncorrelated predictors.

Checking for Collinearity

fullModel.linear <- glm(NHAT ~ as.factor(season) + as.factor(impact) +
depth + x.pos + y.pos, family = poisson, data =count.data)
vif (fullModel.linear)

GVIF Df GVIF~(1/(2%Df))

as.factor(season) 1.000 3 1.000
as.factor(impact) 1.000 1 1.000
depth 4.745 1 2.178
X.pos 1.494 1 1.222
y.pos 5.309 1 2.304

[1] "Maximum VIF is: 2.3"

Conclusion:

The large values for depth and y.pos suggests the confidence intervals are
twice as wide as they should be for these covariates. One could be removed,
however, y.pos will not enter our model linearly. Suggest check again when
spatial smooth fitted

Checking factor covariates

Each level of a factor-based covariate must have some non-zero entries for
the response variable, otherwise there will be problems in the model fitting
process

University of St. Andrews 19 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

check all factor levels have counts
checkfactorlevelcounts(factorlist=c(s), count.data,
count .data$NHAT)

[1] "season will be fitted as a factor variable; there are non-zero counts
for all levels"
[1] "impact will be fitted as a factor variable; there are non-zero counts
for all levels"

Conclusion: season and impact are fine for use in the model.

2.8 Fitting a Model

Here we are going to fit a GEE-CReSS model with SALSA for knot selection.
Recap:

Generalised Estimating Equations (GEE)

Framework to allow for correlated errors. For more details see
(2002).

Complex Region Spatial Smoother (CReSS)

Flexible spatial smoothing method. For more details see
(2013).

Spatially Adaptive Local Smoothing Algorithm (SALSA)

Automated knot selection procedure for both one-dimensional (e.g. depth) and
two-dimensional (e.g. spatial) covariates. The knots are sources of flexibility
in the surface that can raise or lower the surface. For more details see

(2010).

2.8.1 Fitting a Smooth Term
A smooth of depth

Construct an object (splineParams) that contains the information required
by SALSA for adaptive knot placement.

e Each covariate considered smooth is a list entry in splineParams and
identified in varlist

University of St. Andrews 20 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

e Other inputs include the data and, optionally, a grid of prediction data.

e The output list contains the covariate name, data, initial knot location
(one knot at the mean), the boundary knots (greatest range of the pre-
diction data and count.data) and the degree of the smooth.

e Note: The smooth one dimensional covariates appear in the splineParams
object starting at slot [[2]]. Slot [[1]] is reserved for the spatial term.

load prediction data
data(predict.data.re)

re-named for easier writing
predictData<-predict.data.re

make splineParams object

splineParams<-makesplineParams (data=count.data, varlist=c(),
predictionData=predictData)
str(splineParams)
List of 2
$: list()
$:List of 5
..$ covar : chr "depth"
..$ explanatory: num [1:9232] -27.4 -27.6 -28.6 -28 -27.5 ...
..$ knots : num -12.4
..$ bd : num [1:2] -28.6 -0.2
..$ degree : num 2

2.8.2 Checking for Correlation

fullModel <- glm(NHAT ~ as.factor(season) + as.factor(impact) +
bs(depth, knots = splineParams[[2]]$knots) + x.pos + y.pos, family =
quasipoisson, data = count.data)

We fit a model containing all covariates of interest (fullModel above) and
carry out some runs tests to check for correlated residuals (model assumes
uncorrelated residuals).

Runs Test

This is a test for randomness and allows us to determine if we have correlation
in our model residuals. We will see a large p-value (Hp: uncorrelated residuals)
and good mixing of the profile plot if there is no correlation.

The runs.test function is in the lawstat library.

University of St. Andrews 21 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

runs.test(residuals(fullModel, type =),
alternative = c()

Runs Test - Two sided

data: residuals(fullModel, type = "pearson")
Standardized Runs Statistic = -67.28, p-value <
2.2e-16

e The small p-value (p << 0.05) indicates that there is an issue with cor-
relation in the residuals

e The test statistic is negative, which indicates that there are fewer runs
of residuals than would be expected if there were un-correlated residuals.
We have positive correlation.

e This result is also shown on the runs profile plot (Figure 2.7).

Plotting runs profile
plotRunsProfile(fullModel, varlist = c())

[1] "Calculating runs test and plotting profile"

e Runs test and plots show an issue with correlated residuals

e We have positive correlation in the residuals no matter how they are
ordered.

e Conclusion:

— We have correlation that must be accounted for

Choosing a blocking structure to model correlation.

e Correlation within blocks should decline to approximately zero
e Between blocks residuals should be uncorrelated

e Blocks are usually determined by the sampling design

University of St. Andrews 22 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

Runs Profile, p=<0.0001 Runs Profile, p=< 0.0001

Sign of Pearsons residuals
00
Sign of Pearsons residuals

T T T T T T T T T T T T
-30 25 20 5 -10 5 0 0 2 4 6 8
depth Predicted
Significant positive correlation; p-value= < 0.0001 Significant positive correlation; p-value= < 0.0001

(a) (b)

Runs Profile, p=< 0.0001

T
0

T T T T T
2000 4000 6000 8000 10000

Sign of Pearsons residuals
o

05
I

-1.0

Index
Significant positive correlation; p-value= < 0.0001

(c)

Figure 2.7: Runs profiles for residuals ordered by (a) depth, (b) predicted value and (c)
temporally (by observation index). The p-values and text presented on each plot indicate if
there is correlation present in the residuals. The lines are the strings of sequences of positive
and negative residuals. A vertical line is the switch between a positive and negative run (or
vice versa).

e Here we use the unique transect identifier: Each transect is independent
but residuals may be correlated within a transect.

e There are 26 transects repeated 8 times (4 seasons before and 4 after the
impact event) giving us 208 blocks.

Autocorrelation function plot

We can check the correlation declines within our blocks by plotting the
autocorrelation of the model residuals by block (Figure 2.8). First make a
column in the data (if it does not already exist) that represents the blocking
structure.

University of St. Andrews 23 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

count.data$blockid <- paste(data$transect.id, data$season, data$impact,
sep = "")
runACF (count .data$blockid, fullModel, store = F)

Some blocks have little correlation, whilst others have high correlation
(0.25) at a lag of 10 (10 segments, therefore at a distance of 5km).

Correlation in all blocks declines to approximately zero, which we want to
see if our blocking is appropriate

If the correlation in all blocks declined very quickly to zero (after one lag)
we need not model the correlation

Conclusion: Our blocking structure is suitable

1.0

05
I

Auto correlation

-0.5

-1.0

0 10 20 30 40 50
Lag

Figure 2.8: Plot of the correlation in residuals for each block (grey lines). The mean correlation
at each lag is indicated in red.

University of St. Andrews 24 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

2.8.3 Model Selection

Select what one-dimensional covariates to include in the model and use SALSA
to determine the knot locations of those that are continuous: depth.

We can use cumulative residual plots to check for appropriately modelled
covariates.

e Cumulative residuals are sequentially summed raw residuals on the scale
of the response.

e These plots show systematic over- or under- prediction.

e We expect to see good mixing (lots of peaks and troughs) and deviation
from this may indicate the covariate is not modelled appropriately.

e Figure 2.9 shows cumulative residual plots from a model with depth mod-
elled as a linear term and with one knot at the mean.

Plotting Cumulative Residuals

plotting cumulative residuals for the model with depth as a smooth term
plotCumRes (fullModel, varlist= c(), splineParams)

"Calculating cumulative residuals"

Cumulative Residuals Cumulative Residuals

800
L
100
L

600
L
50
L

Response residuals

-100
L

-200
L

T T T T T T T T T T T T
25 20 5 -10 5 0 25 20 15 -10 5 0
depth depth

(a) (b)

Figure 2.9: Cumulative residual plots residuals ordered by depth. (a) depth modelled as a
linear term and (b) depth modelled with one knot at the mean depth. The blue points are
the residual values, the black line represents the cumulative residuals. The grey line in the
background is what we would expect the cumulative residuals to be if depth was modelled
correctly.

University of St. Andrews 25 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

Cumulative Residuals

e Depth as a linear term is not appropriate (Figure 2.9a).

e The black line (our model) does not correspond well with the expected
line (grey) and shows systematic over prediction at deeper depths and
under prediction in shallower waters.

e Depth as a smooth term with one knot at the mean is much better but
there is still some evidence of systematic over/under prediction (Figure
2.9b).

e Conclusion:

— we might want to consider more flexibility for depth by using SALSA.

Setting up the model for SALSA

e There must be a column called response in the data, which is the re-
sponse variable used in the initial model to be fitted.

e The argument salsaldlist contains parameters for the runSALSA1D
function.

— fitnessMeasure. The criterion for selecting the ‘best’ model. Avail-
able options: AIC, AIC,, BIC, QIC,.

— minKnots_1d. Minimum number of knots to be tried.

— maxKnots_1d. Maximum number of knots to be tried.

— startKnots_1d. Starting number of knots (spaced at quantiles of
the data).

— degree. The degree of the B-spline. Does not need to be specified
if splineParams is a parameter in runSALSA1D.

— maxIterations. The exchange/improve steps will terminate after
maxIterations if still running.

— gaps. The minimum gap between knots (in unit of measurement of
explanatory).

e The initial model contains all the factor level covariates and any covariates
of interest that are not specified in the varlist argument of runSALSA1D.

University of St. Andrews 26 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

info for SALSA
data$response <- data$NHAT

set initial model without the spline terms
initialModel <- glm(response ~ as.factor(season) + as.factor(impact) +
offset(log(area)), family = , data = count.data)

salsaldlist <- list(fitnessMeasure = , minKnots_1d = 2,
maxKnots_1d = 20, startKnots_1d = 2, degree = 2,
maxIterations = 10, gaps = c(1))

run SALSA
salsaldOutput <- runSALSA1D(initialModel, salsaldlist, varlist=c(),
factorlist=c(s), predictData, splineParams=splineParams)

The structure of the output:

e bestModel. The model object for the best fitted model.

e modelFitsi1D. Each slot in the list shows the term fitted, the fit statistic
resulting from that term, the knots used and finally the overall formula. If
varlist is more than one covariate, this output shows how each covariate
was retained and what knots were finalised.

e splineParams. The spline parameter object is updated with the new
knot numbers and locations of the covariates from varlist.

e fitStat. The fit statistic of the best model.

str(salsaldOutput, max.level = 1)

List of 4
$ bestModel :List of 30
..— attr(x, "class")= chr [1:2] "glm" "lm"
$ modelFits1D :List of 2
$ splineParams:List of 2
$ fitStat : num 8464

knots chosen for depth
salsaldOutput$splineParams[[2]]$knots

[1] -17.184 -7.457

e Initial model - one knot at the mean depth (-12.4m)

University of St. Andrews 27 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

e SALSA result - two knots placed either side of the mean value (see output
above)

e The result of SALSA is additional flexibility in the relationship between
bird counts and depth.

Spatial component
e Next we add a two dimensional CReSS smooth of geographic coordinates
(s(x.pos, y.pos)) and an interaction between this term and impact.

e SALSA is used to determine spatially adaptive knot locations for this
smooth term.

SALSA 2D requirements

e A grid of knot locations
e Matrix of knot to knot distances

e Matrix of data to knot distances

e Vector of range parameters for CReSS (determines the range of effec-
tiveness of each knot basis). See (:) for more
details.

Minimum, maximum and starting number of knots

The next section assumes that the knot grid has been defined. See section
4.2.2 for guidance to do this.

Spatial component

load knotgrid (regular grid containing NA’s for invalid knot
locations (e.g. on land or outside study region))
data(knotgrid.off)

knotgrid <- knotgrid.off

Figure 2.10 shows the locations of the data points and the locations of the
knot points in knotgrid. The transects in this data are spaced 2km apart. If
knots were chosen at the same y-location on adjacent transects there are no
data between them for support. Therefore, we use a gap parameter of 4000m
(x.pos and y.pos are in meters) to prevent adjacent knots.

University of St. Andrews 28 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

0000 6055000 GOBO0O0

605!

y.pos

6040000 6045000

6035000
L

T
660000 670000 680000 690000 700000

xpos

Figure 2.10: Data and knot locations. The data is in grey and the knot locations in red.
Units are in meters.

The distance matrices give the distance between the data and the knots in
one matrix and the second matrix is the knot to knot distances. The function
makeDists calculates Euclidean distance. The runSALSA2D function may also
take geodesic distance matrices (as the fish swims rather than as the crow flies).
See () for more details on using geodesic distances
and CReSS.

make distance matrices for datatoknots and knottoknots

distMats <- makeDists(cbind(count.data$x.pos, count.data$y.pos),
na.omit (knotgrid))

str(distMats)

List of 2
$ dataDist: num [1:9232, 1:290] 14820 15129 15448 15776 16113 ...
$ knotDist: num [1:290, 1:290] O 2000 4000 6000 8000 10000 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:290] "7" "g" "g" "{1Q" ...
..$: chr [1:290] "7" n"g" "g" "1Q" ..

A sequence of range parameters is required for the CReSS smooth.

e The range parameter determines the influence of each SALSA chosen
knot.

e Small numbers are for a local influence and large ones a global influence.

e Once knot locations are selected (using the mid value in the range se-
quence), SALSA selects the appropriate range parameter (from the se-
quence created below) for each knot.

University of St. Andrews 29 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

e getRadiiChoices selects a number of radii (default = 8) based on the
distances in the data to knot distance matrix created above.

create sequence of radii
r_seq <- getRadiiChoices(numberofradii=8, distMats$dataDist)

Setting up the spatial SALSA components
e fitnessMeasure. The fitness measures available are the same as for
runSALSA1D.

e knotgrid. (k x 2) matrix of knot coordinates. Rows of NA's identify
illegal knot locations

e startKnots. Number of space-filled knots to start with (between min-
Knots and maxKnots)

e minKnots. Minimum number of knots to fit
e maxKnots. Maximum number of knots to fit
e r_seq. Sequence of range parameters for the CReSS basis.

e gap. Minimum gap between knots (in unit of measurement of x.pos and
y - pos)

e interactionTerm. Specifies which term in the model the spatial smooth
will interact with. If NULL no interaction term is fitted.

make parameter set for running salsa2d

salsa2dlist <- list(fitnessMeasure = , knotgrid = knotgrid,
startKnots = 6, minKnots = 4, maxKnots = 20, r_seq = r_seq,
gap = 4000, interactionTerm =)

The initial model is the best model from the one-dimensional SALSA results.

splineParams must be an object in workspace
update splineParams with the SALSA1D results
splineParams <- salsaldOutput$splineParams
salsa2d0Output_k6 <- runSALSA2D(salsaldOutput$bestModel, salsa2dlist,
d2k = distMats$dataDist, k2k = distMats$knotDist, splineParams = splineParams)

The structure of the output:

e bestModel. The model object for the best fitted model.

University of St. Andrews 30 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

e splineParams. The first list entry in the spline parameter object is
updated with all the information used for fitting the spatial smooth.

e fitStat. The fit statistic of the best model.

str(salsa2dOutput_k6, max.level=1)

List of 3
$ bestModel :List of 30
..— attr(x, "class")= chr [1:2] "glm" "1lm"
$ splineParams:List of 2
$ fitStat : num 5456

str(salsa2dOutput_k6$splineParams, max.level=2)

List of 2
$:List of 14
..$ knotDist : num [1:290, 1:290] 0 2000 4000 6000 8000 10000 12000 ...
.. ..— attr(*, "dimnames")=List of 2
..$ dist : num [1:9232, 1:290] 14820 15129 15448 15776 16113 ...
..$ gridResp : int [1:364] NA NA NA NA NA NA 668024 670024 672024 ...
..$ grid :’data.frame’: 364 obs. of 2 variables:
..— attr(*, "out.attrs")=List of 2
$ response : num [1:92321 0000000000 ...
$ knotgrid :’data.frame’: 364 obs. of 2 variables:
$ datacoords : num [1:9232, 1:2] 656250 656250 656250 656250 656250 ...
$ radii : num [1:8] 136 370 1010 2756 7518 ...
..$ minKnots : num 4
..$ maxKnots : num 20
$ gap : num 4000
$ knotPos : int [1:5] 348 24 91 192 295
$ radiusIndices: num [1:5] 8 3 1 3 2
..$ invInd :num [1:364] 0000001234 ...
$:List of 5
..$ covar : chr "depth"
..$ explanatory: num [1:9232] -27.4 -27.6 -28.6 -28 -27.5 ...
..$ knots : num [1:2] -17.18 -7.53
..$ bd : num [1:2] -28.6 -0.2
..$ degree : num 2

knotPos gives the index of chosen knot locations. The index identifies
which rows of the knot grid were selected by SALSA. For an explanation of the
other entries in the spatial part of the splineParams object refer to the help
file for runSALSA2D.

Multiple SALSA runs

University of St. Andrews 31 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

The example uses 6 initial knots. There is a risk that the SALSA algorithm
may get stuck in local minima or maxima and so we recommend that different
numbers of initial knots are considered. Here we try 6, 8, 10 and 12 (Table
3.2).

We use k-fold Cross-Validation (CV) as a method for selecting between models
with a variety of starting knots.

Example:

count.data$foldid <- getCVids(count.data, folds = 5, block =)

cvl <- getCV_CReSS(salsaldOutput$bestModel,
salsaldOutput$splineParams)

[1] 6.087

Choosing a model

Table 2.1: Table of CV scores for a variety of starting knot numbers for the spatial smooth.

Model type | Start knots | End knots | CV

1D terms only - - 6.0865
1D/2D terms 6 5 5.6508
1D/2D terms 8 8 5.8286
1D/2D terms 10 10 5.7556
1D/2D terms 12 11 5.7275

The best model chosen using CV score is the model that uses a spatial smooth
with 5 spatial knots.

having chosen the 2d interaction model, save the model object
baseModel <- salsa2d0Output_k6$bestModel

update spline parameter object
splineParams <- salsa2d0Output_k6$splineParams

Chosen Model - recheck for collinearity

vif (baseModel)

GVIF Df GVIF~(1/(2*Df))
as.factor(season) 1.000 3 1.000

University of St. Andrews 32 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

as.factor (impact) 2.016 1 1.420
s (depth) 5.078 4 1.225
s(x.pos, y.pos) 163.5 6 1.529
s(x.pos, y.pos):as.factor(impact) 96.45 6 1.4633

Maximum adjusted GVIF is less than 2.24 (1/5; a threshold often seen in the
literature) so we are happy there is no issue with collinearity.

2.8.4 Checking p-values
Re-assessing runs test for best model

e Our 'best’ model based on CV selection is the model with the interaction
term.

e We could also use p-value selection, though the model must be fitted as
a GEE to model the correlation.

We must account for the correlation in our residuals, which we found earlier
but should also check the current model.

runs.test (residuals(baseModel, type =))

Runs Test - Two sided
data: residuals(baseModel, type = "pearson")
Standardized Runs Statistic = -66.57, p-value <2.2e-16

GEE framework

There is significant positive correlation (p << 0.05 and test statistic is
negative) so we re-fit the model as a GEE.

Note: It is possible to do this at this stage as we are modelling correlation
using empirical standard errors and not a specific correlation structure.

The current model:

glm(formula = response ~ as.factor(season) + as.factor(impact) +
bs(depth, knots = splineParams[[2]]$knots, degree =
splineParams[[2]]$degree, Boundary.knots = splineParams[[2]]$bd) +
LocalRadialFunction(radiusIndices,dists,radii,aR) +
as.factor(impact) :LocalRadialFunction(radiusIndices,dists,radii,aR) +
offset(log(area)), family = quasipoisson, data = count.data)

University of St. Andrews 33 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

N.B. for the GEE formula, the data must be ordered by block (which this is)
and the blockid must be numeric

specify parameters for local radial:

radiusIndices <- splineParams[[1]]$radiusIndices

dists <- splineParams[[1]]$dist

radii <- splineParams[[1]]$radii

aR <- splineParams[[1]]$invInd[splineParams[[1]]$knotPos]

update model in workspace with parameters for spatial smooth (above)
baseModel <- update(baseModel, . ~ .)

The baseModel is updated with the parameters returned by SALSA2D using
the update function’. This makes sure that the baseModel object is made
using the parameters currently in the workspace.

Re-fit the chosen model as a GEE (based on SALSA knot placement) and

GEE p-values

geeModel <- geeglm(formula(baseModel), data = count.data, family = poisson,
id = blockid)

Note: The family specified for the GEE model is Poisson because the dispersion
parameter is automatically estimated using geeglm. Therefore, we need not
(and cannot) specify the quasi-Poisson family.

Checking p-values

table of p-values
specifying varlist and factorlist makes shorter variable names
getPvalues(geeModel, varlist = c(), factorlist = c(s

))

[1] "Getting marginal p-values"
Variable p-value
1 season <0.0001
2 impact 0.5376
3 depth <0.0001
4 s(x.pos, y.pos) <0.0001
5 s(x.pos, y.pos):impact 0.0006

Do we remove the main impact effect?

2The update function is part of the basic functionality in R and can be used to quickly
re-fit a model removing or adding covariates, changing the family or data set or in this case
refreshing the parameters used in LocalRadialFunction.

University of St. Andrews 34 October 2013

2.8.

FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

e Keep the main effect for impact because it is part of the interaction term
and is difficult to interpret.

e Fit a model without the interaction term to test for a significant in-
crease/decrease pre and post impact.

e If the interaction is significant but the impact term in a model without
the interaction is not significant then there has been a re-distribution of
animals but no overall change.

e This is the case for this model. p;;i0.05 for impact in a model with no
interaction term.

Below is an example of how to remove the interaction term using the update

function.

Removing the main impact effect

how to remove impact
noint.model<-update(geeModel, .~. - as.factor(impact):

LocalRadialFunction(radiusIndices, dists, radii, aR))

reshow p-values

getPvalues(noint.model, varlist = c(), factorlist = c(s
))
[1] "Getting marginal p-values"

D W N =

Variable p-value
season <0.0001

impact 0.5376

depth <0.0001

s(x.pos, y.pos) <0.0001

2.8.5 Assessing covariate relationships

Partial Residual Plots®

Th

ese plots allow visual examination the one-dimensional covariates in the model

(depth, season, impact) and to check that smooth/linear terms are specified
correctly.

3see ‘component-plus-residual’ plots in () for more details.

University of St. Andrews 35 October 2013

2.8. FITTING A MODEL CHAPTER 2. DISTANCE DATA EXAMPLE

The partial residuals, e;;, for predictor x; are formed by adding the fitted linear
component in this predictor to the least squares residuals*. The partial residuals
are then plotted against x;

runPartialPlots(geeModel, count.data, varlist = c(),
factorlist =c(s))

[1] "Making partial plots"

Assessing covariate relationships

05

Partial Fit
Partial Fit

-1.0

-15

as factor(season)2 as.fadtor(season)3 asfactor(season)4

season
(a)

Figure 2.11: Partial plots for (a) season and (b) depth.

Partial Plots
e Season: predictions for each of the three seasons (2, 3, 4) are, on average,
of fewer animals than for the baseline (season 1).

e GEE based confidence intervals show little difference between the three
levels and the baseline level

e Depth: a declining non-linear relationship with increased depth (fewer
birds in deeper waters).

e Most birds are estimated in waters 3-8m deep.

4
€ij = € + bjwij

University of St. Andrews 36 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

e Small confidence interval surrounding the predicted relationship of birds
with depth indicates a precisely estimated relationship.

Note: if the confidence intervals for depth were very wide it would be reasonable
to assume depth could be adequately modelled as a linear term.

2.9 Diagnostics

Diagnostics

We make multiple plots to assess the fit of our model:

e Observed vs Fitted

e Fitted vs residuals

e Cumulative residuals
e Runs sequence

e COVRATIO statistics
e PRESS statistics

e Raw residuals

Observed vs fitted Plot

Observed vs Fitted

Indication of fit to the data. All the values would be on the 45° line for a
perfectly fitting model.

The agreement between the input data and the model undergoing evaluation can
be quantified using numerical measures; Marginal R-squared and Concordance
Correlation.

These measures are an output on the observed vs fitted plot created using
the runDiagnostics function.

Marginal R-squared value

University of St. Andrews 37 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

It is widely used to assess models fitted to both uncorrelated and correlated
data and is approximately between 0 and 1. Values closer to 1 indicate better
fit to the data.

Concordance Correlation

It is guaranteed to return values between zero and one. Values closer to 1
indicate better fit to the data.

create observed vs fitted and fitted vs residual plots
runDiagnostics(geeModel)

[1] "Assessing predictive power"

Observed vs fitted

Concordence correlation: 0.2517
Marginal R-squared value: 0.1429

Fitted Values

T T

0 40
Observed Values

Figure 2.12: Diagnostic plots of observed vs fitted values, where the diagonal line indicates
where data should lie for a perfect fit.

Observed vs fitted

e High observed values are under-predicted (Figure 2.12) as is common for
very noisy data

e Observed zeros tend to be over-predicted (as is likely given they cannot
be under-predicted)

University of St. Andrews 38 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

e Marginal R-squared and concordance correlation are low

e Conclusion: poor model fit

Fitted values vs scaled Pearsons residuals Plot

The plot gives an indication of the correct mean-variance relationship as-
sumed under the model. We expect to see no pattern in the plot.

e For a Poisson model the size of residuals is expected to increase with
increasing fitted values

e For over-dispersed data the size of residuals increases at a faster rate than
the strict Poisson relationship

e To get a plot with an expectation of no pattern we use Pearsons residuals
to account for the former and scaled these by the dispersion parameter
(estimated by geeglm) for the latter

e Thus we plot Fitted values against scaled Pearsons residuals

Fitted values vs scaled Pearsons residuals

N
o
1

Scaled Pearsons Residuals
)
N

D e

o
e
J‘“
,?.

15 20

o

10
Fitted Values

Figure 2.13: Diagnostic plot of fitted values vs scaled Pearsons residuals, where the red line
is a locally weighted least squares regression to indicate pattern in the plot, which might
otherwise be hidden due to over-plotting.

University of St. Andrews 39 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

e Possible pattern in residuals but hard to tell due to over-plotting (Figure
2.13)

e Locally weighted least squares regression line does not indicate an unusual
pattern

e Conclusion: no issue with model assumption (mean-variance relationship)

2.9.1 Cumulative Residuals and runs profiles

Cumulative residuals and runs profiles
e Assessment of systematic over- or under- prediction using cumulative
residuals.

e Assessment of the correlated nature of residuals (how random they are)
given that the residuals are ordered by covariate value, predicted value or

temporally.
plotCumRes (geeModel, varlist=c(), splineParams=splineParams, d2k=dists)
plotRunsProfile(geeModel, varlist=c())

Cumulative Residuals Runs Profile, p=< 0.0001

10

50

0

0.0

Response residuals
Sign of Pearsons residuals

T T T T T T T T T T T T T

25 -20 -15 -10 -5 0 -30 25 -20 -15 -10 -5 0
depth

Significant positive correlation; p-value= < 0.0001

(a) (b)

Figure 2.14: Cumulative residual plot (a) and runs profile (b) for residuals ordered by depth.
The blue points are the residual values, the black line represents the cumulative residuals. The
grey line in the background is what we would expect the cumulative residuals to be if depth
was modelled correctly.

University of St. Andrews 40 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

Ordered by depth

e No systematic over or under prediction (Figure 2.14)

e Variable modelled appropriately (similar to expected (grey line) and better
than Figure 2.9)

e Fewer runs than would be expected if residuals were random (p < 0.05)

e Significant positive correlation between residuals when ordered by depth

Cumulative Residuals Runs Profile, p=< 0.0001

50
05

0.0

Response residuals
Sign of Pearsons residuals

05

-10

T T T T T T T T T T

0 5 10 15 20 0 5 10 15 20
Predicted Predicted

Significant positive correlation; p-value= < 0.0001

(a) (b)
Figure 2.15: Cumulative residual plot (a) and runs profile (b) for residuals ordered by the

predicted value. The blue points are the residual values and the black line represents the
cumulative residuals.

Ordered by prediction value

e Little systematic over or under prediction at predicted counts < 5 (Figure
2.15)

e Good mixing at small predicted values

e But, fewer runs than would be expected if residuals were random (p <
0.05)

e Significant positive correlation between residuals when ordered by pre-

dicted value

Ordered by index (temporally)

University of St. Andrews 41 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

Cumulative Residuals Runs Profile, p=< 0.0001

T
0

T T T T T
2000 4000 6000 8000 10000

Response residuals
Sign of Pearsons residuals
0

05

-1.0

Index
Significant positive correlation; p-value= < 0.0001

(b)

Figure 2.16: Cumulative residual plot (a) and runs profile (b) for residuals ordered by the
index of observations (temporally). The blue points are the residual values and the black line
represents the cumulative residuals.

Early observations (before impact) are over predicted and the later (after
impact) are under predicted (Figure 2.16)

Best mixing of residuals seen in the runs profile

But, still fewer runs than would be expected if residuals were random
(p < 0.05)

Significant positive correlation between residuals when ordered temporally

Cumulative residuals and runs profiles
e Despite the inclusion of temporal covariates (season and impact) we still
have some unmodelled correlation
e We have modelled this correlation using GEEs so no need for concern.

e p-values from ANOVA (used for covariate selection earlier) are reliable
due to modelled correlation

2.9.2 COVRATIO and PRESS statistics

The PRESS and COVRATIO statistics are relative measures that assess how
aspects of the model change when individual blocks are removed from the anal-
ysis.

COVRATIO statistic

University of St. Andrews 42 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

Signals the change in the precision of the parameter estimates when each
block is omitted.

e Values greater than 1 signal removing the block inflates model standard
errors

e values less than 1 signal standard errors are smaller when that block is
excluded

PRESS statistic

Quantifies the sensitivity of model predictions to removing each block.

e Relatively large values signal the model is sensitive to these subjects.

e Model coefficients are re-estimated when each block is omitted (one-by
one) and the sum of the squared differences between the response data
and the predicted values (when that block is removed) are found.

If model predictions or measures of precision appear particularly sensitive to
omitted blocks, examine model conclusions based on models with and without
the potentially problematic blocks.

timeInfluenceCheck(geeModel, count.data$blockid, dists, splineParams)
[1] "Calculating the influence measures will take approximately 7 minutes"

influence plots (covratio and press statistics)
influence<-runInfluence(geeModel, count.data$blockid, dists, splineParams)

COVRATIO statistics

e there will always be blocks outside the dashed lines (they are quantiles)

e Asitis a relative measure, blocks with statistics far away from the majority
of the statistics may be of concern

e Blocks with COVRATIO statistic < 1 are of most concern (decrease in
precision when removed)

e There is a marked decrease in standard errors when blocks 2411, 12811
and 11911 are removed.

University of St. Andrews 43 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

10

COVRATIC Statistic

110 1710 3420 5220 §930 8B40 10511 12611 14721 16831 13941
Omitted Block

Figure 2.17: Plot of COVRATIO statistics; the dashed grey lines indicate the lower 2.5% and
upper 97.5% quantiles of the statistics.

e These blocks contain high animal counts so naturally removing the blocks
would lower the variance.

e Block 310 is far away but results in an increase in standard errors when
removed (Figure 2.17)

e Conclusion: No issue with blocks unduly influencing the precision of pa-
rameter estimates

PRESS statistics

e there will always be blocks above the dashed line (it is a quantile)

e As it is a relative measure, blocks blocks with statistics far away from the
majority of the statistics may be of concern

e Here, block 12611 is far away. This is the right-hand most transect in
season 1 before the impact event and contains only one segment with a
bird count (Figure 2.18).

e Conclusion: we may choose to fit a model with and without this block to
assess the change in predictions

University of St. Andrews 44 October 2013

2.9. DIAGNOSTICS CHAPTER 2. DISTANCE DATA EXAMPLE

PRESS Statistic
2000 3000 4000 5000 6000
I I

1000

cesed e el coS e
o e e e W A

110 1710 3420 5220 6930 8640 10511 42641 14721 16831 18941
Omitted Block

Figure 2.18: Plot of PRESS statistics; 95% of the statistics fall below the dashed grey lines.
Labelled points on both plots are outside the grey dashed line(s) and are labelled with the

identifier for the block that has been removed to create the statistic (not an observation
number).

2.9.3 Raw Residuals

Raw residuals (observed - fitted values) can be represented spatially to ascertain
if some areas are over/under predicted.

e Highest residuals in central area down to right hand side (in cells where
birds were detected; Figure 2.19)

e No systematic over/under prediction

e Conclusion: no spatial issue with raw residuals

1
= o
|

2 &

6035000 6045000 6055000
6035000 6045000 6055000

1 |
LooL
[
|
L4 b
o B

T T T T T T T T T T
660000 670000 620000 690000 700000 660000 670000 680000 690000 700000

Figure 2.19: Raw residuals before impact (left) and after impact (right). These residuals are
fitted values - observed values (mean* birds/km?). * mean density because the predictions for
each cell are for each season.

University of St. Andrews 45 October 2013

2.10. PREDS & INFERENCE CHAPTER 2. DISTANCE DATA EXAMPLE

residual plot

resids <- fitted(geeModel) - count.data$NHAT

dims <- getPlotdimensions(count.data$x.pos, count.data$y.pos,
segmentWidth=500, segmentLength=500)

par (mfrow = c(1, 2), mar = c(3, 3, 3, b))
quilt.plot(count.data$x.pos[count.data$impact == 0], count.data$y.pos[

count.data$impact == 0], resids[count.data$impact == 0], asp = 1,

ncol = dims[2], nrow = dims[1], zlim = c(-15.5, 15.5))
quilt.plot(count.data$x.pos[count.data$impact == 1], count.data$y.pos[

count.data$impact == 1], resids[count.data$impact == 1], asp = 1,

ncol = dims[2], nrow = dims[1], zlim = c(-15.5, 15.5))

How did we do?

Table 2.2: Table of potential modelling problems, what method was used to assess the
problem, was the potential problem an issue in reality and if yes then what was the solution.
The solution in red is a suggestion for a real analysis. Here we modelled the covariates that
were used to generate the data so we know the lack of fit was down to the noise in the data,
not to missing covariates.

Method Issue (Y/N) Solution

Collinearity VIF N -
Over-dispersion - Y estimated by GEE
Model Fit Observed vs Fitted Y use more covariates
mean-variance relationship Fitted vs residuals N -
Correlated Residuals runs test Y modelled by GEE
Correlated Residuals Runs profile Y modelled by GEE
Covariate specification cumulative residuals N -
systematic over/under prediction cumulative residuals N -

spatial systematic over/under prediction raw residual plot N -
removing blocks COVRATIO statistics N -
removing blocks PRESS statistics N -

2.10 Prediction and Inference

2.10.1 Data requirements for predicting

For making predictions, we require a data frame containing grid data with the
records for which to make predictions. This requires certain columns and records
which can be summarised as:

e Columns: each covariate retained in the best fitting model with exactly
matching column names

University of St. Andrews 46 October 2013

2.10. PREDS & INFERENCE CHAPTER 2. DISTANCE DATA EXAMPLE

Columns: x.pos and y.pos provide geographic position information used
for calculating distance matrices for CReSS/SALSA

Columns: area provides the area of each grid cell.

Rows: 1 record for each grid cell and for each date and time a prediction
is required.

Using our case study of offshore data, we have a look at our prediction data
using the head function after we load the data.

If not loaded already, load the prediction grid data
data(predict.data.re)

predictData <- predict.data.re

head(predictData)

area X.pos y.pos depth segment.id season impact truth

1 0.006 655444 6044450 -27.701 1 1 0 0.001429259
2 0.179 655250 6044750 -28.163 2 1 0 0.051732441
3 0.250 655250 6045250 -28.512 3 1 0 0.084503893
4 0.250 655250 6045750 -28.139 4 1 0 0.069776928
5 0.250 655250 6046250 -27.830 5 1 0 0.059117647
6 0.250 655250 6046750 -27.466 6 1 0 0.048559153

Note: the truth column is an artefact of this being simulated data. Ordinarily
the user would not know this.

2.10.2 Making predictions

We make predictions using our best fitting CReSS/SALSA model from the
previous sections. This requires three steps:

1. Creating a matrix of distances from prediction data to knots
2. Making predictions to the prediction data using the best fitting model

3. Converting the predictions back to the response scale

create the distance matrix for predictions
dists <- makeDists(cbind(predictData$x.pos, predictData$y.pos),
na.omit (knotgrid), knotmat = FALSE)$dataDist
use baseModel to make predictions to avoid a warning from
using geeModel (same answers though)
predslink <- predict(baseModel, predictData, type =)
reversing the log-link to convert predictions back to the response scale
preds <- exp(predslink)

The object preds contains the predictions for each cell in our prediction grid.

University of St. Andrews 47 October 2013

2.10. PREDS & INFERENCE CHAPTER 2. DISTANCE DATA EXAMPLE

2.10.3 \Visualising the redistribution using predictions

We know that our model identified a redistribution of animals within the study
area by the significant interaction term between impact and the two-dimensional
smooth of x.pos and y.pos. From the model coefficients it is not obvious where
the redistribution has occurred. We are going to investigate this by visualising
the redistribution using our predictions.

The following is code for plotting the model predictions in Figure 2.20.

plotting the predictions for before and after impact

get the plot dimensions. We know each cell is 500x500m

dims<-ceiling(getPlotdimensions (x.pos=predictData$x.pos, predictData$y.pos,
segmentWidth=500, segmentLength=500))

round up dimensions if necessary - in this case our grid is not quite regular.

par (mfrow=c(1,2), mar=c(3,3,3,5))

quilt.plot(predictData$x.pos[predictData$impact==0],
predictData$y.pos[predictData$impact==0],
preds [predictData$impact==0], asp=1, nrow=dims[1], ncol=dims[2],
zlim=c(0, maxlim))

quilt.plot(predictData$x.pos[predictData$impact==1],
predictDataly.pos[predictData$impact==1], preds[predictData$impact==1],
asp=1,nrow=dims[1], ncol=dims[2], zlim=c(0, maxlim))

Note: the value for maxlim can be determined by plotting both plots without
the z1im argument first from which you can determine the maximum value in
the scale of either plot.

The quilt.plot function

e Plots averages of the predictions for each grid cell

e Subsetting the data using the square brackets restricts the input data to
before (left) and after impact (right plot)

e Using the z1im argument allows ensuring that left and right plot have the
same scale colour scheme

e The dimensions of the plot (nrow and ncol) determine the size of each
grid cell. Since we know our grid to be 500m by 500m we can use
getPlotDimensions to find the values for these arguments.

Conclusion

e Decline in bird density in the central region

e Increase in density in the south east of the study area

University of St. Andrews 48 October 2013

2.11. BOOTSTRAP CIS CHAPTER 2. DISTANCE DATA EXAMPLE

8035000 B045000 GOS5000
6035000 6045000 6055000

T T T T T T T T T T
680000 670000 680000 690000 700000 660000 670000 @80000 G90O000 700000

Figure 2.20: Predictions of bird density (mean birds/km?) from the fitted model for before
(left) and after (right) an impact event. The * indicated the location of the impact; the A
indicate the knot locations.

e The central region is where a known impact has taken place and the
results suggest that birds have moved from this region to the south east
after the impact event

Next step

e Is this difference real or simply random noise?

e We need to classify if the differences are significant or due to sampling
variation

e We do this by constructing bootstrap confidence intervals for each pre-
diction in the prediction grid data.

2.11 Bootstrap Confidence Intervals

Following the predictions from section 2.10.2, we now create replicate predic-
tions and use these to construct percentile confidence intervals for each predic-
tion grid cell. We run B iterations performing the following:

e resample the original transect data with replacement

e refit the detection function to the bootstrapped data and re-estimate the
NHATSs (estimated number of animals)

e refit the count model to the bootstrapped data

e using the model coefficients and covariance matrix to sample new coeffi-
cients from a multivariate Normal distribution

University of St. Andrews 49 October 2013

2.11. BOOTSTRAP CIS CHAPTER 2. DISTANCE DATA EXAMPLE

e make predictions to the study area using these coefficients

This approach incorporates the uncertainty associated with both modelling
stages, the detection model and the count model.

The do.bootstrap.cress function

This function performs the number of bootstrap iterations specified with the
argument B where the fitting model for the second stage is CReSS.

If a ddf.obj is specified, this function automatically applies the 'distance’-
approach which includes refitting the detection model as described above.

Because the prediction object can be quite large, it is not returned but saved
to file in the current working directory with the file name ‘predictionboot.RData’.

do the bootstrap
dis.data$seasonimpact <- paste(dis.data$season, dis.data$impact)
do.bootstrap.cress(dis.data, predictData, ddf.obj, baseModel,
splineParams, dists, resample = s
rename = , stratum = , B = 250)

In the next step we will use these bootstrap predictions to construct our 95%
confidence intervals for each prediction.

The makeBootCIs function

Using the B bootstrap predictions from a call to the do.bootstrap.cress
function, the makeBootCIs function creates lower and upper limits for 95%
confidence intervals using the percentile method for each record in the predic-
tion data.

An optional argument quants can be used to specify an interval other than
95%. The default is quants = ¢(0.025, 0.975)

read in bootstrap predictions
load(predictionboot.RData)
cis <- makeBootCIs(bootPreds)

2.11.1 Visualising Bootstrap Confidence Intervals

Figure 2.21 depicts the range of uncertainty in the spatial estimates of density.
These can be contrasted with the point estimates found in Figure 2.20.

University of St. Andrews 50 October 2013

2.12. DIFFERENCES CHAPTER 2. DISTANCE DATA EXAMPLE

In this section we will investigate whether looking at the lower and upper
confidence limits from the 95% confidence intervals will give us a similar picture
as looking at the predictions.

6035000 6045000 6055000
6035000 6045000 GO55000

T T T T T T T T T T
660000 670000 680000 90000 700000 660000 670000 680000 B90000 700000

6035000 6045000 6055000
6035000 6045000 6055000

I
=)

T T T T T T T T T T
660000 670000 680000 690000 700000 660000 670000 680000 G90000 700000

Figure 2.21: Upper (top) and lower (bottom) 95% confidence intervals of bird density (mean
birds/km?) from the fitted model from before (left) and after (right) impact.

Conclusion

e Lower and upper intervals before impact (left) show a higher density of
birds in the central and south east region.

e After impact (right), both lower and upper intervals show a decline in
density in the central region and an increase in the area to the south east.

e It is difficult to see where in the study region any significant differences
may occur.

2.12 Identifying Differences

In this section we estimate the differences in predictions for each corresponding
pair of records from our prediction grid. The first half of our prediction grid
consists of records from before impact while the second half consists of records

University of St. Andrews 51 October 2013

2.12. DIFFERENCES CHAPTER 2. DISTANCE DATA EXAMPLE

from after impact.

Note that the before and after data need to be ordered in the same manner and
of the same length.

The getDifferences function

For each bootstrap iteration the differences in predictions from before and after
impact are calculated (Densityg tier - Densitype fore) and 95% confidence inter-
vals calculated using the percentile method.

If these intervals contain the value zero, a '0" is recorded. If they do not contain
the value zero, '1’ is recorded if the lower limit is above zero as an indication
that the difference is significantly positive (increase in animal densities after
impact). A '-1"is recorded if the upper limit is below zero, indicating that the
difference is significantly negative (decrease in animal densities after impact).

The function returns a list of two objects:

e The median for each difference

e The marker for significant positive and negative differences

differences <- getDifferences(beforePreds =
bootPreds [predictData$impact == 0,],
afterPreds = bootPreds[predictData$impact == 1, 1)

NOTE: 1 bootstrap(s) removed due to infinite values

2.12.1 Visualising differences

To illustrate the differences in animal densities after impact, we plot the calcu-
lated differences (Density, fier - Densitype fore) using the quilt.plot function.

The locations of the differences are added to the same plot using the "o’ and
'+' symbols.

The median for each after - before difference

mediandiff <- differences$mediandiff

The marker for each after - before difference:

positive (°1’) and negative (’-’) significant differences

University of St. Andrews 52 October 2013

2.12. DIFFERENCES CHAPTER 2. DISTANCE DATA EXAMPLE

marker <- differences$significanceMarker
par(mfrow = c(1, 1))
quilt.plot(predictData$x.pos[predictData$impact == 0],
predictData$y.pos[predictData$impact == 0],
mediandiff, asp = 1, nrow = 104, ncol = 55)
add + or - depending on significance of cells. Just
requires one significance out of all to be allocated
points(predictData$x.pos[predictData$impact == 0] [marker == 1],
predictData$y.pos[predictData$impact == 0] [marker == 1],
pch = "+", col = "darkgrey", cex = 0.75)
points(predictData$x.pos[predictData$impact == 0] [marker == (-1)],
predictData$y.pos[predictData$impact == 0] [marker == (-1)],
col = "darkgrey", cex = 0.75)
points(681417.3, 6046910, cex = 3, pch = "*", 1lwd = 1, col = "grey")

6030000 6035000 6040000 6045000 6050000 6055000 6060000 GOG5000

T T T T T
660000 670000 680000 690000 700000

Figure 2.22: Mean differences in predicted bird density (mean birds/km?) before and after
impact. Positive values indicate more birds post impact and negative values fewer birds post
impact. Considerable differences were calculated using percentile confidence intervals: '+’
indicates a large positive difference and -’ a large negative one. The grey star is the site of
the impact event.

Conclusion

e There was a large decline in animals around the impact site (Figure 2.22).

e There was also a significant increase in animals in the south east of the
study area

University of St. Andrews 53 October 2013

2.13. COMPARISON CHAPTER 2. DISTANCE DATA EXAMPLE

2.13 Comparison to the Truth

Here we will finalise our analysis by comparing our results with the truth. This
is possible as our data were simulated and hence the parameter values known.

2.13.1 Detection function

We created detections from a half-normal detection function with a known scale
parameter. Our model selection procedure identified the half-normal model as
the one with the best fit.

True value | Maximum likelihood 95% CI
estimate
Scale parameter | 120 | 116.1 | (112.7, 122.4)

Conclusion

o We were able to identify the type of model correctly

e Our best guess of the true value for the scale parameter based on the data
was 116.1.

e We were 95% sure the true scale parameter for the half-normal detection
function was between 112.7 and 122.4.

2.13.2 Overdispersion and correlation

We created data that were both overdispersed and positively correlated within
any transect.id (i.e. observed detections from the same transect repeat).

Truth Model
Overdispersed data estimated overdispersion
parameter was greater than 1

Positively correlated data accounted for using
GEE-based p-values

Conclusion

We conclude that our proposed methods are capable of identifying overdisper-
sion and correlation in the data.

University of St. Andrews 54 October 2013

2.13. COMPARISON CHAPTER 2. DISTANCE DATA EXAMPLE

2.13.3 Type of impact

For this particular data set, the total number of animals before and after impact
did not change. The type of impact that we implemented was a redistribution
from the area surrounding the impact into the south east of the study area.

Truth Our model

Redistribution identified with a

within study area significant interaction term

Overall abundance | identified with the non-significant

remained the same main effect for impact
Conclusion

We conclude that our method was capable of correctly identifying the redistribu-
tion effect and reallocated birds to the correct locations despite highly correlated
and overdispersed data.

University of St. Andrews 55 October 2013

Chapter 3

Worked Example without
Distance Sampling

3.1 Introduction

This chapter takes you through the process of fitting spatial models using the
CReSS method in a GEE framework with SALSA for model selection (section
3.4). We use simulated vantage point data as our case study. Section 3.6 uses
the fitted count model to make predictions across the entire study area, which
we use to draw inference from our study. We use simulated vantage point data
as our case study. The type of impact was a redistribution of animals within
the study area.

Aim

Produce a density surface map along with estimates of uncertainty and identify
any significant effect of an event (e.g. nearshore renewable installation).

Note: No distance sampling analysis can be conducted as there is no information
available to do so.

The following sections take you through:

e model fitting
e checking diagnostics

e making predictions and inference

56

3.2. PREPARATION CHAPTER 3. COUNT DATA EXAMPLE

3.2 Preparing to conduct an analysis with MRSea

Before we start, we load the MRSea package and its dependencies. This may
require installing the following packages if they are not already installed on your
computer:

e mrds, lawstat, car, mvtnorm, splines, geepack, ggplot2, calibrate, Matrix
and fields.

After installing these packages, the following command will load package MRSea
and these packages into the active workspace.

See section 2.3 for information on the datasets this package holds.

3.3 Loading the Data

3.3.1 Data Requirements

There are a few requirements for analysing data using the MRSea package.

e The geographic coordinates must be labelled x.pos and y.pos

e There must be a column labelled area representing the effort associated
with each coordinate

Loading the data
data()
data <- ns.data.re
attach(data)
head(data, n=3)

x.pos y.pos area floodebb observationhour GridCode Year

1 1500 -4500 0.3853 EBB 12 all 9
2 1500 -4500 0.3853 FLOOD 8 all 9
3 1500 -4500 0.3853 FLOOD 9 all 9

DayOfMonth MonthOfYear impact birds cellid

1 13 3 0 0 1
16 3 0 0 2
3 16 3 0 0 3

University of St. Andrews 57 October 2013

3.3. LOADING THE DATA CHAPTER 3. COUNT DATA EXAMPLE

3.3.2 Exploratory Data Analysis (EDA)
Assess the data inputs for the modelling process.

e Check for unusual covariate values

e Identify possible relationships between covariates and the response (animal
counts)

e This data was collected by a cliff-top observer (grey dot, Figure 3.1)

4000

0 a4

2000
L

g5 i e5 d5

g6 féi eb dé c6

0]
1

> g7 7 18 d7 o7 b7

g8 fa ed d8 c8 b&

-2000
I

g9 fa &9 d9 c8 b8

10 eld d10 cl0 b10

-4000
I

ell d11 cl1 b1l an

T T T
-4000 -2000 0 2000
X

Figure 3.1: Grid cell identifiers for the study region. The grey circle is the location of a

cliff-top observer and the star the site of the impact event.

e Most animals are seen near to the observer (Figure 3.2)

e Few are seen to the far right and far left of the observer

Assessing the relationships of available covariates and our response (animal
counts).

EDA

e Birds were seen predominantly in the morning hours (7-12).
e Few birds were seen very early and very late.

e Non-linear relationship between observation hour and bird counts.

University of St. Andrews 58 October 2013

3.3. LOADING THE DATA CHAPTER 3. COUNT DATA EXAMPLE

4000
4000

2000

2000

-2000
-2000

-4000
-4000

I T T T T T T 1 b T T T T T T
5000 -4000 -3000 -2000 -1000 0 1000 2000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

Figure 3.2: Estimated bird counts before (left) and after (right) an impact event. Each cell
is 1 km? and the colour represents bird count.

150
I

100
L

Estimated Counts

e e

Observation Hour

Figure 3.3: Plot of observation hour against the estimated bird counts.

e Difficult to identify any relationship between tide state/impact and bird
counts due to the large number of zeros in the data (Figures 3.4 & 3.5)..

University of St. Andrews 59 October 2013

3.3. LOADING THE DATA CHAPTER 3. COUNT DATA EXAMPLE

150
L

Estimated Counts
100
L

omoe cwme o o
an ® ooos oo

50

EBB FLOOD SLACK
Tide State

Figure 3.4: Plot of tide state against the estimated bird counts.

150
I

100
I

Estimated Counts

Impact

Figure 3.5: Plot of Impact against the estimated bird counts. Zero is pre impact and one is
post impact.

University of St. Andrews 60 October 2013

3.3. LOADING THE DATA CHAPTER 3. COUNT DATA EXAMPLE

3.3.3 Checking for Collinearity

Variance Inflation Factors (VIFs)

These are used to assess collinearity between covariates and to tell us by how
much the standard error is inflated by the other variables in the model. For
more details see section 2.7.2 or ().

fullModel <- glm(birds ~ as.factor(floodebb) + as.factor(impact) +
observationhour + x.pos + y.pos, family = poisson, data = data)
vif (fullModel)

GVIF Df GVIF~(1/(2xDf))

as.factor(floodebb) 1.006 2 1.002
as.factor (impact) 1.000 1 1.000
observationhour 1.006 1 1.003
X.pos 1.323 1 1.150
y.pos 1.323 1 1.150

[1] "Maximum VIF is: 1.15"

Conclusion:

The maximum VIF is approximately 1, which means that there is no issue with
collinearity (no inflation of standard errors).

Checking Factor Covariates

Each level of a factor-based covariate must have some non-zero entries for
the response variable, otherwise there will be problems in the model fitting
process

check all factor levels have counts
checkfactorlevelcounts(factorlist=c(s), data, data$birds)

[1] "floodebb will be fitted as a factor variable; there are non-zero counts
for all levels"

[1] "impact will be fitted as a factor variable; there are non-zero counts
for all levels"

Conclusion: tide state and impact are fine for use in the model.

University of St. Andrews 61 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

3.4 Fitting a Model

Here we are going to fit a GEE-CReSS model with SALSA for knot selection.
Recap:
Generalised Estimating Equations (GEE)

Framework to allow for correlated errors. For more details see

(2002).

Complex Region Spatial Smoother (CReSS)

Flexible spatial smoothing method. For more details see

(2013).

Spatially Adaptive Local Smoothing Algorithm (SALSA)

Automated knot selection procedure for both one-dimensional (e.g. depth) and
two-dimensional (e.g. spatial) covariates. The knots are sources of flexibility
in the surface that can raise or lower the surface. For more details see

(2010).

3.4.1 Fitting a Smooth Term
A smooth of observation hour

Construct an object (splineParams) that contains the information required
by SALSA for adaptive knot placement.

e Each covariate considered smooth is a list entry in splineParams and
identified in varlist

e Other inputs include the data and, optionally, a grid of prediction data.

e The list contains the covariate name, data, initial knot location (one knot
at the mean), the boundary knots (greatest range of the prediction data
and data) and the degree of the smooth.

e Note: The smooth one dimensional covariates appear in the splineParams
object starting at slot [[2]]. Slot [[1]] is reserved for the spatial term.

load prediction data
data(ns.predict.data.re)
re-named for easier writing

University of St. Andrews 62 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

predictData<-ns.predict.data.re

make splineParams object

splineParams<-makesplineParams (data=data, varlist=c(),
predictionData=predictData)
str(splineParams)
List of 2
$: 1list()
$:List of 5
..$ covar : chr "observationhour"
..$ explanatory: int [1:27798] 12 8 9 10 11 12 13 14 15 8 ...
..$ knots : num 12
..$ bd : num [1:2] 4 20
..$ degree : num 2

3.4.2 Checking for Correlation

fullModel <- glm(birds ~ as.factor(floodebb) + as.factor(impact) +
bs(observationhour, knots = splineParams[[2]]$knots) + x.pos + y.pos,
family = quasipoisson, data = data)

We fit a model containing all covariates of interest (fullModel above) and
carry out some runs tests to check for correlated residuals (model assumes
uncorrelated residuals).

Runs Test

This is a test for randomness and allows us to determine if we have correlation
in our model residuals. We will see a large p-value (Hp: uncorrelated residuals)
and good mixing of the profile plot if there is no correlation.

The runs.test function can be found in the lawstat library.

runs.test(residuals(fullModel, type =), alternative = c(

Runs Test - Two sided
data: residuals(fullModel, type = "pearson")
Standardized Runs Statistic = -71.59, p-value < 2.2e-16

e The small p-value (p << 0.05) indicates that there is an issue with cor-
relation in the residuals

University of St. Andrews 63 October 2013

))

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e The test statistic is negative, which indicates that there are fewer runs
of residuals than would be expected if there were un-correlated residuals.
We have positive correlation.

e This result is also shown on the runs profile plot (Figure 3.6).

Plotting runs profile
plotRunsProfile(fullModel, varlist = c())

[1] "Calculating runs test and plotting profile"

Runs Profile, p=<0.0001 Runs Profile, p=< 0.0001

0 0

< <

= |

' T T T T
0 1 2 3

Sign of Pearsons residuals
0

Sign of Pearsons residuals
0

-1.0

T T T T
5 10 15 20

T

4 5
observationhour Predicted

Significant positive correlation; p-value= < 0.0001 Significant positive correlation; p-value= < 0.0001

(a) (b)

Runs Profile, p=< 0.0001

Sign of Pearsons residuals

T T T T T T
0 5000 10000 15000 20000 25000 30000

Index
Significant positive correlation; p-value= < 0.0001

(c)

Figure 3.6: Runs profiles for residuals ordered by (a) observation hour, (b) predicted value and
(c) temporally (by observation index). The p-values and text presented on each plot indicate
if there is correlation present in the residuals. The lines are the strings of sequences of positive
and negative residuals. A vertical line is the switch between a positive and negative run (or
vice versa).

University of St. Andrews 64 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e Runs test and plots show an issue with correlated residuals

e We have positive correlation in the residuals no matter how they are
ordered

e Conclusion:

— We have correlation that must be accounted for

Choosing a blocking structure to model correlation.

e Correlation within blocks should decline to approximately zero
e Between blocks residuals should be independent
e Blocks are usually determined by looking at the sampling design

e Here we use the unique cell identifier within each day of observation: Each
grid cell is considered independent but residuals may be non-independent
within a block.

e There are 41 grid cells repeated several days a month, for 12 months over
four years times, giving us 5576 blocks.

Autocorrelation function plot

We can check the correlation declines within our blocks by plotting the
autocorrelation of the model residuals by block (Figure 3.7). First make a
column in the data (if it does not already exist) that represents the blocking
structure.

data$blockid <- paste(data$GridCode, data$Year, data$MonthOfYear,
data$DayOfMonth, sep = "")

*x*x* blockid must be a factor or numeric, not a character ***x*

data$blockid <- as.factor(data$blockid)

runACF (data$blockid, fullModel, store = F)

e Some blocks have little correlation, whilst others have high correlation
(0.5) at a lag of 6 (data points are at hourly intervals so a lag of 6 is 6
hours.)

e |t is these blocks with the higher correlation that must be accounted for

e Conclusion: Our blocking structure is suitable

University of St. Andrews 65 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

05 1.0
I

Auto correlation
0o

-0.5

-1.0

Figure 3.7: Plot of the correlation in residuals for each block (grey lines). The mean correlation
at each lag is indicated in red.

3.4.3 Model Selection

Select what one-dimensional covariates to include in the model and use SALSA
to determine the knot locations of those that are continuous: observation
hour.

We can use cumulative residual plots to check for appropriately modelled
covariates.

e Cumulative residuals are sequentially summed raw residuals on the scale
of the response.

e These plots show systematic over- or under- prediction.

e We expect to see good mixing (lots of peaks and troughs) and deviation
from this may indicate the covariate is not modelled appropriately.

e Figure 3.8 shows cumulative residual plots from a model with depth mod-
elled as a linear term and with one knot at the mean.

Plotting Cumulative Residuals

plot cumulative residuals for model with observationhour as smooth term
plotCumRes (fullModel, varlist= c(), splineParams)

University of St. Andrews 66 October 2013

3.4. FITTING A MODEL

CHAPTER 3. COUNT DATA EXAMPLE

"Calculating cumulative residuals"

Cumulative Residuals

1000 2000 3000

0

Response residuals

-3000 -2000 -1000
L

T T T T
5 10 15 20
observationhour

(a)

Cumulative Residuals

1000 1500 2000

Response residuals
0 500
L

500
L

-1000 -

T T T T
5 10 15 20
observationhour

(b)

Figure 3.8: Cumulative residual plots residuals ordered by observation hour. (a) observation
hour modelled as a linear term and (b) depth modelled with one knot at the mean observation
hour. The blue points are the residual values, the black line represents the cumulative residuals.
The grey line in the background is what we would expect the cumulative residuals to be if

observation hour was modelled correctly.

Cumulative Residuals

e Observation hour as a linear term is not appropriate (Figure 3.8a).

e The black line (our model) does not correspond well with the expected
line (grey) and shows systematic over prediction at early hours and under
prediction in the early afternoon.

e Observation hour as a smooth term with one knot at the mean is much
better but the black line may mask the expected line in places due to the
discrete nature of the variable (Figure 3.8b).

e Conclusion:

— we might want to consider more flexibility for observationhour by
using SALSA.

Setting up the model for SALSA

e There must be a column called response in the data, which is the re-
sponse variable used in the initial model to be fitted.

University of St. Andrews

67 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e The argument salsaldlist contains parameters for the runSALSA1D
function.

fitnessMeasure. The criterion for selecting the ‘best’ model. Avail-
able options: AIC, AIC,, BIC, QIC,.

minKnots_1d. Minimum number of knots to be tried.
maxKnots_1d. Maximum number of knots to be tried.

startKnots_1d. Starting number of knots (spaced at quantiles of
the data).

degree. The degree of the B-spline. Does not need to be specified
if splineParams is a parameter in runSALSA1D.

maxIterations. The exchange/improve steps will terminate after
maxIterations if still running.

gaps. The minimum gap between knots (in unit of measurement of
explanatory).

e The initial model contains all the factor level covariates and any covariates
of interest that are not specified in the varlist argument of runSALSA1D.

#info for SALSA
data$response <- data$birds

set initial model without the spline terms

initialModel <- glm(response

as.factor(floodebb) + as.factor(impact) +

offset(log(area)), family = , data = data)

salsaldlist <- list(fitnessMeasure = , minKnots_1d = 2,
maxKnots_1d = 20, startKnots_1d = 2, degree = 2, maxIterations = 10,
gaps = c(1))

run SALSA

salsaldOutput <- runSALSA1D(initialModel, salsaldlist, varlist=

c(

), factorlist=c(s), predictData,

splineParams=splineParams)

Let's look at the structure of the output:

e bestModel. The model object for the best fitted model.

e modelFits1D. Each slot in the list shows the term fitted, the fit statistic

resulting from that term, the knots used and finally the overall formula. If
varlist is more than one covariate, this output shows how each covariate

was retained and what knots were finalised.

University of St. Andrews 63 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e splineParams. The spline parameter object is updated with the new
knot numbers and locations of the covariates from varlist.

e fitStat. The fit statistic of the best model.

str(salsaldOutput, max.level = 1)

List of 4
$ bestModel :List of 30
..— attr(x, "class")= chr [1:2] "glm" "lm"
$ modelFitsiD :List of 2
$ splineParams:List of 2
$ fitStat : num 34341

knots chosen for observation hour
salsaldOutput$splineParams[[2]]$knots

[1] 9 15 17

e Initial model - one knot at the mean observation hour (12pm)
e SALSA result - three knots selected (see output above)

e The result of SALSA is additional flexibility added to the model for the
relationship between bird counts and observation hour.

Spatial component

e Next we add a two dimensional smooth of geographic coordinates (s(x. pos,
y-pos))

e To test for a redistribution of animals with an impact effect we fit an
interaction term between the smooth of coordinates and impact.

e SALSA is used to determine spatially adaptive knot locations for this
smooth term.

SALSA 2D requirements

e A grid of knot locations

e Matrix of knot to knot distances

University of St. Andrews 69 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e Matrix of data to knot distances

e Vector of range parameters for CReSS (determines the range of effec-
tiveness of each knot basis). See (,) for more
details.

e Minimum, maximum and starting number of knots

The next section assumes that the knot grid has been defined. See section 4.2.2
for some guidance to do this.

Spatial component

load knotgrid (regular grid containing NA’s for invalid knot
locations (e.g. on land or outside study region))
data(knotgrid.ns)

knotgrid <- knotgrid.ns

The knot points in knotgrid are located at the centre of each of the grid cells
containing data.

The distance matrices give the distance between the data and the knots in
one matrix and the second matrix is the knot to knot distances. The function
makeDists calculates Euclidean distance, however, the runSALSA2D function
may also take geodesic distance matrices (as the fish swims rather than as
the crow flies). See () for more details on geodesic
distances.

make distance matrices for datatoknots and knottoknots
distMats <- makeDists(cbind(data$x.pos, data$y.pos), na.omit(knotgrid))
str(distMats)

List of 2
$ dataDist: num [1:27798, 1:41] 4000 4000 4000 4000 4000 4000 4000 ...
$ knotDist: num [1:41, 1:41] O 1000 2000 3000 4000 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:41] "3" vav wgw wen
..$: chr [1:41] "3" "gn wgn wgn

A sequence of range parameters is required for the CReSS smooth.

e The range parameter determines the influence of each selected knot.

e Small numbers are for a local influence and large ones a global influence.

University of St. Andrews 70 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e Once knot locations are selected (using the mid value in the range se-
quence), SALSA selects the appropriate range parameter (from the se-
quence created below) for each knot.

e getRadiiChoices selects a number of radii (default = 8) based on the

distances in the data to knot distance matrix created above.

create sequence of radii
r_seq <- getRadiiChoices(numberofradii=8, distMats$dataDist)

Setting up the spatial SALSA components
e fitnessMeasure. The fitness measures available are the same as for
runSALSA1D.

e knotgrid. (k x 2) matrix of knot coordinates. Rows of NA's identify
illegal knot locations

e startKnots. Number of space-filled knots to start with (between min-
Knots and maxKnots)

e minKnots. Minimum number of knots to fit
e maxKnots. Maximum number of knots to fit
e r_seq. Sequence of range parameters for the CReSS basis.

e gap. Minimum gap between knots (in unit of measurement of x.pos and
y-pos)

e interactionTerm. Specifies which term in the model the spatial smooth
will interact with. If NULL no interaction term is fitted.

make parameter set for running salsa2d

salsa2dlist <- list(fitnessMeasure = , knotgrid = knotgrid,
startKnots = 6, minKnots = 4, maxKnots = 20, r_seq = r_seq,
gap = 1, interactionTerm = "as.factor

The initial model is the best model from the one-dimensional SALSA results.

splineParams must be an object in workspace

update splineParams with the SALSA1D results

splineParams <- salsaldOutput$splineParams

salsa2d0utput_k6 <- runSALSA2D(salsaldOutput$bestModel, salsa2dlist,
distMats$dataDist, distMats$knotDist, splineParams = splineParams)

University of St. Andrews 71 October 2013

3.4. FITTING A MODEL

CHAPTER 3. COUNT DATA EXAMPLE

Multiple SALSA runs

The example above uses 6 starting knot locations.
SALSA algorithm may get stuck in local minima or maxima and so we recom-
mend that a variety of starting knot numbers are used. Here we try 6, 8, 10,

12, 14 and 16 (Table 3.1).

We use k-fold Cross-Validation (CV) as a method for selecting between models

with a variety of starting knots.

Example:

data$foldid <- getCVids(data, folds = 5, block =

cvl <- getCV_CReSS(salsaldOutput$bestModel, salsaldOutput$splineParams)

[1] 33.91

Choosing a model

Table 3.1: Table of CV scores for a variety of starting knot numbers for the spatial smooth.

There is a risk that the

Model type Start knots | End knots cv

1D terms only - - 33.9058
1D/2D terms 6 6 28.6426
1D/2D terms 8 8 28.1481
1D/2D terms 10 10 27.9571
1D/2D terms 12 12 27.0373
1D/2D terms 14 14 27.0474
1D/2D terms 16 16 27.0367

The best model chosen using CV score is the model that uses a spatial smooth

with 16 spatial knots.

having chosen the 2d interaction model, save the model object
baseModel <- salsa2d0utput_k16$bestModel
update spline parameter object

splineParams <- salsa2dOutput_k16$splineParams

3.4.4 Checking p-values

Re-assessing runs test for best model

University of St. Andrews

72

October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e Our 'best’ model based on CV selection is the model with the interaction
term.

e We could also use p-value selection, though the model must be fitted as
a GEE to model the correlation.

We must account for the correlation in our residuals, which was found earlier,
but should also check the current model.

runs.test (residuals(baseModel, type =))

Runs Test - Two sided
data: residuals(baseModel, type = "pearson")
Standardized Runs Statistic = -88.67, p-value < 2.2e-16

GEE framework

There is significant positive residual correlation (p << 0.05 and test statistic is
negative) so we re-fit the model as a GEE.

Note: It is possible to do this at this stage as we are modelling correlation using
empirical standard errors and not a specific correlation structure.

The current model:

glm(formula = response ~ as.factor(floodebb) + as.factor(impact) +
bs(observationhour, knots = splineParams[[2]]$knots, degree =
splineParams[[2]]$degree, Boundary.knots = splineParams[[2]]$bd) +
LocalRadialFunction(radiusIndices, dists, radii, aR) +
as.factor(impact) :LocalRadialFunction(radiusIndices, dists, radii, aR) +
offset(log(area)), family = quasipoisson, data = data)

N.B. for the GEE formula, the data must be ordered by block (which this is)
and the blockid must be numeric

specify parameters for local radial:

radiusIndices <- splineParams[[1]]$radiusIndices

dists <- splineParams[[1]]$dist

radii <- splineParams[[1]]$radii

aR <- splineParams[[1]]$invInd[splineParams[[1]]$knotPos]

update model in workspace with parameters for spatial smooth (above)
baseModel <- update(baseModel, . ~ .)

University of St. Andrews 73 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

The baseModel is updated with the parameters returned by SALSA2D using
the update function'. This makes sure that the baseModel object is made
using the parameters currently in the workspace.

Re-fit the chosen model as a GEE (based on SALSA knot placement) and

GEE p-values

geeModel <- geeglm(formula(baseModel), data = data, family = poisson,
id = blockid)

Note: The family specified for the GEE model is Poisson because the dispersion
parameter is automatically estimated using geeglm. Therefore, we need not
(and cannot) specify the quasi-Poisson family.

Checking p-values

table of p-values (specifying varlist and factorlist

makes shorter variable names)

getPvalues(geeModel, varlist = c(), factorlist = c(
))

[1] "Getting marginal p-values"
Variable p-value
floodebb <0.0001

impact 0.5615
observationhour <0.0001
s(x.pos, y.pos) <0.0001

s(x.pos, y.pos):impact 0.0241

O W N

Do we remove the main impact effect?

e Keep the main effect for impact because it is part of the interaction term
and is difficult to interpret.

e Fit a model without the interaction term to test for a significant in-
crease/decrease pre and post impact.

e If the interaction is significant but the impact term in a model without
the interaction is not significant then there has been a re-distribution of
animals but no overall change.

1The update function is part of the basic functionality in R and can be used to quickly
re-fit a model removing or adding covariates, changing the family or data set or in this case
refreshing the parameters used in LocalRadialFunction.

University of St. Andrews 74 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e This is the case for this model. p;;i0.05 for impact in a model with no
interaction term.

Below is an example of how to remove the interaction term using the update
function.

Removing the main impact effect

how to remove impact
noint.model<-update (geeModel, . — as.factor(impact):
LocalRadialFunction(radiusIndices, dists, radii, aR))

reshow p-values
getPvalues(noint.model, varlist = c(), factorlist = c(

)

[1] "Getting marginal p-values"
Variable p-value
floodebb <0.0001

impact 0.5615
observationhour <0.0001
s(x.pos, y.pos) <0.0001

> w N -

3.4.5 Assessing covariate relationships

Partial Residual Plots?

These plots allow visual examination the one-dimensional covariates in the model
(observation hour, tide state and impact) and to check that smooth/linear terms
are specified correctly.

The partial residuals, e;;, for predictor x; are formed by adding the fitted linear
component in this predictor to the least squares residuals®. The partial residuals
are then plotted against x;

runPartialPlots(geeModel, data, factorlist = c(5),
varlist = c()

[1] "Making partial plots"

2see ‘component-plus-residual’ plots in () for more details.
3
€ij = e + bjTij

University of St. Andrews 75 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

Assessing covariate relationships

03 04
I I
0.10 0.15 020

02

Partial Fit
0.1
I
Partial Fit

00

-01
010 005 000 005

o
<

T T T
as factor(loodebb)FLOOD as factor(floodebb)SL as factor(impac)1

floodebb impact

(a) (b)

Partial Fit

T Y
5 10 15 20

observationhour

(c)

Figure 3.9: Partial plots for (a) tide state, (b) impact and (c) observation hour.

Partial Plots
e Tide state: predictions for flood are not significantly different to ebb
(baseline)

e There are, on average, more animals seen during slack tide than for the
baseline (ebb).

e Impact: confirms the ANOVA p-value (seen earlier; p >> 0.05) and
indicates no change in bird numbers post impact.

University of St. Andrews 76 October 2013

3.4. FITTING A MODEL CHAPTER 3. COUNT DATA EXAMPLE

e Observation hour: a peaked non-linear relationship with maximum birds
seen between 8 and 1lam.

e Small confidence interval indicates a precisely estimated relationship.

Note: if the confidence interval for observation hour was very wide it might
indicate that observation hour as a linear term is more appropriate.

University of St. Andrews 77 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

3.5 Diagnostics

Diagnostics

We make multiple plots to assess the fit of our model:

e Observed vs Fitted

e Fitted vs residuals

e Cumulative residuals
e Runs sequence

e COVRATIO statistics
e PRESS statistics

e Raw residuals

Observed vs fitted Plot

Observed vs Fitted

Indication of fit to the data. All the values would be on the 45° line for a
perfectly fitting model.

The agreement between the input data and the model undergoing eval-
uation can be quantified using numerical measures; Marginal R-squared and
Concordance Correlation.

These measure are output on the observed vs fitted plot created using the
runDiagnostics function.

Marginal R-squared value

It is widely used to assess models fitted to both un-correlated and correlated
data and is approximately between 0 and 1. Values closer to 1 indicate better
fit to the data.

Concordance Correlation

It is guaranteed to return values between zero and one. Values closer to 1
indicate better fit to the data.

University of St. Andrews 78 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

create observed vs fitted and fitted vs residual plots
runDiagnostics(geeModel)

[1] "Assessing predictive power"

Concordence correlation: 0.3783
Marginal R-squared value: 0.2351

Fitted Values

50 100 150
Observed Values

Figure 3.10: Diagnostic plots of observed vs fitted values, where the diagonal line indicates
where data should lie for a perfect fit.

Observed vs fitted

High observed values are under-predicted (Figure 3.10)

Observed zeros tend to be over-predicted (as is likely given they cannot
be under-predicted)

Marginal R-squared and concordance correlation are low

Conclusion: poor model fit

Fitted values vs scaled Pearsons residuals Plot

The plot gives an indication of the correct mean-variance relationship as-
sumed under the model. We expect to see no pattern in the plot.

e For a Poisson model the size of residuals is expected to increase with
increasing fitted values

University of St. Andrews 79 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

e For overdispersed data the size of residuals increases at a faster rate than
the strict Poisson relationship

e To get a plot with an expectation of no pattern we use Pearsons residuals
to account for the former and scaled these by the dispersion parameter
(estimated by geeglm) for the latter

e Thus we plot Fitted values against scaled Pearsons residuals

30+

N
o
1

-
o
1

*
".

Scaled Pearsons Residuals

0 5 10 15 20
Fitted Values

Figure 3.11: Diagnostic plot of fitted values vs scaled Pearsons residuals, where the red line

is a locally weighted least squares regression to indicate pattern in the plot, which might
otherwise be hidden due to over-plotting.

e Possible pattern in residuals but hard to tell due to overplotting (Figure
3.11)

e Locally weighted least squares regression line does not indicate an unusual

pattern

e Conclusion: no issue with model assumption (mean-variance relationship)

3.5.1 Cumulative Residuals and runs profiles

e Assessment of systematic over- or under- prediction using cumulative
residuals.

e Assessment of the correlated nature of the residuals (how random they
are) given that the residuals are ordered by covariate value, predicted value
or temporally.

University of St. Andrews 80 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

plotCumRes (geeModel, varlist=c(), splineParams=splineParams,
d2k=dists)
plotRunsProfile(geeModel, varlist=c())

Cumulative residuals and runs profiles for observation hour

Cumulative Residuals Runs Profile, p=< 0.0001

300
I

200
L

100
L
05

Response residuals
100 0
)
Sign of Pearsons residuals
00

-200
L
05
L

-300
L

-1.0

T T T T T T T T
5 10 15 20 5 10 15 20

observationhour servationhour

ob:
Significant positive correlation; p-value= < 0.0001

(a) (b)

Figure 3.12: Cumulative residual plot (a) and runs profile (b) for residuals ordered by obser-
vation hour. The blue points are the residual values, the black line represents the cumulative
residuals. The grey line in the background is what we would expect the cumulative residuals
to be if observation hour was modelled correctly.

Ordered by observation hour

e No systematic over or under prediction (Figure 3.12)
e Variable modelled appropriately:

— similar to expected relationship (grey line) and better than Figure
3.8

— good mixing about the zero cumulative residual line
e Discrete nature of variable makes inference (visual) difficult

e Visually good mixing, but fewer runs than would be expected if residuals
were random (p << 0.05)

e Significant positive correlation between residuals when ordered by obser-
vation hour

University of St. Andrews 81 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

Cumulative Residuals Runs Profile, p=< 0.0001

0.0

Response residuals
Sign of Pearsons residuals

05

T T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 25

Predicted Predicted
Significant positive correlation; p-value= < 0.0001

(a) (b)

Figure 3.13: Cumulative residual plot (a) and runs profile (b) for residuals ordered by the
predicted value. The blue points are the residual values and the black line represents the
cumulative residuals.

Cumulative residuals and runs profiles ordered by predicted value

Ordered by prediction value

Under prediction at predicted density < 3 (Figure 3.13)

Over-predicted up to about 12 birds/km?

Thereafter some over/under prediction

e But, fewer runs than would be expected if residuals were random (p <
0.05)
e Significant positive correlation between residuals when ordered by pre-

dicted value

Cumulative residuals and runs profiles ordered temporally

Ordered by index (temporally)

Lot of mixing about zero cumulative residual line (Figure 3.14)

Best mixing of residuals seen in the runs profile

e But, still fewer runs than would be expected if residuals were random
(p < 0.05)
e Significant positive correlation between residuals when ordered temporally

University of St. Andrews 82 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

Cumulative Residuals Runs Profile, p=< 0.0001

0.0

Response residuals
Sign of Pearsons residuals

05

T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 30000

Index Index
Significant positive correlation; p-value= < 0.0001

(a) (b)

Figure 3.14: Cumulative residual plot (a) and runs profile (b) for residuals ordered by the
index of observations (temporally). The blue points are the residual values and the black line
represents the cumulative residuals.

Cumulative residuals and Runs Profiles
e Despite the inclusion of temporal covariates (tidal state and impact) we
still have some unmodelled correlation
e We model this correlation using GEEs

e p-values from ANOVA (fitted earlier to decide which covariates to keep)
are reliable due to modelled correlation

3.5.2 COVRATIO and PRESS statistics

The PRESS and COVRATIO statistics are relative measures that assess how
aspects of the model change when individual blocks are removed from the anal-
ysis.

COVRATIO statistic

Signals the change in the precision of the parameter estimates when each
block is omitted.

PRESS statistic

Quantifies the sensitivity of model predictions to removing each block.

See section 2.9.2 for more details on COVRATIO and PRESS statistics.

University of St. Andrews 83 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

timeInfluenceCheck(geeModel, data$blockid, dists, splineParams)
influence plots (covratio and press statistics)
influence <- runInfluence(geeModel, data$blockid, dists, splineParams)

COVRATIO Statistic
W

04

a1110110 b8977 cBI64 d111187 d91164 e5941 e9941 5941 fa9124 g7961

Omitted Block

Figure 3.15: Plot of COVRATIO statistics; the dashed grey lines indicate the lower 2.5% and
upper 97.5% quantiles of the statistics.

COVRATIO statistics

e there will always be blocks outside the dashed lines (they are quantiles)
e As it is a relative measure, blocks far away may be of concern

e Blocks with COVRATIO statistic < 1 are of most concern (decrease in
precision when removed)

e Here, blocks d611810 and d6111116 are far away and result in an decrease
in standard errors when removed (Figure 3.15)

e These blocks are both grid code D6 in the year 2011 (first of two years
after impact) and the former in month 8 and the 10" day of the month.

e Both blocks have particularly high bird counts compared with most blocks
and so adds to the variability in the data.

e Conclusion: Variability increases with higher counts for Poisson data and
so it is fine for these blocks to remain.

University of St. Andrews 84 October 2013

3.5. DIAGNOSTICS CHAPTER 3. COUNT DATA EXAMPLE

T

PRESS Statistic

a1110110 b8977 c6964 d111187 d91164 e5941 e9941 5941 f39124 g7961

Omitted Block

Figure 3.16: Plot of PRESS statistics; 95% of the statistics fall below the dashed grey lines.
Labelled points on both plots are outside the grey dashed line(s) and are labelled with the
identifier for the block that has been removed to create the statistic (not an observation
number).

PRESS statistics

e there will always be blocks above the dashed line (it is a quantile)

e As it is a relative measure, blocks far away may be of concern

Predictions are sensitive to several blocks: ¢710213 ¢c710210 and d6111116
(Figure 3.16).

As above, these blocks all contain very high bird counts

Conclusion: Variability increases with higher counts for Poisson data and
so it is fine for these blocks to remain.

3.5.3 Raw Residuals

Raw residuals (observed - fitted values) can be represented spatially to ascertain
if some areas are over/under predicted.

e No real spatial pattern to the residuals (Figure 3.17)

e No systematic over/under prediction

e Conclusion: No spatial bias in model

University of St. Andrews 85 October 2013

3.5. DIAGNOSTICS

CHAPTER 3. COUNT DATA EXAMPLE

4000

2000

-2000

-4000

G000

T T T T T T T T
' 5000 -4000 -3000 -2000 -1000 0 1000 2000

4000

2000

-2000

-4000

6000

- 0.4

- 02

- 0.0

T T T T T T
' 5000 -4000 -3000 -2000 -1000 0

1000

T T
2000

Figure 3.17: Raw residuals before impact (left) and after impact (right). These residuals are

fitted values - observed values (mean® birds/km?).

are for several observation hours.

residual plot

*

mean density because

the predictions

resids <- fitted(geeModel) - data$birds
dims <- getPlotdimensions(data$x.pos, data$y.pos, 1000, 1000)

par (mfrow = c(1, 2), mar c(3, 3, 3, 5))
quilt.plot(data$x.pos[data$impact == 0], data$y.pos[data$impact

0], resids[data$impact == 0],
zlim = c(-2.2, 2.2))

quilt.plot(data$x.pos[data$impact
1], resids[data$impact == 1],
zlim = c(-2.2, 2.2))

asp = 1, ncol = dims[2], nrow

== 1], data$y.pos[data$impact
asp = 1, ncol = dims[2], nrow

= dims[1],

dims[1],

University of St. Andrews

86

October 2013

3.6. PREDS & INFERENCE

CHAPTER 3. COUNT DATA EXAMPLE

How did we do?

Table 3.2: Table of potential modelling problems, what method was used to assess the
problem, was the potential problem an issue in reality and if yes then what was the solution.
Solutions in red were not done and are possibilities for the future.

Method Issue (Y/N) Solution

Collinearity VIF N -
Over-dispersion - Y estimated by GEE
Model Fit Observed vs Fitted Y use more covariates
mean-variance relationship Fitted vs residuals N -
Correlated Residuals runs test Y modelled by GEE
Correlated Residuals Runs profile Y modelled by GEE
Covariate specification cumulative residuals N -
systematic over/under prediction cumulative residuals N -

spatial systematic over/under prediction raw residual plot N -
removing blocks COVRATIO statistics N -
removing blocks PRESS statistics N -

3.6 Prediction and Inference

3.6.1 Data requirements for predicting

For making predictions, we require a data frame containing grid data with
records for which to make predictions. This requires certain columns and records

these can be summarised as:

e Columns: each covariate retained in the best fitting model with
exactly matching column names

e Columns: x.pos and y.pos provide geographic position information
used for calculating distance matrices for CReSS/SALSA

e Columns: area provides the area of each grid cell.

e Rows: 1 record for each grid cell and for each date and time a

prediction is made for

Using our case study of nearshore data, we have a look at our prediction
data using the head function after we load the data.

loading the prediction grid data

data(ns.predict.data.re)

predictData <- ns.predict.data.re

head (predictData)

University of St. Andrews

87

October 2013

3.6. PREDS & INFERENCE CHAPTER 3. COUNT DATA EXAMPLE

X.pos y.pos area floodebb observationhour GridCode Year DayOfMonth
1 1500 -4500 0.385253 EBB 12 all 9 13
2 1500 -4500 0.385253 FLOOD 8 all 9 16
3 1500 -4500 0.385253 FLOOD 9 all 9 16
4 1500 -4500 0.385253 FLOOD 10 all 9 16
5 1500 -4500 0.385253 FLOOD 11 all 9 16
6 1500 -4500 0.385253 FLOOD 12 all 9 16
MonthOfYear impact truth
1 3 0 0.0003871928
2 3 0 0.0006163433
3 3 0 0.0006064698
4 3 0 0.0005072918
5 3 0 0.0004220902
6 3 0 0.0003570533

Note: the truth column is an artefact of this being simulated data. Or-
dinarily the user would not know this.

3.6.2 Making predictions

We make predictions using our best fitting CReSS/SALSA model from the
previous sections. This requires three steps:

1. Creating a matrix of distances from the prediction data to knots
2. Making predictions to the prediction data using the best fitting model

3. Converting the predictions back to the response scale

create the distance matrix for predictions
dists <- makeDists(cbind(predictData$x.pos, predictData$y.pos),
na.omit (knotgrid), knotmat = FALSE)$dataDist
use baseModel to make predictions to avoid a warning from
using geeModel (same answers though)
predslink <- predict(baseModel, predictData, type =)
reversing the log-link to convert predictions back to the response scale
preds <- exp(predslink)

The object preds contains the predictions for each record in our prediction
grid.

3.6.3 Visualising the redistribution using predictions

We know that our model identified a redistribution of animals within the
study area by the significant interaction term between impact and the two-
dimensional smooth of x.pos and y.pos. From the model coefficients it

University of St. Andrews 88 October 2013

3.6. PREDS & INFERENCE CHAPTER 3. COUNT DATA EXAMPLE

is not obvious where the redistribution has occurred. We are going to
investigate this by visualising the redistribution using our predictions.

The following is code for plotting the model predictions in Figure 3.18.

plotting the predictions for before and after impact

get the plot dimensions. We know each cell is 1000x1000m

dims<-getPlotdimensions(x.pos=predict.data.re$x.pos, predict.data.re$y.pos,
segmentWidth=1000, segmentLength=1000)

par (mfrow=c(1,2), mar=c(3,3,3,5))

quilt.plot(predictData$x.pos[predictData$impact==0],
predictData$y.pos[predictData$impact==0],
preds[predictData$impact==0], asp=1, nrow=dims[1], ncol=dims[2],
zlim=c(0, maxlim))

quilt.plot(predictData$x.pos[predictData$impact==1],
predictData$y.pos[predictData$impact==1], preds[predictData$impact==1],
asp=1,nrow=dims[1], ncol=dims[2], zlim=c(0, maxlim))

Note that the value for maxlim can be determined by plotting both plots
without the z1im argument first from which you can determine what the
maximum value in the scale of either plot is.

The quilt.plot function

e Plots averages of the predictions for each grid cell

e Subsetting the data using the square brackets restricts the input data
to before (left) and after impact (right plot)

e Using the z1lim argument allows ensuring that left and right plot
have the same scale colour scheme.

e The dimensions of the plot (nrow and ncol) determine the size of
each grid cell. Since we know our grid to be 1000m by 1000m we
can use getPlotDimensions to find the values for these arguments.

Conclusion

e Decline in bird density in the central eastern region
e Increase in density in the south of the study region

e The central region is where a known impact has taken place and the
results suggest that birds have moved from this region to the south
after the impact event

University of St. Andrews 89 October 2013

3.7. BOOTSTRAP CIS CHAPTER 3. COUNT DATA EXAMPLE

4000
T
o
=]
4000

2000
-2000 2000

-2000

-4000
-4000

-5000 -4000 -3000 -2000 -1000 o 1000 2000 -5000 -4000 -3000 -2000 -1000 0 1000 2000
Figure 3.18: Predictions of bird density (mean birds/km?) from the fitted model for before

(left) and after (right) an impact event. The * indicated the location of the impact; the A
indicate the knot locations.

Next step

e |s this difference real or simply random noise?

e We need to classify if the differences are significant or due to sampling
variation.

e We do this by constructing bootstrap confidence intervals for each
prediction in the prediction grid data.

3.7 Bootstrap confidence intervals

Following the predictions from section 3.6.2, we now create replicate pre-
dictions and use these to construct percentile confidence intervals around
each prediction grid cell. We run B iterations performing the following:

e Input best model from fitting to the original observed data.

e Use the model coefficients and covariance matrix to sample new co-
efficients from a multivariate Normal distribution.

University of St. Andrews 90 October 2013

3.7. BOOTSTRAP CIS CHAPTER 3. COUNT DATA EXAMPLE

e Make predictions to the study area using these coefficients.

This approach incorporates the uncertainty associated with the count model
coefficients.

The do.bootstrap.cress function

This function performs the number of bootstrap iterations specified with
the argument B where the fitting model is CReSS. The recommended num-
ber of bootstrap iterations is 999.

If ddf.obj is set to NULL, this function automatically applies the 'no
distance sampling’-approach with the three steps described above.

Since the prediction object can be quite large, it is not returned but
saved to file in the current working directory with the file name ‘predic-
tionboot.RData’.

do the bootstrap
do.bootstrap.cress(data, predictData, ddf.obj=NULL, baseModel, splineParams,
dists, B=250)

In the next step we use these bootstrap predictions to construct our 95%
confidence intervals for each prediction.

The makeBootCIs function

Using the B bootstrap predictions from a call to the do.bootstrap.cress
function, the makeBootCIs function creates lower and upper limits for 95%
confidence intervals using the percentile method for each record in the pre-
diction data.

An optional argument quants can be used to specify an interval other
than 95%. The default is quants = ¢(0.025, 0.975)

read in bootstrap predictions
load("predictionboot.RData")

make percentile confidence intervals
cis <- makeBootCIs(bootPreds)

University of St. Andrews 91 October 2013

3.7. BOOTSTRAP CIS CHAPTER 3. COUNT DATA EXAMPLE

3.7.1 Visualising bootstrap confidence intervals

Figure 3.19 depicts the range of uncertainty in the spatial estimates of
density. These can be contrasted with the point estimates found in Figure
3.18.

In this section we will investigate whether looking at the lower and
upper confidence limits from the 95% confidence intervals will give us a
similar picture as looking at the predictions.

4000
4000

2000
2000

-2000
-2000

-4000
-4000

b T T T T T T 1 b T T T T T T
-5000 -4000 -3000 -2000 -1000 0 1000 2000 -5000 4000 -3000 -2000 1000 0 1000 2000

4000
4000

2000
2000

2000
2000

-4000
-4000

b T T T T T T 1 b T T T T T T
-5000 -4000 -3000 -2000 -1000 O 1000 2000 -5000 -4000 -3000 -2000 -1000 O 1000 2000

Figure 3.19: Upper (top) and lower (bottom) 95% confidence intervals of bird density
(birds/km?) from the fitted model from before (left) and after (right) impact.

Conclusion

e Lower and upper intervals before impact (left) show a higher density
of birds in the central eastern region.

University of St. Andrews 92 October 2013

3.8. DIFFERENCES CHAPTER 3. COUNT DATA EXAMPLE

e After impact (right), both lower and upper intervals show a decline
in density in the central eastern region and an increase in the area to
the south.

e |t is difficult to see where in the study region any significant differ-
ences may have occurred.

3.8 Identifying differences

In this section we estimate the differences in predictions for each corre-
sponding pair of records from our prediction grid. The first half of our
prediction grid consists of records from before impact while the second
half consists of records from after impact.

Note that the before and after data need to be ordered in the same manner
and of the same length.

The getDifferences function

For each bootstrap iteration the differences in predictions from before and
after impact are calculated (Density, s, - Densitysefore) and 95% confi-
dence intervals for the difference calculated using the percentile method.

If these intervals contain the value zero, a '0' is recorded. If they do not
contain the value zero, 'l is recorded if the lower limit is above zero as
an indication that the difference is significantly positive (increase in animal
densities after impact). A '-1" is recorded if the upper limit is below zero,
indicating that the difference is significantly negative (decrease in animal
densities after impact).

The function returns a list of two objects:

e The median for each difference

e The marker for significant positive and negative differences

differences <- getDifferences(beforePreds =
bootPreds [predictData$impact == 0,],
afterPreds = bootPreds[predictData$impact == 1, 1)

University of St. Andrews 93 October 2013

3.9. COMPARISON CHAPTER 3. COUNT DATA EXAMPLE

3.8.1 Visualising significant differences

To illustrate the differences in animal densities after impact, we plot the
calculated differences (Density, s, - Densitype fore) using the quilt.plot
function.

The locations of the differences are added to the same plot using the "o’
and '+’ symbols.

The median for each after - before difference

mediandiff <- differences$mediandiff

The marker for each after - before difference:

positive (°1’) and negative (’-1’) significant differences

marker <- differences$significanceMarker

par(mfrow = c(1, 1))

quilt.plot(predictData$x.pos[predictData$impact == 0],
predictData$y.pos[predictData$impact == 0],
mediandiff, asp = 1, nrow = 7, ncol = 9)

add + or - depending on significance of cells. Just

requires one significance out of all to be allocated

points(predictData$x.pos[predictData$impact==0] [marker==1],
predictDataly.pos[predictData$impact==0] [marker==1], pch="+",
col= , cex=2)

points(predictData$x.pos[predictData$impact==0] [marker==(-1)],
predictData$y.pos[predictData$impact==0] [marker==(-1)], col= s
cex=3)

points(0,0,pch=20, col= ,, cex=3)

points(data$x.pos[which(data$GridCode=="e7’) [1]],
data$y.pos[which(data$GridCode=="e7’) [1]],cex=2, pch= , lwd=2,
col=)

Conclusion
e There was a significant decline in animals around the impact site and
closest to the cliff-top observer (Figure 3.20).

e There was also a significant increase in animals in the south of the
study area.

3.9 Comparison to the Truth

Here we will finalise our analysis by comparing our results with the truth.
This is possible as our data was simulated and hence the parameter values
known.

University of St. Andrews 94 October 2013

3.9. COMPARISON CHAPTER 3. COUNT DATA EXAMPLE

4000

2000

-2000
L

IIIHII

T T T T T T
-6000 -4000 2000 0 2000 4000

-4000
L

Figure 3.20: Mean differences in predicted bird density (birds/km?) before and after impact.
Positive values indicate more birds post impact and negative values fewer birds post impact.
Significant differences were calculated using percentile confidence intervals: '+’ indicates a
significant positive difference and 'o’ a significant negative one. The grey star is the site of
the impact event.

3.9.1 Overdispersion and correlation

We created data that were both overdispersed and positively correlated
within any grid cell-day (i.e. observed counts from the same grid cell
within the same day).

Truth Model
Overdispersed data estimated overdispersion
parameter was greater than 1

Positively correlated data accounted for using
GEE-based p-values

Conclusion

We conclude that our proposed methods are capable of identifying overdis-
persion and correlation in the data.

3.9.2 Type of impact

For this particular data set, the total number of animals before and after
impact did not change. The type of impact that we implemented was a
redistribution from the area surrounding the impact into the south of the
study area.

University of St. Andrews 95 October 2013

3.9. COMPARISON CHAPTER 3. COUNT DATA EXAMPLE

Truth Our model

Redistribution identified with a

within study area significant interaction term

Overall abundance | identified with the non-significant

remained the same main effect for impact
Conclusion

We conclude that our method was capable of correctly identifying the re-
distribution effect and reallocated birds to the correct locations despite
highly correlated and overdispersed data.

University of St. Andrews 96 October 2013

Chapter 4

Tips and Tricks for analyses in
R related to the MRSea Package

4.1 Distance Tips and Tricks

4.1.1 Analysing binned distance data

If we decide to bin the exact distance data into intervals and fit a detec-
tion function to interval distance data we can do this by first adding the
cut points of the respective interval for each detection to the data using
the function which.bin and then setting the argument binned within
meta.data to TRUE. Note that for the new version of mrds, the cut points
of the intervals also need to be defined with the argument breaks when
running the function.

data(dis.data.re)
dis.data.re<-which.bin(dis.data.re, cutpoints=c(0,50,100,150,200,250))
result.int<-ddf (dsmodel="mcds (key="hn",formula="1) ,data=dis.data.re,
method="ds", meta.data=list(width=250, binned=T,
breaks=c(0,50,100,150,200,250)))

The AIC value from this model may not be compared with the AIC from
a model which uses exact distance data from the offshore worked example
due to the fact that the data have changed by binning the distances.

4.1.2 Plotting side by side detection function plots for different
factor covariate levels

We begin with the example from the worked example above where we fit
a covariate model to the exact distance data. We use the following ddf

97

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

call V\(hich includes the two level factor covariate impact in the detecti_on
function model. We then plot the two detection functions for the respective
levels side by side:

data(dis.data.re)
result.imp<-ddf (dsmodel="mcds (key="hn", formula="1+impact),
data=dis.data, method="ds", meta.data=list(width=250))

par (mfrow=c(1,2))

plot(result.imp, showpoints=F, breaks=seq(0,250,25), subset=impact==0,
main="Before Impact")

plot(result.imp, showpoints=F, breaks=seq(0,250,25), subset=impact==1,
main="After Impact")

Before Impact After Impact

= | = i
= [e.w] =
2 S 2 S
A]
o - o -
[[
5 I 50T -
(=] L]
& - z _
= 8 o
=T T T T T T =T T T T T T
0 50 150 250 0 50 150 250
Distance Distance

4.2 Spatial Modelling Tips and Tricks
4.2.1 General

Use of grep function

the grep function is used in the following MRSea functions: getPvalues,
plotCumRes, plotRunsProfile, runPartialPlots and runSALSA1D .
This will cause the user some issues if there are nested covariate names in
the model.

For example:

e wavefront and wavefrontheight are not suitable as wavefront is nested,

University of St. Andrews 98 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

e but wavefront and waveheight are fine.

Save option for plotting

All of the plotting functions in MRSea have an option for saving a 'png’
image straight to your working directory. See the help files of specific
functions for details.

For example:

plotCumRes(fullModel, varlist, splineParams, save=T, label=)

This code will save cumulative residual plots for residuals ordered by all
variables specified in varlist and by predicted value and temporal order
into the working directory. The label allows the user to make the file
name specific to the model. In this case, one of the plots is labelled
‘CumRes_observationhour_glmk1.png’.

4.2.2 SALSA

SALSA1D knots

When smoothing biological data many people will restrict the degrees of
freedom to reflect the unlikely nature of more complex smooths. For this
reason, and our experience gained from using SALSA on biological data,
we recommend that the maximum number of knots for a one-dimensional
smooth is between 3 and 5.

SALSA2D knots
Requirements for the SALSA2D knot grid:

e (k x 2) data frame
e regular grid covering whole study region

— c(NA, NA) in rows where the knot location is invalid
— Invalid is on land

— or very far away from data

Make a grid that covers the study region

University of St. Andrews 99 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

60000

01

6055000
L

¥.pos
6050000
1

6045000
L

6040000
L

6035000
L

T T T T T
660000 670000 680000 690000 700000

xpos

Figure 4.1: Figure identifying knot locations inside a boundary (red). The grey dots are knot
locations outside the boundary and the black dots are the data locations.

load data
data(dis.data.re)
data(predict.data.re)

sequence of x and y values spaced by 2000 (roughly the spacing of the
transects)

x<-seq(min(dis.data.re$x.pos), max(dis.data.re$x.pos), by=2000)

y<-seq(min(dis.data.re$y.pos), max(dis.data.re$y.pos), by=2000)

grid<-expand.grid(x.pos=x, y.pos=y)

plot(dis.data.re$x.pos, dis.data.re$y.pos, pch=20, cex=0.5, asp=1,
xlab= , ylab=)
points(grid, pch=20, col=)

draw round boundary as no boundary polygon available
bnd<-locator ()

i have drawn the coastline to the top for the boundary
polymap (bnd, add=T)

First find the knot points that are on land (Figure 4.1).

marker<-rep(0, nrow(grid))

id<-which(inout (grid, bnd)==TRUE)

place a 1 in the marker vector for knots we do not want
marker [id]<-1

make knotgrid object and make unwanted knot locations NA
knotgrid<-grid
knotgrid[marker==1,]<-c(NA,NA)

There are still knots in the open water area to the bottom of the survey.
The Euclidean distance between knots and data is used to identify knots

University of St. Andrews 100 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

¥.pos

P
6035000 6040000 6045000 6050000 B0S6000 0GOOOO

T T T T T
660000 670000 680000 690000 700000

xpos

Figure 4.2: Figure identifying legal (purple) and illegal (grey) knot locations. The black dots
are the data locations.

that are located a specified distance from any data. These knot locations
are identified as illegal by placing an NA row in the knot grid object. The
final knot grid is given in Figure 4.2.

distcheck<-makeDists(datacoords=cbind(dis.data.re$x.pos, dis.data.re$y.pos),
knotcoords=na.omit (knotgrid))

naid<-which(is.na(knotgrid[,1]))

knots further tham 1km from data are identified with a 1
marker [-naid] [which(apply(distcheck$dataDist, 2, min)>1000)]<-1
knotgrid[marker==1,]<-c(NA,NA)

gap parameter

The gap parameter was discussed briefly in section 2.8.3 (page 28) to
prevent adjacent knots when there was no data between transects. Whilst
the example was for SALSA2D, gap is also an argument for SALSA1D.
Occasionally, knots may be placed too close causing prediction error. The
user may specify a gap in the salsaldlist or salsa2dlist arguments
to prevent this. The specification of a gap may also reduce computational
time, since there are fewer legal moves for a knot.

Interaction Terms

More than one interaction term may be included, however the code for
SALSA2D may only be run on one interaction at a time. Furthermore, the
knot locations selected for the spatial smooth in one interaction term will
also be used for any other interaction terms.

University of St. Andrews 101 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

4.2.3 SALSA1D with more than one smooth covariate

The examples presented in chapters 2 and 3 fitted only one smooth co-
variate. The following code describes how two or more smooth covariates
may be added to the model using runSALSA1D to select the smoothness
(knot locations) for each.

There are two ways to run models with more than one smooth covariate:

1. No removal of terms from the model. Useful if SALSA1D is only
required for knot selection and the user decides on variable selection.

2. Variable selection included. The resulting model may have terms
removed, be linear or smooth.

Both methods are set up in the same way:

Start by building the spline parameters object and specifying more than
one covariate in varlist.

make splineParams object
splineParams<-makesplineParams (data=data, varlist=c(5
), predictionData=predictData)

str(splineParams)
List of 3
$: list()
$:List of 5
..$ covar : chr "observationhour"
..$ explanatory: int [1:27798] 12 8 9 10 11 12 13 14 15 8 ...
..$ knots : num 12
..$ bd : int [1:2] 4 20
..$ degree : num 2
$:List of 5
..$ covar : chr "DayOfMonth"
..$ explanatory: int [1:27798] 13 16 16 16 16 16 19 19 19 25 ...
..$ knots : num 13.9
..$ bd : int [1:2] 1 31
..$ degree : num 2

To fit a simple model with the default knot values (one knot at the mean)
simply repeat the bs() term, used in the previous examples, one for each
covariate.

University of St. Andrews 102 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

fitting a model with two smooth terms

fullModel<-glm(birds ~ as.factor(floodebb) + as.factor(impact) +
bs (observationhour, knots=splineParams[[2]]$knots) +
bs(Day0fMonth, knots=splineParams[[3]]$knots) +
x.pos + y.pos, family=quasipoisson, data=data)

To run SALSA with more than one covariate there are changes in the
salsaldlist object and in the varlist argument of runSALSA1D. Each
covariate must be specified in varlist and minKnots_1d, maxKnots_1d,
startKnots_1d, degree and gaps must all be vectors the same length as
varlist. This allows different parameters for each of the covariates.

Below is an example of the two ways to run SALSA when you have more
than one smooth covariate:

1. No removal of terms

Each covariate is added to the model as a smooth term with the knots
specified in the spline parameter object (default knot at the mean if from
makesplineParams) and then SALSA checks each one in turn for an im-
provement in knot number and location. If there is an improvement then
the spline parameter object is updated with the new number and location.

Note: There must be a foldid column in the data so that cross-validation
can be used for selection.

data$response<- data$birds

set initial model without the spline terms in there

initialModel <- glm(response ~ as.factor(floodebb) + as.factor(impact) +
offset(log(area)), family = , data = data)

salsaldlist<-list(fitnessMeasure = , minKnots_1d=c(2,2),
maxKnots_1d = c(20, 20), startKnots_1d = c(2,2),
degree=c(2,2), maxIterations = 10, gaps=c(1,1))

run SALSA
salsaldOutput <- runSALSA1D(initialModel, salsaldlist, varlist=
c(s), factorlist=c(s R

predictData, splineParams=splineParams)

The structure of the output is the same as before but with more information
in modelFits1D regarding what terms were fitted and what knots were
chosen.

University of St. Andrews 103 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

str(salsaldOutput, max.level = 1)

List of 4
$ bestModel :List of 30
..— attr(*, "class")= chr [1:2] "glm" "Im"
$ modelFitsiD :List of 3
$ splineParams:List of 3
$ fitStat : num 31627

We can also look directly at the SALSA selected knots by looking at the
spline parameter object. In this example, three knots were chosen for obser-
vation hour, whilst the knot location for day of the month was unchanged
from the default value (the mean). One must now consider whether or
not day of the month should be a model covariate at all by fitting a model
with and without it or using the runSALSA1D withremoval code instead
(below).

knots chosen for observation hour
salsaldOutput$splineParams[[2]]$knots

[1] 9 15 17

knots chosen for day of month
salsaldOutput$splineParams[[3]]$knots

[1] 13.86

2. Removal of terms

Each covariate is added to the model as a smooth term with the knots
specified in the spline parameter object (default knot at the mean if from
makesplineParams) and then SALSA checks each one in turn for an
improvement in knot number and location. If there is an improvement
then the spline parameter object is updated with the new number and
location. If there is no improvement over the single mean knot model then
the term is tested as linear or with the term removed. The model with the
best CV score is returned as salsaldOutput$bestModel (in the example
below).

data$response<- data$birds
data$blockid<-pastedata$transect.id, data$season, data$impact, sep="")

University of St. Andrews 104 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

data$foldid<-getCVids(data, folds=5, block=’blockid’)

set initial model without the spline terms in there

initialModel <- glm(response ~ as.factor(floodebb) + as.factor(impact) +
offset(log(area)), family = , data = data)

salsaldlist<-list(fitnessMeasure = , minKnots_1d=c(2,2),
maxKnots_1d = c(20, 20), startKnots_1d = c(2,2),
degree=c(2,2), maxIterations = 10, gaps=c(1,1))

run SALSA
salsaldOutput <- runSALSA1D_withremoval(initialModel, salsaldlist, varlist=
c(s), factorlist=c(s R

predictData, splineParams=splineParams)

The structure of the output is the same as before but with more information
in modelFits1D regarding what terms were kept and if knots were chosen
and an additional entry, keptvarlist, listing the covariates retained in
the best model.

str(salsaldOutput, max.level = 1)

List of 5

$ bestModel :List of 30

..— attr(x, "class")= chr [1:2] "glm" "lm"
modelFitsl1D :List of 3

splineParams:List of 3

fitStat : num 31951

keptvarlist : chr "observationhour"

6 A hH B

The model selected has removed DayOfMonth and selects 3 knots for
observationhour. To see what happened during the process look at the
modelFits1D object in the output. The first step (list entry 1) fitted a
model with the knot values in splineParams. In this case that is one knot
at the mean for each covariate.

> salsaldOutput$modelFitsiD
[r111]

[[1]]$term

[1] "startmodel"

[[1]1]1$kept
NULL

[[1]]$basemodelformula

glm(formula = response ~ as.factor(floodebb) + as.factor(impact) +
offset(log(area)) + bs(observationhour, knots = splineParams[[2]]$knots,
degree = splineParams[[2]]$degree, Boundary.knots = splineParams[[2]]$bd)

University of St. Andrews 105 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

+ bs(DayOfMonth, knots = splineParams[[3]]$knots, degree =
splineParams[[3]]$degree, Boundary.knots = splineParams[[3]]$bd),
family = quasipoisson, data = data)

[[1]]$knotsSelected
NULL

[[1]]1$tempfits
Ccv fitStat
33.89111 32564.32819

The second step (list entry 2) investigates new knot locations and numbers for
observationhour. Three knots were selected by SALSA and kept in the model
due to an improvement in CV score from the step above (33.89 to 33.83). The
baseModelFits (model returned from this step) and modelfits (model with
knots chosen by SALSA) are identical as the new knots are retained.

[[211]

[[2]1$term

[1] "bs(observationhour, knots = splineParams[[2]]$knots,
degree=splineParams[[2]]$degree, Boundary.knots=splineParams[[2]]$bd)"

[[2]1]$kept
[1] "YES - new knots"

[[2]]$basemodelformula
glm(formula = response ~ as.factor(floodebb) + as.factor(impact) +
bs(Day0fMonth, knots = splineParams[[3]]$knots, degree =
splineParams[[3]]$degree, Boundary.knots = splineParams[[3]]$bd)
+ bs(observationhour, knots = splineParams[[2]]$knots, degree =
splineParams[[2]]$degree, Boundary.knots = splineParams[[2]]$bd)
+ offset(log(area)), family = quasipoisson, data = data)

[[2]]1$knotsSelected
[11 9 15 16

[[2]]1$baseModelFits
Ccv fitStat
33.83714 31627.38018

[[2]]$modelfits
Ccv fitStat
33.83714 31627.38018

The last step (list entry 3 in this example) investigates new knot locations and
numbers for DayOfMonth. A smooth term is not retained as the CV score
is worse for the selected knots (33.84) and improves over the model from the
previous step when the term is removed (33.83 to 33.82).

(311

University of St. Andrews 106 October 2013

CHAPTER 4. TIPS AND TRICKS FOR ANALYSES IN R RELATED TO
4.2. SPATIAL MODELLING TIPS AND TRICKS THE MRSEA PACKAGE

[[3]1$term
[1] "bs(DayOfMonth, knots = splineParams[[3]]$knots,
degree=splineParams[[3]]$degree, Boundary.knots=splineParams[[3]]$bd)"

[[3]1]18kept
[1] "NU"

[[3]]$basemodelformula
glm(formula = response ~ as.factor(floodebb) + as.factor(impact) +
bs(observationhour, knots = splineParams[[2]]$knots, degree =
splineParams[[2]]$degree, Boundary.knots = splineParams[[2]]$bd)
+ offset(log(area)), family = quasipoisson, data = data)

[[3]]1$knotsSelected
[1] "NA"

[[3]]$baseModelFits
cv fitStat
33.82023 31950.97759

[[3]]1$modelfits
Cv fitStat
33.8485 32397.2881

The splineParams object has been updated and also forms part of the output.

4.2.4 Bootstrapping

Bootstrap data created outside the function

If the detection function process is complicated owing to multiple data
sources, for example, the bootstrap data from the detection function pro-
cess may be created outside the do.bootstrap.cress function. Use the
argument nhats to specify a matrix where each column is a replicate and
each row is a data point, which must be in the same order as the original
data. The specification for B must not be greater than the number of
columns in nhats.

Bootstrapping in parallel

The argument nCores is set to 1 by default but if you are using a Windows
machine, increasing the number of cores used (using nCores) will speed
up the bootstrap process. Note that the package parallel is required for
this.

See 7do.bootstrap.cress for more information.

University of St. Andrews 107 October 2013

Bibliography

Fox, J. and Weisberg, S. (2002). An R companion to applied regression.
Sage, 2"? edition.

Hardin, J. and Hilbe, J. (2002). Generalized Estimating Equations. Chap-
man & Hall/CRC.

Scott-Hayward, L., Mackenzie, M. L., Donovan, C. R., Walker, C. G., and
Ashe, E. (2013). Complex Region Spatial Smoother (CReSS). Journal
of Computational and Graphical Statistics .

Walker, C., Mackenzie, M., Donovan, C., and O’Sullivan, M. (2010).
SALSA - a Spatially Adaptive Local Smoothing Algorithm. Journal
of Statistical Computation and Simulation 81, 179-191.

108

	Introduction
	Worked Example with Distance Sampling
	Introduction
	Two-Stage Modelling of Distance Sampling Data
	A brief introduction

	Preparing to conduct an analysis with MRSea
	Data Requirements
	Data requirements: columns
	Data Requirements: rows

	Distance Analysis
	Fitting detection functions
	Model Selection
	Goodness of fit
	Adjusting counts for imperfect detection
	Creating Count Data from Distance Data

	Introduction to Spatial Modelling
	Loading the Data
	Exploratory Data Analysis (EDA)
	Checking for Collinearity

	Fitting a Model
	Fitting a Smooth Term
	Checking for Correlation
	Model Selection
	Checking p-values
	Assessing covariate relationships

	Diagnostics
	Cumulative Residuals and runs profiles
	COVRATIO and PRESS statistics
	Raw Residuals

	Prediction and Inference
	Data requirements for predicting
	Making predictions
	Visualising the redistribution using predictions

	Bootstrap Confidence Intervals
	Visualising Bootstrap Confidence Intervals

	Identifying Differences
	Visualising differences

	Comparison to the Truth
	Detection function
	Overdispersion and correlation
	Type of impact

	Worked Example without Distance Sampling
	Introduction
	Preparing to conduct an analysis with MRSea
	Loading the Data
	Data Requirements
	Exploratory Data Analysis (EDA)
	Checking for Collinearity

	Fitting a Model
	Fitting a Smooth Term
	Checking for Correlation
	Model Selection
	Checking p-values
	Assessing covariate relationships

	Diagnostics
	Cumulative Residuals and runs profiles
	COVRATIO and PRESS statistics
	Raw Residuals

	Prediction and Inference
	Data requirements for predicting
	Making predictions
	Visualising the redistribution using predictions

	Bootstrap confidence intervals
	Visualising bootstrap confidence intervals

	Identifying differences
	Visualising significant differences

	Comparison to the Truth
	Overdispersion and correlation
	Type of impact

	Tips and Tricks for analyses in R related to the MRSea Package
	Distance Tips and Tricks
	Analysing binned distance data
	Plotting side by side detection function plots for different factor covariate levels

	Spatial Modelling Tips and Tricks
	General
	SALSA
	SALSA1D with more than one smooth covariate
	Bootstrapping

