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INTRODUCTION

Understanding how animals track resources in space 
and time is increasingly recognized as central to ad-
vancing the fields of movement ecology, foraging ecol-
ogy and conservation (Abrahms et al.,  2021; Barlow & 
Torres,  2021; Nathan et al.,  2008). For pelagic animals 
in upwelling ecosystems, the boom and bust of biogenic 

productivity plays a fundamental role in the transfer of 
energy from small plankton to larger marine vertebrates 
including fish, seabirds and marine mammals (Ainley 
et al., 1995; Szoboszlai et al., 2015). During highly pro-
ductive seasons, oscillations in the physical environ-
ment caused by wind-driven upwelling can rapidly cause 
forage species like krill and schooling fish to aggregate 
(Benoit-Bird et al.,  2019). These aggregations of prey 
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Abstract

Trophic transfer of energy through marine food webs is strongly influenced by 

prey aggregation and its exploitation by predators. Rapid aggregation of some 

marine fish and crustacean forage species during wind-driven coastal upwelling 

has recently been discovered, motivating the hypothesis that predators of these 

forage species track the upwelling circulation in which prey aggregation occurs. 

We examine this hypothesis in the central California Current Ecosystem using 

integrative observations of upwelling dynamics, forage species' aggregation, 

and blue whale movement. Directional origins of blue whale calls repeatedly 

tracked upwelling plume circulation when wind-driven upwelling intensified and 

aggregation of forage species was heightened. Our findings illustrate a resource 

tracking strategy by which blue whales may maximize energy gain amid ephemeral 

foraging opportunities. These findings have implications for the ecology and 

conservation of diverse predators that are sustained by forage populations whose 

behaviour is responsive to episodic environmental dynamics.
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are important to large predator foraging success by in-
creasing prey capture rate and energy intake (Goldbogen 
et al., 2011, 2019; Hazen et al., 2015). However, the pat-
terns and processes underlying how these top predators 
predict, detect and exploit patchy and ephemeral prey 
swarms remain poorly understood.

This dearth in our understanding of how ani-
mals find food in patchy oceanic habitat is particu-
larly evident at the largest scale, where blue whales 
(Balaenoptera musculus) feed on groups of small-bodied 
crustaceans, krill (Croll et al., 2005; Fiedler et al., 1998; 
Schoenherr, 1991). With a body length that can exceed 
30 m and a body mass that can exceed 150 tonnes, the 
blue whale is the largest animal ever to have evolved 
(Goldbogen et al.,  2019; Goldbogen & Madsen,  2021). 
Meeting the high energetic demands of their massive 
bodies has required evolution of morphology and be-
haviours that enable efficient foraging (Goldbogen 
et al., 2011, 2019; Hazen et al., 2015). An individual blue 
whale can consume more than 20 tonnes of krill in a 
day (Savoca et al.,  2021), and they preferentially con-
sume food patches comprising krill that are larger and 

more energy-dense than average within a local forag-
ing habitat (Croll et al., 2005). Beyond highly efficient 
and effective foraging at the individual level, social for-
aging mediated by long-distance vocal signalling may 
enable blue whale populations to collectively locate ex-
ceptional but ephemeral foraging opportunities (Cade, 
Fahlbusch, et al., 2021; Cade, Seakamela, et al., 2021).

The blue whale population inhabiting the eastern 
North Pacific, estimated to be between 1500 and 2000 
individuals (Calambokidis & Barlow,  2020; Carretta 
et al., 2021), migrates annually between foraging hab-
itat spanning California to the Gulf of Alaska and 
breeding habitat off Mexico and Central America 
(Bailey et al.,  2009; Calambokidis et al.,  2009, 2015). 
Biologically important areas for this population 
have been identified from long-term observations of 
where blue whales aggregate to forage (Calambokidis 
et al.,  2015). One of these areas is in Monterey Bay 
National Marine Sanctuary (MBNMS; Figure  1a). 
MBNMS resides within the central California Current 
Ecosystem, an eastern boundary current system in 
which wind-driven coastal upwelling transports cold 

F I G U R E  1   Ecological setting. (a) The study region is in Monterey Bay National Marine Sanctuary (MBNMS) along the eastern margin 
of the North Pacific. Hydrophones are operated through the Monterey Accelerated Research System (MARS) cabled observatory (black line 
and circle; main node at 36.713°N, 122.186°W, 891 m depth). The white circle marks the GPS location of a tagged blue whale, acquired 10 min 
after a series of blue whale calls recorded on the tag were matched to calls received at MARS, and the green-shaded sector defines the span of 
MARS acoustically estimated bearings to calls originating from that tagged whale (see Results). (b) An infrared sea surface temperature (SST) 
image from 10 November 2020 14:44 UTC represents synoptic patterns of coastal upwelling plumes (cool SST labelled P) at a time when blue 
whale behavioural response to upwelling was observed. Point Año Nuevo and Point Sur are the primary locations in the Monterey Bay region 
where coastal upwelling plumes originate (Rosenfeld et al., 1994). The black contour defines the approximate domain within which bearings to 
calling blue whales can be reliably estimated (see ‘Materials and methods’). The diamond marks the location of a mooring where temperature 
and salinity were monitored. (c) This 6-year time-series from MARS passive acoustic monitoring represents seasonal and interannual variation 
in blue whale call activity. Shown are the monthly interquartile range and median values of the daily blue whale B-call index (see ‘Materials 
and methods’). The two periods of blue whale call activity for which we examine directional acoustic vector sensor data are indicated by the 
numbered boxes. Whale artist: Larry Foster.
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(Figure 1b; upwelling plumes labelled P), nutrient-rich 
subsurface water into the sunlit surface layer, thereby 
fuelling abundant photosynthetic primary production 
(Barber & Smith,  1981; Huyer,  1983; Pennington & 
Chavez,  2000; Ryther,  1969). Enrichment of primary 
production, in turn, supports the populations of forage 
species upon which many other species depend (Cimino 
et al., 2020; Santora et al., 2017).

Resource tracking by blue whales in the California 
Current Ecosystem has previously been explored, pri-
marily at the scale of seasonal migratory movements. 
Following the breeding season, the timing of blue whale 
migration into foraging habitat consistently occurs 
during spring, when krill populations develop after 
the seasonal rise of primary productivity (Abrahms 
et al., 2021; Croll et al., 2005). Resource tracking during 
this annual migration is thought to be enhanced by 
long-term memory of relatively stable and productive 
foraging habitat (Abrahms et al.,  2019). Blue whales 
vary the timing of their departure from foraging hab-
itat by up to 4 months from year to year, potentially as 
a strategy to maximize energy gain before the breeding 
season (Oestreich et al.,  2022; Oestreich, Fahlbusch, 
et al., 2020). During annual periods of residence within 
foraging habitat, blue whales must frequently find dense 
prey aggregations. While it is known that blue whale 
foraging occurs primarily at the edge of the continen-
tal shelf and in submarine canyon habitat, where dense 
krill swarms develop (Cade, Fahlbusch, et al.,  2021; 
Cade, Seakamela, et al., 2021; Croll et al., 2005; Fiedler 
et al., 1998; Santora et al., 2018; Schoenherr, 1991), lit-
tle is known about the hydrodynamic, behavioural, and 
sensory influences that underlie successful resource 
tracking by blue whales in highly dynamic habitat. 
Studies off New Zealand have examined temporal lags 
between wind, ocean temperature and indicators of blue 
whale presence, toward forecasting whale distribution 
patterns for dynamic management (Barlow et al., 2021; 
Barlow & Torres,  2021), however no studies have yet 
tracked blue whale movement in relation to dynamic 
upwelling circulation.

It has recently been discovered that krill and other 
forage species aggregate during upwelling (Benoit-Bird 
et al.,  2019), and opportunistic encounters with excep-
tionally dense aggregations of foraging blue whales in 
the Monterey Bay region coincided with upwelling plume 
boundaries at the shelfbreak where exceptional krill for-
aging conditions existed (Cade, Fahlbusch, et al., 2021; 
Cade, Seakamela, et al., 2021). These recent insights mo-
tivate the hypothesis that blue whales track the coastal 
upwelling features in which krill aggregation occurs. 
Here, we use observations of predator, prey and environ-
mental dynamics to examine this hypothesis and reveal 
resource tracking by blue whales at previously inaccessi-
ble spatiotemporal scales, with meaningful implications 
for conservation.

M ATERI A LS A N D M ETHODS

Directional acoustic vector sensing of blue whale 
calls

Passive acoustic monitoring (PAM) of blue whale 
calls used the Monterey Accelerated Research System 
(MARS) cabled observatory, located in the centre of 
MBNMS (Ryan et al., 2016; Figure 1a). Omnidirectional 
PAM through MARS has been applied to study ba-
leen whale ecology (Oestreich et al.,  2022; Oestreich, 
Fahlbusch, et al.,  2020; Ryan et al.,  2019), predator–
prey dynamics (Urmy & Benoit-Bird, 2021) and anthro-
pogenic noise (Krumpel et al.,  2021; Ryan et al.,  2021; 
Simonis et al., 2020). Directional PAM through MARS 
was enabled by an acoustic vector sensor, a GeoSpectrum 
Technologies M20, deployed in January 2019 (Smith 
et al.,  2022). This type of sensor has been applied to 
demonstrate tracking of humpback whales off Hawaii 
(Tenorio-Hallé et al., 2022). Although blue whale D calls 
have been associated with foraging (Oleson et al., 2007), 
B calls are the most powerful and prevalent of the four 
call types made by blue whales in our study region 
(Oestreich et al., 2022; Oestreich, Fahlbusch, et al., 2020; 
Širović et al.,  2015) and comprise the focal signal used 
here to detect and track blue whales. Because the record-
ing environment is foraging habitat, the directional pat-
terns of all blue whale calls are relevant to understanding 
spatiotemporal attributes of their foraging behaviour 
and ecology.

Beyond core PAM data acquisition and processing 
methods (Smith et al.,  2022), we developed methods to 
extract bearings from the MARS observatory to blue 
whale B-call origins. June through February of two se-
quential years (numbered boxes in Figure  1c) were ex-
amined. Each annual detection period begins in late 
summer with the rise of song behaviour and ends in 
winter when the whales migrate to lower latitudes for 
the breeding season (Oestreich et al.,  2022; Oestreich, 
Fahlbusch, et al., 2020). The third harmonic of the B-call 
(Figure 2a,b) typically has the highest ratio of peak to 
background energy (Oestreich, Fahlbusch, et al.,  2020; 
Oleson et al., 2007; Wiggins et al., 2005) and is targeted 
in this analysis. The basis for analysis is the call index 
(Figure  1c), which quantifies the ratio of maximum 
power spectral density (psd) within the frequency band 
of call energy to average psd in two adjacent background 
frequency bands that do not contain energy from low 
frequency baleen whale calls (Oestreich, Fahlbusch, 
et al., 2020; Širović et al., 2009). Using power and direc-
tional spectra at 1-s by 0.5  Hz resolution, the analysis 
tracks the frequency downsweep within the call to ex-
tract the direction of call origin at the frequency of peak 
energy (Figure  2b). Automated results for each second 
include the call index and the bearing of maximum psd 
within the peak band of the call.
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Automated analysis results were reviewed manually, 
first to identify the minimum index value for which B 
calls could be clearly and consistently distinguished, 
and their bearing relative to MARS could be reliably 
extracted. Representative of the full time series, the ex-
ample in Figure 2b shows B calls received from multiple 
whales. All one-second intervals with a call index >1.25 
clearly identify individual calls and allow tracking of 
their characteristic decrease in frequency. This segment 
shows calls originating from steady bearings as well as 
calls associated with a steadily changing bearing (dashed 
line in Figure 2b, lower panel), interpreted to be from an 
animal moving relative to the hydrophone. The second 
purpose of manual analysis was to exclude false posi-
tive detections caused by shipping noise. These periods 
were reliably distinguished from blue whale calling and 
removed. Manual review of the entire study period was 
conducted using custom software in MATLAB. The 
final analysis data set comprised the times and bearings 
of manually screened seconds having a call index >1.25.

Modelling of the B-call detection domain

To approximate the geographic region from which we 
can estimate the direction of call origin, we applied 
modelling of acoustic transmission loss, which is fully 

described in Oestreich, Fahlbusch, et al. (2020). Based on 
modelled transmission loss and a nominal B-call source 
level of 171 dB re 1 μPa-m (Thode et al., 2000), received 
levels (RL) were estimated for a region within 370 km of 
MARS. Although no directivity measurements of blue 
whale calls have been made, their low frequency calls 
are likely to be relatively omnidirectional. Considering 
a mean background of ~80 dB re 1  μPa2/Hz at MARS 
within the frequency band below the B-call peak band 
(Figure 2a), a minimum call index of 1.25 defines a mini-
mum RL of ~100 dB re 1 μPa2/Hz for reliable estimation 
of call bearings. The domain that exceeds this mini-
mum RL (Figure 2c) spans the coastal region between 
Point Año Nuevo and Point Sur, and it extends through-
out most of Monterey Bay inshore of MARS and up to 
~70 km offshore of MARS.

Validation of directional acoustic vector sensing

To validate the novel in situ use of MARS directional 
acoustic vector sensing of blue whale B calls, we used 
animal-borne sensor data from a suction-cup attached 
tag (Figure 3). Tag data, including GPS locations and 
the whale's dive, foraging and calling behaviour, were 
processed as in Cade, Gough, et al.  (2021). The tag's 
hydrophone was sampled at 24 kHz, the accelerometer 

F I G U R E  2   Directional acoustic vector sensor analysis methods. (a) Geometric mean spectrum levels for July 2019 through January 
2020 illustrate a peak caused by the third harmonic of the blue whale B call. The frequency band for peak localization is shaded in grey; the 
frequency bands used for background are indicated by the thick black lines along the frequency axis, above and below the peak band. The call 
index is the ratio of maximum power spectral density (psd) within the frequency band of the call to average psd in the background bands (see 
‘Materials and methods’). (b) Example of data processing to obtain bearing estimates for blue whale B calls (direction of call origin relative to 
MARS). The top panel is a spectrogram representing the third harmonic of B calls (sample rate = 8 kHz, nfft = 16,000, hanning window, 50% 
overlap). For each second for which the call index exceeds 1.25, the middle panel shows the frequencies at which maximum energy was detected 
within the peak band (note the tracking of peak energy in the downswept B calls), and the bottom panel shows estimated bearings from MARS 
to the caller, extracted at the frequency of peak call energy. The dashed line indicates a steadily changing bearing presumed to be from a whale 
moving relative to the hydrophone. (c) The domain over which peak:background ratios are sufficient to reliably estimate the direction of call 
origin is approximated by modelling of acoustic transmission loss. This domain is defined by received level (RL) > 1.25 times mean spectrum 
levels within a frequency band below the peak band (panel a, 80 dB re 1 μPa2/Hz). The black contour is the outer limit of RL > 100, smoothed 
with a moving mean window of 7° bearing.
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at 400 Hz, the magnetometers and gyroscopes at 50 Hz 
and other sensors at 10 Hz. While the animal-borne hy-
drophone may record calls from both the tagged whale 
and nearby conspecifics, the animal-borne acceler-
ometer can be used to validate which calls were from 
the tagged whale (Goldbogen et al.,  2015; Oestreich, 
Fahlbusch, et al., 2020; Stimpert et al., 2015). In match-
ing data from the animal-borne tag and the acoustic 
vector sensor at MARS, it was essential to identify 
periods when calling from the tagged whale could be 
accurately located by GPS data, and calls received 
at MARS could be attributed to the tagged whale. 
Within one of the tag deployment records was a pe-
riod of calling by the tagged whale as well as multiple 

GPS locations when the whale surfaced. The cadence 
of singing and breathing from the tagged whale was 
compared to the MARS recordings to identify a pe-
riod when calls from this whale could be isolated from 
other calls received at MARS, and the directions of 
these calls were compared across the two methods of 
bearing estimation: GPS versus acoustic.

Active acoustic sensing of forage species

Observations of forage species were made nearly continu-
ously throughout the study period with a 38 kHz upward-
looking scientific echosounder at MARS. The modified 

F I G U R E  3   Validation of acoustic bearings from MARS to the origin of received blue whale calls. (a) Observations from MARS and an 
animal-borne tag characterize the period when sufficient tag GPS positions and call activity from the tagged whale enabled effective matchup 
with signals received at MARS. The percent of time for which the call index exceeded 1.25 at MARS is represented in 5-min bins. Behavioural 
events indicated in the animal depth profile were derived from multiple sensors on the tag (Cade, Gough, et al., 2021). (b) Detailed view of data 
from the animal-borne tag and MARS during the focal period of matchup (shaded in a), when calls made by the tagged whale were definitively 
matched to calls received at MARS. The depth profile overlaid on the spectrogram from the animal-borne hydrophone defines the whale's 
surfacing (breathing) intervals. The starts of calls from the tagged whale are indicated by vertical dashed lines in all panels. To align signals 
from the spatially offset platforms, the time axis of the MARS data was shifted by an appropriate acoustic propagation delay between source 
and receiver. The period highlighted in green along the top axis defines the period from which acoustically estimated call bearings, one average 
bearing per call, were compared with bearings based on GPS location (Figure 1a, the green sector spans the range of acoustically estimated 
bearings; the white circle is the GPS position).
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Simrad EK60 echosounder transmitted a 2.048 ms ping 
upward in a 7-degree beam every 2.5 s using an output 
power of 400 W (Urmy & Benoit-Bird, 2021). This instru-
ment could detect macrozooplankton, micronekton, and 
larger animals from its position at 890 m depth on the sea-
floor to the surface. Data were processed using Echoview 
software to remove ambient noise and spikes along with 
other invalid data including the ocean surface before ad-
ditional analyses that used a combination of Echoview 
and custom scripts in LabVIEW. Aggregations, contigu-
ous areas of scattering that were significantly higher in 
intensity than their surroundings in all directions, were 
detected following Benoit-Bird and Waluk  (2021). The 
total area scattering and the area scattering within ag-
gregations were calculated for each sampling day in the 
upper 200 m, spanning the dive depth range observed in 
foraging blue whales (Croll et al., 2005).

Upwelling dynamics and their spatial 
relationship to calling blue whales

Coastal upwelling was examined using multiple data 
sources. Satellite based infrared remote sensing of sea 
surface temperature (SST) describes regional patterns 
of upwelling. In the Monterey Bay region, coastal up-
welling forms cold plumes (labelled P in Figure 1b) that 
originate in upwelling centres located at coastal land 
points—north of the Bay at Point Año Nuevo, and south 
of the bay at Point Sur. These plumes tend to flow equa-
torward, and the plume originating at Point Año Nuevo 
typically bifurcates, partly flowing into Monterey Bay 
(Ramp et al.,  2005; Rosenfeld et al.,  1994). Single scan 
Advanced Very High Resolution Radiometer SST im-
ages were acquired through the NOAA ERDDAP server. 
While clouds and fog often preclude remote sensing of 
SST, continuous moored observations of temperature 
and salinity at the mouth of Monterey Bay (located at the 
diamond in Figure 1b) enabled continuous detection of 
the presence of recently upwelled water in the bay. Wind-
driven upwelling was examined using the daily coastal 
upwelling transport index (Jacox et al., 2018) from 37°N.

An essential consideration for interpreting directional 
relationships between coastal upwelling plumes and call-
ing whales is the extent to which upwelling plumes flow 
within the domain of call detection at MARS. Because 
Point Sur is near the southern limit of the call detection 
range from MARS (Figure 1b), most of a plume origi-
nating at Point Sur (labelled P) flows outside the MARS 
detection domain, and only whales near the plume origin 
could be detected at MARS. In contrast, the Año Nuevo 
plume flows southward from its origin near the north-
ern limit of the call detection range, placing the plume 
within the MARS detection domain (Figure  1b). This 
distinction between the two upwelling centers necessi-
tates constraining examination of physical-biological 
relationships to the Point Año Nuevo plume.

RESU LTS

Validation: Directional acoustic vector sensing of 
a tagged calling blue whale

Animal-borne tag data enabled validation of acoustic 
bearing estimates from MARS (Figure  3). The tag re-
cord shows that the whale transitioned from active forag-
ing during the day, to mixed foraging and calling during 
dusk, to only calling during the night (Figure 3a). Within 
an approximately one-hour period during the night, the 
cadence of its calling and surface breathing intervals 
could be distinguished among the signals received at 
MARS. Within this hour, a series of two bouts of calls, 
each following a surface breathing interval, illustrate 
the criteria for reliable validation (Figure 3b). All calls 
registered on the tag hydrophone and tag accelerometer, 
strongly suggesting that they were from the tagged whale. 
While MARS reception of the first five calls coincided 
with the reception of calls from other whales, recep-
tion of the latter five calls did not (Figure 3b), thus sup-
porting unambiguous comparison of acoustic and GPS 
bearings from MARS. The span of MARS-based acous-
tic bearings for the latter five calls (Figure  1a, green-
shaded sector emanating from MARS to the southeast) 
aligned closely with GPS coordinates from the whale tag 
(Figure 1a, white circle). The GPS position shown nearly 
coincided with a GPS position acquired 25 min earlier, 
and examination of the whale's movements from a dead-
reckoned track (using tag sensor data) indicated that the 
whale did not wander from the nearby GPS positions 
during this period. This accurate matchup between GPS 
and acoustic bearings supports MARS-based analysis of 
temporal variations in directional occupancy by calling 
blue whales.

Long-term patterns: Association of calling blue 
whales with upwelling plume areas

Approximately the same amount of total call time was 
analysed for each year: 405 and 449 h in 2019–2020 and 
2020–2021, respectively. In both years, the bearings of 
maximum cumulative call detection aligned with bear-
ings to the regions where plumes emanate from the 
coastal upwelling centres (Figure 4a,b). During 2019–
2020, most of the calls comprising the strong local 
maximum around the bearing to Point Sur (Figure 4b) 
occurred during September–November 2019 (Figure 4c, 
upper panel). During 2020–2021, call activity peaks 
of approximately equal magnitude were aligned with 
each upwelling centre/plume region (Figure  4a,b). 
Call activity centred around the bearing to Point 
Sur was greatest during September–October, while 
that centred around the bearing to Point Año Nuevo 
peaked during November–December (Figure 4c, lower 
panel). Narrower maxima aligned with the Point Sur 
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upwelling centre are consistent with the condition that 
only the northernmost portion of this plume would re-
side within the MARS call detection domain during 
upwelling conditions (Figure 4a,b). The broader peak 
aligned with the Point Año Nuevo plume in each year 
is consistent with the condition that this entire plume, 
spanning a broader directional range, would reside 
within the call detection domain during upwelling con-
ditions (Figure 4a,b).

Episodic patterns: Blue whales track wind-driven 
upwelling plumes

Consideration of blue whale resource tracking is method-
ologically constrained to the Point Año Nuevo upwelling 

plume (Figure  4a, see ‘Materials and methods’). The 
strongest call activity from a directional sector spanning 
this plume origin occurred during two periods in 2020: 
early-mid November and late November through mid-
December (Figure  4c, white box in lower panel). Both 
periods showed (1) movement from west of the bearing 
to Point Año Nuevo to east of this bearing, and (2) per-
sistence of elevated call activity east of the bearing to 
Point Año Nuevo for at least a week (periods shaded 
grey below Figure 4c). Movement patterns were resolved 
at the level of individual whales (Figure 4d; tilted max-
ima in the time/direction plane) and included oscillatory 
westward and eastward movement immediately east of 
the bearing to Point Año Nuevo (Figure 4d, sawtooth-
shaped maximum with apices at the bearing to Point 
Año Nuevo during 10–11 November).

F I G U R E  4   Overview of whale-call bearings relative to coastal upwelling centres. (a) Upwelling centres are associated with coastal land 
points north and south of Monterey Bay, as illustrated by plumes of cold water originating at Point Año Nuevo and Point Sur in this sea surface 
temperature (SST) image from 10 November 2020 14:44 UTC. The dashed lines mark the bearings from MARS to the coastal origins of the 
upwelling plumes. (b) Total hours of call index values exceeding 1.25 during annual periods of song presence (numbered in Figure 1c) within 15° 
directional bins. Dashed lines indicate bearings from MARS to the coastal upwelling centres (as in (a)). (c) Daily representation of (b) for each 
annual period. For 2020–2021 (lower panel), the grey diamond indicates the time of the SST image in panel (a), and the white box defines the 
focal period examined in Figure 5. (d) Hourly representation of directional call activity during periods when a consistent pattern of blue whale 
behavioural response to upwelling was observed (grey shaded periods below panel (c)).
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The patterns of whale movement corresponded to 
patterns in atmospheric, oceanic and prey conditions 
(Figure  5). The two periods of eastward movement 
across the northern hemisphere of the call detection do-
main (Figure 4c, white box in lower panel) are evident 
as increases in the percentage of calling that originated 
from the NE quadrant (Figure 5a–c). Both periods co-
incided with the presence of an upwelling plume in 
the bay (periods labelled U1 and U2 in Figure 5b–d); 
plume presence is indicated by surface outcropping of 
water density contours at M1 (Figure 5a,d). Each pe-
riod of upwelling plume presence in the bay followed 
strong peaks in the coastal upwelling transport index 
(Figure 5e), showing that wind forcing caused the oce-
anic circulation with which movement of calling blue 
whales was associated. Biomass of prey species within 
aggregations closely followed the upwelling index 
(Figure  5e), which explained 49% of the variability 
in area scattering found within aggregations in the 
upper 200 m during this period, but only 10% of the 
variability in total area scattering. During upwelling 
events (U1 and U2 in Figure 5b–e) more than 80% of 
scatterers were within aggregations, but during wind 

relaxation periods (R1 and R2 in Figure  5b–e) less 
than 20% of scatterers were found in aggregations.

Attributes of variation were similar across physical, 
biological and behavioural changes through upwell-
ing cycles. The first upwelling response period (U1 in 
Figure 5b–e) was marked by a single large peak in up-
welling strength, followed by a steep outcropping of iso-
pycnals to the surface that lasted a week, high biomass 
of prey species within aggregations, and persistently 
high percentages of call activity originating from the 
NE quadrant. The second event (U2 in Figure 5b–e) was 
marked by three peaks in upwelling strength, followed by 
more variable shoaling of isopycnals to the surface over 
3 weeks, high and more variable biomass of prey within 
aggregations, and more variably elevated percentages of 
call activity originating from the NE quadrant.

The directional occupancy of blue whales was con-
sistent through multiple cycles in wind state (Figure 5f). 
During wind relaxation, blue whale calling originated 
primarily from the northwestern quadrant of the call re-
ception domain: 82% during R1 and 96% during R2. This 
quadrant spans offshore habitat (beyond the continen-
tal shelf), the Point Año Nuevo upwelling plume origin 

F I G U R E  5   Ephemeral wind-driven resource tracking by blue whales. (a) Reference map. Octant radials (dashed black lines) within the 
northern hemisphere of the call detection domain define ecologically significant features for interpreting blue whale movement (see the text). 
Red lines define recommended tracks for vessels 300 gross tons and heavier. (b) MARS call detection rate summed for the northern hemisphere 
(N) around MARS and the northeast quadrant (NE, the two octants northeast of MARS in panel (a)). (c) Percentage of call detection time from 
the northeast quadrant (NE/N). (d) Water column density measured at mooring M1 (location in panel (a)). (e) The coastal upwelling transport 
index (CUTI) for 37°N, at the north end of Monterey Bay (bars) and area scattering (sa) within patches in the upper 200 m above MARS 
(points), representing aggregation of forage species. Daily CUTI values were smoothed with a 3-day running mean. Periods highlighted in 
yellow across panels ((b)–(e)) indicate persistently elevated percentages of calling from the NE quadrant (panel (c)), coincident with the presence 
of recently upwelled water in Monterey Bay (outcropping of isopycnals to the surface in panel (d)). (f) Percentages of call time originating from 
each octant of the northern hemisphere of the call reception domain are labelled and coloured according to magnitude during alternating 
periods of wind relaxation and upwelling (as identified in panels (b)–(e)).
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and foraging habitat along the shelfbreak (Figure 5a,f). 
During both wind relaxation periods, calling whales 
predominantly occupied the WNW octant that is tran-
sected by four shipping lanes (Figure 5f). During upwell-
ing, the percentage of calling that originated from the 
northeastern quadrant greatly increased: by factors of 
3.1 and 12 during U1 and U2, respectively. This quadrant 
spans foraging habitat where upwelling plumes flow into 
Monterey Bay and over Monterey Canyon (Figures  4a 
and 5a,f). These behavioural patterns involved not only 
occupancy of habitat through which shipping lanes tran-
sect, but also movement across shipping lanes between 
alternate states of wind forcing (Figure 5a,f).

DISCUSSION

Applying integrative observations of predator, prey and 
environment, we examined a hypothesis based on the 
recent discovery that forage species form dense aggre-
gations during wind-driven coastal upwelling—a phe-
nomenon that can greatly enhance foraging efficiency 
and trophic transfer of energy (Benoit-Bird et al., 2013, 
2019). Our hypothesis is that blue whales track the 
coastal upwelling circulation in which their most essen-
tial resource, aggregated krill, occurs. After validating 
the effectiveness of passive acoustic methods to monitor 
directional patterns of calling blue whales and applying 
these methods to 2 years of data, we find support for this 
hypothesis. This window into dynamic and ephemeral 
resource tracking was enabled by novel passive acous-
tic sensing technology, the application of which can ad-
vance not only ecological knowledge, but also prediction 
toward informed dynamic management and protection 
of an endangered species (e.g., avoiding the collocation 
of whales with shipping lanes and fishing gear).

Continuous active acoustic sensing over MARS al-
lowed local observation of the response of forage spe-
cies to upwelling. As in work focused on the earlier part 
of the upwelling season (Benoit-Bird et al., 2019), large 
increases in area scattering within patches in the upper 
200 m occurred during the upwelling periods even as the 
total scattering over this depth range remained relatively 
consistent. While the majority of scattering at the acous-
tic frequency utilized is likely caused by swimbladder-
bearing fish rather than the krill that are direct prey of 
blue whales, krill and forage fish show similar aggrega-
tion during upwelling (Benoit-Bird et al., 2019), and the 
observation of forage species response connects upwell-
ing dynamics to the prey field and predator responses 
during our study. In this critical foraging habitat for blue 
whales, influences of upwelling on the prey field are key, 
and metrics showed major increases in potential foraging 
efficiency. Scattering strength differences indicate that 
the aggregations found during upwelling had at least a 
tenfold higher density of animals and often a hundred-
fold higher density than found during wind relaxation.

Detection of blue whale behavioural responses to up-
welling was possible for the plume that develops within 
the acoustic detection domain of the MARS observa-
tory. When blue whale calling was active in the region 
where this plume develops, thus providing the signal 
required for directional monitoring, calling whales con-
sistently tracked the movement of upwelling plumes 
clockwise around the northern hemisphere of the call de-
tection domain. Projected onto a map, this change in the 
direction of blue whale call origin translates into along-
coast movement into Monterey Bay, the path followed by 
coastal upwelling plumes. Upwelling plume presence in 
Monterey Bay, monitored using in situ data, repeatedly 
coincided with a shift in the occupancy of calling blue 
whales from an offshore region into the upwelling plume 
domain overlying shelfbreak and canyon habitat that 
is known to be essential to blue whale foraging (Cade, 
Fahlbusch, et al.,  2021; Cade, Seakamela, et al.,  2021; 
Croll et al., 2005; Schoenherr, 1991). Consistent with the 
pattern of movement in response to episodic upwelling 
plumes, the long-term directional statistics show max-
ima in blue whale call activity aligned with the bearings 
to the upwelling centers at coastal headlands and the 
plumes that episodically emanate from them.

Upwelling plumes can cover a large expanse of coastal 
ocean habitat. For example, the Point Año Nuevo plume 
that coincided with the first period of blue whale be-
havioural response covered approximately 1000 km2. 
However, it is probable that certain plume areas and con-
ditions are particularly important for blue whale forag-
ing ecology. Monitoring of krill populations off central 
California during spring and summer indicates a strong 
maximum along the shelfbreak between Monterey Bay 
and Cordell Bank to the north (Santora et al., 2011). In 
the Monterey Bay region, opportunistic encounters with 
dense aggregations of foraging blue whales, comprising 
up to 40 individuals within an area of 1-km radius, co-
incided with locations where the boundaries of coastal 
upwelling plumes intersected the shelfbreak (Cade, 
Fahlbusch, et al., 2021). Two such events were interpreted 
to result from hydrodynamics and krill behaviour that 
create favourable foraging conditions for blue whales: 
dense, thick, and evenly distributed krill swarms that 
are accessible to depth oscillations of lunge-feeding dive 
behaviour.

Understanding the strategies and sensory cues that 
animals use to track resource availability in space and 
time is increasingly recognized as central to advancing 
the fields of movement and foraging ecology (Abrahms 
et al.,  2021; Nathan et al.,  2008). A number of recent 
studies have shown that migratory animals track lati-
tudinal (e.g., Aikens et al., 2017; Boustany et al., 2010) 
and elevational (e.g., Bastille-Rousseau et al., 2019) gra-
dients in the phenology of primary productivity. Yet in 
marine ecosystems, significant finer-scale patchiness 
and ephemerality of high-density forage availability 
remains even within the broad-scale latitudinal and 
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seasonal progression of phytoplankton blooms and 
energy transfer to higher trophic levels (Kotliar & 
Wiens, 1990; Steele, 1978). The strategies and cues ma-
rine predators use to track these finer-scale variations 
in forage quality largely remain unclear, yet are criti-
cal to predators' survival in marine habitats displaying 
extreme heterogeneity in forage availability (Benoit-
Bird et al.,  2013; Benoit-Bird & Au,  2003; Fauchald 
et al.,  2000; Rose & Leggett,  1990). While previous 
work has shown the strategies driving broader-scale 
arrival at (Abrahms et al.,  2019) and departure from 
(Oestreich et al.,  2022) key foraging locations for mi-
gratory blue whales, the results presented here reveal a 
strategy by which this krill-obligate predator tracks re-
source availability at finer spatiotemporal scales. This 
fine-scale movement strategy likely enables efficient 
foraging on exceptionally dense but ephemeral krill 
swarms (Cade, Seakamela, et al., 2021), in turn allow-
ing for blue whales' long-distance migrations and re-
markable body size (Goldbogen et al., 2019; Goldbogen 
& Madsen, 2021).

Fine-scale resource tracking of prey-aggregating 
upwelling plumes may be enabled by memory as well 
as individual and collective sensory cues, including 
both environmental cues and potentially those from 
conspecifics. As interpreted from tracking of blue 
whale migration in relation to ecosystem conditions 
on contemporary and climatological time scales, 
blue whales may apply long-term memory to return 
annually to foraging habitat that is relatively stable 
and productive (Abrahms et al.,  2019). The upwelling 
that causes prey aggregation consistently originates 
at coastal topographic features, which may enable 
long-term memory to play a role in blue whale habi-
tat occupancy and foraging success. In the upwelling 
plumes themselves, thermal anomalies and gradients 
as well as prey patchiness itself may provide proxi-
mate environmental sensory cues. Further, the poten-
tial role of collective sensing within this blue whale 
population has been interpreted from studies of both 
foraging (Cade, Fahlbusch, et al., 2021) and migration 
(Oestreich et al., 2022). To the extent that behavioural 
responsiveness in the present study depends upon col-
lective sensing, the powerful calls of blue whales may 
provide long-distance acoustic sensory cues. Likely be-
yond our best technology, highly evolved use of sound 
by blue whales may enable detection, localization and 
tracking of conspecifics. Through individual and col-
lective sensing, a regional blue whale population may 
share information to assess and track dynamic and 
patchy ecosystem variations that are key to success in 
the most essential life activity in this habitat—foraging 
(Pirotta et al., 2018).

Across terrestrial and marine habitats, knowl-
edge of landscape/seascape ecology, movement ecol-
ogy, and resource tracking is essential to informing 
effective conservation measures (Abrahms et al.,  2021; 

Fryxell et al.,  2004, 2005; Tischendorf & Fahrig,  2000; 
Wiens,  2009). A primary concern for the conservation 
of blue whales is mortality from ship strikes because 
shipping corridors intersect essential habitat, and blue 
whale response to oncoming large ships is ineffective in 
avoiding collision (McKenna et al.,  2015). The present 
study reveals that during periods of wind relaxation blue 
whales in the Monterey Bay region occupy habitat tran-
sected by shipping lanes, and they move across lanes in 
response to the most fundamental process that shapes 
their foraging habitat, episodic wind-driven upwelling. 
This discovery motivates consideration of how research 
and monitoring can enhance conservation. Dynamic 
management strategies (Barlow & Torres,  2021; Hazen 
et al., 2017; Lewison et al., 2015; Oestreich, Chapman, & 
Crowder, 2020) include real-time alerts of animal pres-
ence to inform reduction of vessel speeds and collision 
risk (Baumgartner et al.,  2019). Long- and short-term 
descriptions of shipping traffic and whale presence 
(Blondin et al.,  2020) and of ecosystem features that 
shape habitat occupancy—such as upwelling plumes—
may also inform mitigation of collision risk, potentially 
through adjustment of shipping lanes and speeds during 
periods of the year when risk is greatest. While substan-
tial additional data and validation of models are required 
to contemplate using environmental cues in a predictive 
capacity to forecast whale foraging aggregations, this 
study suggests not only that it may eventually be possi-
ble but also how it might eventually be done. Improved 
understanding of the spatiotemporal relationships be-
tween upwelling dynamics and blue whale foraging ecol-
ogy in this region will emerge from ongoing and future 
research programs, toward advancing the forecasting 
skill that is essential to dynamic management (Barlow & 
Torres,  2021). Considering similar behavioural ecology 
of other soniferous rorqual whale species, including en-
dangered fin whales, the ecological understanding that 
emerges is relevant to a greater framework for the con-
servation of protected species and biodiversity.
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