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Abstract 

Offshore wind energy development, including along the US Atlantic coast, frequently occurs within important multispecies migration 

corridors; however, assessing the regional factors influencing the local Eulerian occurrence of these species poses a significant chal- 
lenge. We used generalized models incorporating lagged variables and hierarchical formulations to account for temporal dependencies 
and hierarchical structure that occur outside the narrower frame of a sampled project area. Acoustically tagged striped bass, the most 
frequently detected species regionally, were sampled using a gridded acoustic telemetry array in the Maryland Wind Energy Area of 
the US Mid-Atlantic Bight. The daily occurrence of striped bass was better explained by broad-scale sea surface temperature warming 

patterns than by local concurrent environmental conditions, demonstrating the importance of dri ver s that occur across the wider spatial 
scales of migration. Weekly residency patterns were similar between tagging origin groups, suggesting that Chesapeake Bay, Hudson 

River , Delaware Bay , and other Northwest Atlantic populations migrate synchronously through the Southern Mid-Atlantic Bight and are 
similarly influenced by sea surface temperature. Our study demonstrates that adapting an Eulerian approach to include lagged variables 
can improve regional assessments of fish on the move until richer Lagrangian insights become possible through future coordination 

of telemetry arrays throughout the Mid-Atlantic flyway. 
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Introduction 

Globally, offshore wind energy development is increasing in 

both scale and pace. In particular, vast regions of the US At- 
lantic shelf slated for offshore wind farms (OWFs) overlap 

broadly with known migration corridors of fishes, marine 
mammals, and birds (Gulka and Jenkins 2020 ). As of Decem- 
ber 2020, 16 sites amounting to 7051 km 

2 along the US Mid- 
Atlantic Bight (MAB) have been leased for future construc- 
tion ( Fig. 1 ; Bureau of Ocean Energy Management, 2022 ).
Although OWF development is already prompting an increase 
in focused offshore monitoring efforts, few design approaches 
have been developed or applied to test how changes in the 
coastal environment will influence migrating animals. Previ- 
ous marine fauna impact studies have typically focused on ex- 
planatory factors occurring only within focal study regions,
overlooking the importance broader-scale habitat, or pop- 
ulation dynamics may hold for mobile species. One poten- 
tial approach to address this gap is through sampling and 

modeling frameworks that consider the influence of envi- 
ronmental gradients and demographic structure on migra- 
tion behaviors (Bailey et al. 2014 ). In this study, we ana- 
lyze the influence of both local and broad-scale factors on 

the occurrence of Atlantic striped bass Morone saxatilis using 
an Eulerian approach that may help improve future studies 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
f migratory fishes in coastal movement corridors ( Fig. 1 a).
triped bass was chosen as a model migratory species be-
ause it is the most frequently detected acoustically-tagged 

pecies within the large MAB region of study (Secor et al.
020a ). 
To improve the accuracy of models predicting migratory 

pecies incidence, it is crucial to measure flyways (also known
s multispecies migration corridors; Rothermel et al. 2020 ) at
he same temporal and spatial scales experienced by moving 
sh, taking into account past environmental cues (Kavanaugh 

t al. 2016 , Scales et al. 2017 , Schneider 2018 ). Due to the
ransience of migrating species in specific habitats, it is of-
en necessary to continuously track individual animals over 
ime to gather data at a sufficiently fine level of detail to sup-
ort reliable distribution models (Royer et al. 2005 , Maxwell
t al. 2011 , Hazen et al. 2017 ). These methods can be con-
idered as a Lagrangian approach to monitoring, in which 

nvironmental variables, and the animal’s selection of these 
ariables, are known for each location and time step ( Fig. 1 b).
owever, when there are specific areas of concern, as is the

ase with OWFs, we believe targeted monitoring of discrete 
roject areas will likely be prioritized initially over larger re-
ional assessments of individual movements due to resource 
onstraints. 
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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Figure 1 Conceptual o v ervie w of habitat modeling through OWFs (main figure) along the MAB migration corridor of striped bass. Locations of proposed 
OWFs (turquoise-colored grid fields; left, map) o v erlap with known migration routes of striped bass north in the Spring/Summer (red arrows) and south 
in the A ut umn/Winter (blue arrows). An Eulerian modeling approach (a) is based on a fixed sampling window (transparent boxes; left, map) but can 
incorporate habitat variables both within and outside the impact region to account for broader drivers of animal movement. Under Lagrangian 
approaches (b), continuous tracking of individual animals allows for direct correlation between fish behavior and measured environmental variables; 
ho w e v er, in a stationary telemetry array, this method would entail multiple discrete snapshots of data taken along a migration pathway such that the 
sampling frame inst ant aneously resets o v er time. 
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Although acoustic telemetry methods now support both re-
ote (i.e. > 20 km offshore) and long-term ( > 1y) deploy-
ents, stationary receiver arrays are typically small and dis-

rete compared to the coast-wide scale of marine fish migra-
ion pathways. Within this framework, habitat or species oc-
urrence models that assume stationary (resident behaviors)
ight falsely ascribe coincident habitat variables as driving

ncidence (Haulsee et al. 2020 ). Alternatively, migration could
e modeled throughout an entire flyway, but this remains im-
ractical for most species due to limited telemetry assets and
he dynamic, wide-ranging nature of coastal migrations. In-
tead, when monitoring is constrained to a given project area,
s will likely occur on an individual OWF basis ( Fig. 1 a), anal-
sis should include adjustments for species on the move. Mul-
ivariate and generalized modeling approaches support tests
f lagged variables and can include unique hierarchical formu-
ations that account for habitat and demographic information
athered from outside the window of an individual detection
vent. 

Striped bass exhibit regular seasonal migrations in shelf re-
ions where OWFs will operate (Secor et al. 2020b , 2020c )
nd are the focal species of our study. They have re-
eived > 1000 acoustic tags within the region (Rothermel et al.
020 ) and are the most-detected species within our study ar-
ay. The range and seasonality of their migrations are sim-
lar to other MAB migratory species (Secor et al. 2020a ).
oastal striped bass in the MAB mostly originate from ei-

her the Hudson River, Delaware Bay, or Chesapeake Bay es-
uaries (Wirgin et al. 1997 , Kneebone et al. 2014 , ASMFC,
016 ). Within these populations, larger individuals ( > 80 cm
otal length) undertake shelf migrations; smaller individu-
ls are more resident to natal estuaries (Secor et al. 2020b ).
hough individual striped bass may vary in their propen-
ity to migrate, many undergo predictable oceanic movements
n which they mix with members of multiple populations
uring northward migrations in the spring and southward
igrations in the autumn and winter (Wirgin et al. 2020 ).

till, little is known regarding habitat selection while on the
ove. Additionally, shelf migration pathways could vary by
opulation or demographic attributes, as found for salmon
Crossin et al. 2007 , Hanson et al. 2008 , Rogers and Schindler
008 ). 
As striped bass and other migratory fish transit OWFs, they

ill encounter fields of turbine subfoundations, transmission
rids, and substations, and regions of increased vessel traffic.
he addition of structure to the water column by wind tur-
ines in particular is predicted to alter food webs (Degraer et
l. 2020 , Hutchison et al. 2020 , Perry and Heyman 2020 ) in
egions currently dominated by unstructured sand and sedi-
ent (Rothermel et al. 2020 ). Such changes in habitat or prey

vailability could elicit novel migration and movement behav-
ors by striped bass. Species across the MAB are also likely to
xperience continued fishing pressure and changing environ-
ental conditions that could further alter migratory patterns.
etecting the response of migratory fauna will thus depend on
 baseline understanding of broader regional cues that likely
ary seasonally, and influence striped bass occurrence in any
iven OWF. 
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Figure 2 Map of the study region off the coast of Maryland ( Fig. 1 ; blue box on the map, left), including acoustic receiver array design, the gridded MD 

WEA, and bathymetry features. Circles surrounding receivers represent the maximum expected 10 0 0 m detection radius and range test sites are shown 
within the Inner and Middle Strata as o v erlapping circles of presumed mean detection range. 
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The goal of this study was to present a modeling frame- 
work for assessing the drivers of occurrence for species mi- 
grating through discrete acoustic telemetry monitoring areas.
Here, striped bass was used as a test species to examine the 
importance of variables occurring both within and outside a 
section of their migration corridor slated for OWF develop- 
ment. This study utilizes baseline data that were collected and 

initially analyzed empirically by Rothermel et al. (2020) for 
a 2-year biotelemetry study within the Maryland Wind En- 
ergy Area (MD WEA), located 16–46 km offshore of Ocean 

City, MD, USA ( Fig. 2 ). Past habitat-selection modeling in the 
Mid-Atlantic indicated that temperature, depth, and satellite- 
derived measures of productivity should influence marine fish 

distributions (Manderson 2016 , Breece et al. 2018 , Haulsee 
et al. 2018 ). We also anticipated that occurrence within these 
transit habitats is influenced by environmental conditions oc- 
curring elsewhere across the broader MAB. Additionally, mi- 
gration timing could differ by population (Hudson, Delaware,
or Chesapeake), for which tagging location can be used to in- 
form likely population sources. Thus, for a single region along 
the MAB flyway slated for OWF development, we tested the 
influence of both coincident and lagged variables and included 

hierarchical formulations of population structure to account 
for complex drivers of occurrences during seasonal migra- 
tions. The presented modeling framework and the results are 
used to discuss applications for future assessments of occur- 
rence and migration behaviors of striped bass or other species 
with similar demographic complexities that undertake coastal 
migrations through OWF regions. 

Materials and methods 

The study site is an OWF area planned for c. 2 GW capac- 
ity and > 100 monopile turbines, which is leased to US Wind 

Inc. in the southern MAB (ESS Group 2022 ) and termed here 
as the MD WEA (Maryland Wind Energy Area). The shelf 
habitat off Maryland is biologically productive, in part due to 

land-based inputs from the Delaware Bay, with phytoplank- 
ton biomass fluctuating according to seasonal cycles of strat- 
fication (O’Reilly and Busch 1984 , Townsend et al. 2006 ).
hile a strong thermocline exists for most of the year (Spring-

arly Fall), this “cold-pool,” in which warmer surface waters 
verlay cooler residual winter bottom water, is disrupted with 

he onset of storms in late fall that de-stratify the water col-
mn and replenish shelf nutrients, leading to phytoplankton 

looms (Houghton et al. 1982 , Xu et al. 2013 ). Our study area
as 10–50 km offshore with depths of 10–45 m depth ( Fig. 2 ).
First, we sought to construct a model of relative occurrence

o predict the spatial density of striped bass at a daily reso-
ution, for combined detection data, not including potential 
opulation as a factor. To better understand drivers of tran-
ient occurrence, this model included regional sea surface tem- 
erature (SST) change over the recent past (e.g. Reyier et al.
014 ). Second, we evaluated the time that individuals spent in
he region depending on environmental conditions and tag- 
ing region of origin (index of potential population source or
ehavioral group), which owing to data limitations, analysis 
as conducted at a weekly resolution for the entire array. Sam-
ling assumptions differed between these objectives and asso- 
iated scales of response, so three unique modeling approaches 
ere employed for daily , weekly , and population-based re-

earch objectives ( Table 1 ). Through random effects and hi-
rarchical fixed effect structures within a generalized additive 
ixed model (GAMM) framework, we adjusted for biases 

ssociated with central spatiotemporal autocorrelation and 

roup-based heterogeneity (Bolker et al. 2009 ). The analysis
as weighted by the detection efficiency of acoustic telemetry 

eceivers, which varied with stratification and ambient noise 
principally surface winds), both seasonally and subregionally 
ithin the study array. Detection efficiency for each receiver 
as incorporated based on tests and an analysis within the

ame array (O’Brien and Secor 2021 ). 

coustic telemetry array and transmitters 

he occurrence of striped bass was monitored in the Mary-
and shelf region using an acoustic telemetry array spanning 
rom the coast to 10–50 km offshore ( Fig. 2 ). Approximately
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Table 1. Summary of intended purpose and modeling approach for each research question. See "Methods" section for additional explanation. GAMM = gen- 
eraliz ed additiv e mix ed model; HG AM = hierarchical generaliz ed additiv e mix ed model. 

Category Objective 
Modeling 
approach 

Response 
variable 

Level of 
organization 

Autocorrelation 
compensation Random effects 

Relative daily 
occurrence 

Predict fine-scale 
relative 
occurrence of 
test species 

GAMM Number of 
individuals per 
receiver 

Temporal: daily 
spatial: 
receiver-based 

Distributed 
temperature lag, 
Range test offset 

Receiver site and 
year of study 

Individual 
weekly residence 

Determine 
predictors of 
individual 
residence 

GAMM Number of days 
per week 

Temporal: 
weekly spatial: 
array-wide 

Lagged residency 
response 

Individual ID 

Evaluate 
residence 
response by 
population 
(tagging origin) 

HGAM 

submodel 
Number of days 
per week 

Temporal: 
weekly spatial: 
array-wide 

Lagged residency 
response 

Tagging origin 
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00 acoustically tagged striped bass, of which 315 were de-
ected within the project array (Rothermel et al. 2020 , Secor
t al. 2020b ), were at large during the course of this study.
he array of 20 acoustic-release receivers (VR2AR, 69 kHz;
EMCO-INNOVASEA, Bedford, Nova Scotia, Canada) was
eployed November 2016–December 2018 to detect the pres-
nce of acoustically-tagged striped bass both inshore (inner
tratum: 10–20 km from shore) and offshore (outer stratum:
0–50 km offshore). The design allowed sampling of depth
10–45 m; Fig. 2 ) and temperature gradients. The middle MD

EA stratum contained 12 receivers spaced at 3.2 km (E-W)
r 3.6 km (N-S) intervals. The other strata each consisted of
our receivers with 8 km spacing. Additional sets of two re-
eivers each were deployed in the inner and middle strata as
art of a concurrent range test study (see the section "Detec-
ion efficiency adjustments"). Each bottom-moored receiver
ecorded bottom temperature ( ◦C) and noncalibrated, rela-
ive ambient noise at 69 kHz (mV) at hourly intervals. Detec-
ions of unique transmitter codes were logged on a continuous
asis. Data were downloaded during tri-annual maintenance
ruises. Detected codes were matched to species and tagging
nformation provided by data-sharing agreements and the re-
ional Atlantic Cooperative Telemetry (ACT) Network (Ban-
ley et al. 2020 ). Detections were filtered to include only those
odes heard more than once to correct for false detection and
ode collision (Pincock 2012 ). 

etection efficiency adjustments 

o reduce temporal autocorrelation caused by underlying fluc-
uations in acoustic transmitter detectability, site- and day-
pecific adjustments were incorporated into the relative occur-
ence model. Seasonal and environmental effects on VR2AR
etection range were quantified and modeled in a 1-year field
est concurrent to the array deployment (O’Brien and Secor
021 ), and directly incorporated into the model formulations
f the present study. Testing took place at both a shallow In-
er stratum site and a relatively deeper Middle stratum site
 Fig. 2 ). The distance at the 50th percentile detection efficacy
D50) was estimated for each day using a GAMM model. Pre-
icted D50 ranged from ∼10 to 1100 m, and was added as an
ffset to the GAMM habitat models. The predicted range rep-
esented an index of sampling effort and was used to adjust
ach day’s sum of detections such that occurrence recorded
n days with lower D50 values were up-weighted and in-
idence recorded on days with larger detection ranges were
own-weighted. Additional details of range test modeling pro-
edures can be found in O’Brien and Secor (2021) . 

nvironmental and demographic data 

nvironmental and oceanographic variables were obtained in-
itu from deployed receivers and remotely through satellite-
erived values accessed via Environmental Research Di-
ision’s Data Access Program (ERDDAP) servers (Simons
017 , Table 2 ). Most variables were available on a daily ba-
is at the scale of the telemetry array with the exception of
hlorophyll-a concentration (CHL-A; http://oceancolor.gsfc.
asa.gov/), wherein cloud cover prevented matches for nearly
0% of the daily detection events. CHL-A values were av-
raged over 8 days, which allowed retention of 90% of the
ataset, and log-transformed prior to modeling to reduce the

nfluence of skewed outlier values. Temperature variables in-
luded an index of water column temperature stratification
 �T), where higher absolute values of �T represent increased
tratification strength. 

Species demographic data were included in hierarchical for-
ulations of individual weekly residency GAMMs to allow
ifferent responses according to population ( Table 1 ). Though
e did not have information on genetic origin, tagging region
as known for all telemetered individuals ( Table 2 ). The tag-

ing location was often informative of the population of ori-
in as, aside from those tagged in mixing areas in offshore
assachusetts (Kneebone et al. 2014 ), much of the tagging

ccurred on spawning runs. Despite the lack of true popu-
ation data (e.g. populations defined through lineage), loca-
ion of tagging was retained as a variable of interest related
o past group migration behaviors that could have implica-
ions for management. Here, we anticipated that fish tagged
ith transmitters during their likely spawning runs in the Ken-
ebec River, ME; Hudson River, NY; Potomac River, MD;
nd Delaware River, DE might exhibit migratory behavioral
atterns unique to their population of origin, whereas mixed
tocks of fish tagged off the coast of Massachusetts on summer
eeding grounds might represent a mix of behavioral tenden-
ies across tagging groups. 

aily relative occurrence model 

he daily relative occurrence of striped bass within the array
incidence) was modeled using a GAMM with a distributed

http://oceancolor.gsfc.nasa.gov/
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Table 2. Met adat a of variables to be used in range test, relativ e occurrence, and individual w eekly residence models. Units, spatiotemporal resolution, 
and general description are provided. 

Resolution 

Variable Units Time Space Description 

Bottom temperature Degrees C Hourly Receiver Average water temperature recorded by 
receivers 

Absolute noise Millivolts Hourly Receiver Average noise level at 69 kHzrecorded by 
receivers 

SST Degrees C Daily Array Multi-scale Ultra-high Resolution SST 

satellite derived; 
JPL MUR MEaSUREs Project 2015 

�T (stratification) Degrees C Daily Array SST- Bottom temperature 
Bathymetry Meters N/A 3 arc-seconds 

(90 meters, 
Receiver) 

NCEI’s Southeast Atlantic Coastal Relief 
Model; National Geophysical Data Center 
1999 

Log-transformed 
chlorophyll-a 
concentration (CHL-A) 

log(mg m 

−3 ) Weekly Array MODIS-Aqua; NASA Goddard Space Flight 
Center 2018 

Location of tagging Categorical N/A MAB Region where fish were tagged by researchers 
with data-sharing agreements in place 
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lag non-linear modification (Gasparrini et al. 2017 ). Individ- 
ual incidence was calculated by tallying the total number of 
unique tag codes detected at each receiver each day. The re- 
sulting skewed and over-dispersed data were modeled using a 
zero-inflated Poisson distribution. To account for differences 
in behavior between northern and southern migration phases 
(Kneebone et al. 2014 , Secor et al. 2020b , 2020c ), relative 
occurrence was modeled separately for Autumn/Winter (Sep–
Feb) and Spring/Summer (Mar–Oct) seasons, respectively. Re- 
ceiver site and study year were added as random intercepts to 

limit spatial autocorrelation and to account for inter-annual 
differences in the number of fish detected. All modeling was 
conducted in R statistical software (R Core Team 2020 ) using 
the mgcv package (Wood and Wood 2019 ). 

SST , lagged SST , bathymetry, and CHL-A were considered 

as environmental covariates. The dlnm package (Gasparrini 
2011 ) was used to define an exposure history to SST in the 
form of lagged values of SST: the difference between SST on 

each of the 30 days prior to the sampled incidence and the SST 

on the day of sampled incidence. The resulting temperature- 
difference-by-lag-number interaction was used as an index 

representing the effect of SST in unsampled regions that could 

drive migration through, and occurrence in, the sampled re- 
gion. Although a coarse assumption, lagged values should rep- 
resent those values occurring at lower and higher latitudes 
during migration seasons, owing to strong latitudinal gradi- 
ents in SST (Richaud et al. 2016 ). The effects of concurrent 
and lagged SST and the other environmental covariates were 
evaluated for each migration season. 

The exposure-lag-response associations between relative 
abundance and SST were implemented in the standard mgcv R 

package framework using a bi-dimensional cross-basis spline.
To account for seasonality in the data, day-of-year (DOY) was 
included as a cyclic spline predictor variable. All other vari- 
ables were modeled using thin plate regression splines. Knots 
were constrained to avoid overfitting based on our a priori 
expectations on the scale at which each parameter would be 
relevant (Wood 2003 ); results from Rothermel et al. 2020 re- 
garding temperature and depth selection, daily residency, and 

transit rate were used to infer general assumptions of striped 

bass sensitivity to environmental variables. The maximum- 
allowable number of knots was set to 11 for lagged SST, which 
ssumes that there is limited sensitivity of the fish to tempera-
ure changes < 2 

◦C, and to 16 for days of lag, which assumes
imited sensitivity to changes that occur on a scale < 2 days
 Table 3 ). Additional knot constraints included 15 for depth
assumed limited sensitivity to changes of depth < 2 m), 11 for
ay-of SST (changes less than 2 

◦C), 10 for CHL-A (changes
 0.5 log mg m 

−3 ), and 14 for DOY (changes less than bi-
eekly). Interactions between depth, day-of SST, CHL-A, and 

OY were included using a tensor product smooth term to
ccount for differing units among interaction variables (Wood 

t al. 2013 ). Only one of these interactions was allowed per
odeling iteration to limit complexity. 
All possible model combinations were tested and ranked 

ccording to the AIC score. Final model residuals were visu-
lly checked for temporal and spatial correlation using auto- 
orrelation function (ACF), partial autocorrelation function 

PACF), and semivariogram plots. Overall model performance 
as evaluated with k-fold cross validation in which the data
ere randomly split into training (75%) and testing (25%) 

ets over each of 5-folds. The root mean square error (RMSE)
nd average error between observed abundance in testing data 
nd training model-predicted abundance were then calculated 

nd used to assess model predictive error (Potts and Elith
006 ). 

eekly residence model 

or weekly residency models, the total number of days 
ith confirmed detections within each week (0–7) were re- 

ressed against environmental variables using a quasibino- 
ial GAMM approach ( Table 1 ) to account for underdis-
ersion produced by frequent zero-detection weeks. A zero- 

nflated binomial approach was also considered, but not used,
ue to similar results and a much longer model runtime
Rothermel 2019 ). Transmitter code was included as a ran-
om intercept to account for correlation from repeated mea- 
ures of the same individual. “Population”-level differences 
n individual response were tested by considering tagging re- 
ion as a fixed effect in the model. Differences between tag-
ing regions were evaluated using the post-hoc multiple com- 
arison Wald test in the itsadug R Package (Van Rij et al.
015 ). 
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Table 3. Summary of configuration details and assumptions for each modeling approach. GAMM = generalized additive mixed model; HGAM = hierarchical 
generaliz ed additiv e mix ed model. 

Modeling approach Candidate smooths Spline Knots 
Limit of effect on 

response 

GAMM SST Thin plate 11 2 ◦C 

Depth Thin plate 15 2 m 

CHL-A Thin plate 10 0.5 log mg m 

−3 

DOY Cyclic Cubic 14 14 days 
SST lagged exposure Distributed non-linear 
Lagged SST 11 2 ◦C 

Days of Lag 16 2 days 
GAMM SST Thin plate 11 2 ◦C 

Depth Thin plate 15 2 m 

HGAM CHL-A Thin plate 6 0.5 log mg m 

−3 

submodel Week Cyclic Cubic 27 2 weeks 
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Week-of-year, CHL-A, and SST were examined for their
ffect on weekly residency. Lagged SST was not considered
or the weekly residency model as it was not possible to de-
ne an exposure history within the necessary random and
xed effects framework and because the analysis was focused
n potential population-level differences in response to en-
ironmental variables occurring within the WEA. Each co-
ariate was specified using thin plate splines with the excep-
ion of week-of-year, which was modeled with a cyclic spline.
ased on a priori expectations for the scale at which bio-

ogical responses might occur as outlined in section " Daily
elative occurrence model ", knots were limited to 11 for SST
changes < 2 

◦C), 6 for CHL-A (changes < 0.5 log mg m 

−3 ),
nd 27 for week-of-year (changes less than bi-weekly). Al-
hough models likely suffered from concurvity, thus increas-
ng the potential for biased estimates or Type I error, SST and
eek-of-year were both retained so that the influence of each

erm could be evaluated while accounting for individual-level
ariability. 

Preliminary analysis showed that inclusion of individual
andom intercepts did not resolve all residual temporal auto-
orrelation and, in contrast to the daily-resolution incidence
odeling (see previous section), the use of a D50 offset did
ot effectively diminish correlation at the weekly timescale. A
tate-dependence approach, in which past states are allowed
o influence the current state of a variable, was used to model
nd reduce remaining serial autocorrelation in weekly resi-
ence probability. The state-dependence model for lagged res-
dency was created using a first-order smoothed autocorrela-
ion term that corresponded to the number of days an indi-
idual fish was detected in the previous week. Residual auto-
orrelation was checked using ACF and PACF plots. Residual
patial correlation was not a concern in this analysis, as resi-
ency was modeled over the entire array. 

opulation-level differences in residency response 

hen significant differences in weekly residency were identi-
ed between tagging regions (populations) in GAMM post-
oc tests, hierarchical generalized additive models (HGAMS)
ere used to further evaluate the group-level differences in

esponse to environmental and temporal covariates ( Table
 ). HGAMs allow for varying degrees of nonlinear response
ver different grouping levels (Pedersen et al. 2018 ). Signif-
cant predictors of residency were each tested individually;
he smoothed functional response in each model was allowed
o vary by group (tagging region), but group-level functions
ere pooled in a common response. The hierarchical relation-
hip between predictor variables and tagging-region group-
ngs was specified using different variable and factor relation-
hips. First, the global response of all groups to the variable
f interest (either week-of-year , SST , or CHL-A) was specified
sing a thin plate regression spline for SST and CHL-A or a
yclic spline for week-of-year with the same knot specifica-
ions that were allowed in the base weekly residence mod-
ls (see section " Weekly residence model "). Next, the pre-
ictor was modeled according to each tagging group fac-
or using the factor-by-smooth model specification to allow
dditive responses to differ. A random intercept for tagging
roup was included to properly scale the response as by-factor
mooths are centered due to identifiability constraints (Peder-
en et al. 2018 ). Collinearity between the global response and
roup-level responses was deliberately penalized and reduced,
hereby increasing certainty around the global smoothed pre-
ictor (Wieling et al. 2016 , Baayen et al. 2018 ). Model diag-
ostics and performance were not assessed for HGAMs since
hey were intended to visualize the group-level differences in
esponse to individual environmental covariates and not to
redict residency. 

esults 

ri ver s of daily relative occurrence 

wenty-five daily occurrence models were considered for each
eason and SST formulation (day-of vs lagged SST), resulting
n 100 total models. The top-ranked lagged SST models per-
ormed better than equivalent day-of SST models for both mi-
ration seasons (Autumn/Winter and Spring/Summer; Table
 ). For the Autumn/Winter migration season, the two best
odels both contained lagged SST and an interaction between
epth and DOY ( Table 4 ), with the top-ranked model also in-
luding CHL-A concentration as a predictor of occurrence.
uring the Spring/Summer season, the top-ranked model con-

ained an interaction between Depth and CHL-A along with
erms for lagged SST and DOY. 

The top-ranked model for Autumn/Winter showed that
arge decreases ( > 5 

◦C) in SST over the previous 5–10 days
ncreased the likelihood of striped bass presence in the MD

EA. However, smaller increases (0 

◦C–5 

◦C) in SST over the
revious 15–20 days led to the highest predicted striped bass

ncidence ( Fig. 3 ). A similar pattern was observed during
pring/Summer, with slightly larger increases (3 

◦C–10 

◦C) in
ST over still longer time scales ( > 20 days) leading to the
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Table 4. Summary of GAMM models of daily relative occurrence including equation terms, degrees of freedom (df), Akaike information criterion (AIC), and 
% de viance e xplained f or the top fiv e predictiv e habitat models f or each season and SS T f ormulation, ordered b y AIC score. Considered predictors are 
chlorophyll-a concentration (CHL-A), magnitude of SS T change (SS T �1–13), D OY, and depth. Model term “s” represents singular smooth terms (single 
factors) and “t2” represents tensor-product smooth interactions (interaction between factors with different scales). Selected models are at the top of the 
table for each season and SST formulation. 

Model terms df AIC Deviance explained 

Autumn/Winter, lagged SST 

∗s(SST lag) + s(CHL-A) + t2(DOY, Depth) 113.83 097 5378.974 68.5% 

s(SST lag) + t2(DOY, Depth) 105.93 167 5429.422 67.7% 

s(SST lag) + t2(DOY, CHL-A) 101.78 233 5621.409 63% 

s(SST lag) + s(Depth) + t2(DOY, CHL-A) 101.61 817 5621.946 62.9% 

s(CHL-A) + t2(DOY, Depth) 49.59 834 5780.423 58.9% 

Autumn/Winter, day-of SST 

s(CHL-A) + s(SST) + t2(DOY, Depth) 58.89 882 5635.680 61.8% 

s(DOY) + s(CHL-A) + t2(Depth, SST) 61.32 394 5650.450 61% 

s(SST) + t2(DOY, Depth) 54.33 912 5667.180 61.4% 

s(DOY) + t2(Depth, SST) 54.95 134 5711.257 59.8% 

s(CHL-A) + t2(DOY, Depth) 53.34 980 5741.745 55.4% 

Spring/Summer, lagged SST 

∗s(SST lag) + s(DOY) + t2(Depth, CHL-A) 78.20 265 1552.545 84.8% 

s(SST lag) + s(CHL-A) + t2(DOY, Depth) 93.23 887 1561.920 85.7% 

s(SST lag) + t2(DOY, Depth) 75.23 726 1572.276 83.9% 

s(SST lag) + + s(Depth) + t2(DOY, CHL-A) 84.76 680 1574.357 84.2% 

s(SST lag) + s(CHL-A) + s(DOY) + 

s(Depth) 
83.25 533 1577.961 84% 

Spring/Summer, day-of SST 

s(SST) + t2(DOY, Depth) 40.97 988 1606.529 79.9% 

s(Depth) + s(CHL-A) + t2(DOY, SST) 40.01 305 1608.050 79.2% 

s(DOY) + s(CHL-A) + t2(Depth, SST) 43.20 768 1611.401 79.5% 

S(CHL-A) + s(SST) + t2(DOY, Depth) 56.99 946 1615.082 81.2% 

S(DOY) + s(SST) + t2(Depth, CHL-A) 42.57 925 1616.297 79.7% 

Figure 3 GAMM response function for the relative occurrence of striped bass in A ut umn/Winter (left) and Spring/Summer (right) specific to SST change 
o v er the previous 30 days, estimated using a distributed lag GAMM. Negative values of temperature change represent cooling conditions and positive 
values represent warming conditions. Visualizations are on the response scale and warmer colors indicate a higher predicted number of individuals. 
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greatest likelihood of striped bass occurrence. These domi- 
nant patterns suggest that during both seasons, warming con- 
ditions are largely prompting the migratory movements of 
striped bass. However, cooling temperatures appear to in- 
fluence movement behaviors to some extent during the Au- 
tumn/Winter season, though the effect is less. 
During the Autumn/Winter migration season, the partial ef- 
ect of CHL-A was a small peak of increased likelihood of
ccurrence at ∼0.5 log mg m 

−3 concentration, with an anal-
gous decrease in likelihood of occurrence at 1 log mg m 

−3 

 Supplemental Fig. S1 ). Concentrations above 2.5 log mg m 

−3 

lso led to higher predicted incidence. Striped bass occurrence 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad212


8 Rothermel et al. 

Figure 4 GAMM response function for the interaction between DOY and 
Depth for the best A ut umn/Winter model of striped bass occurrence. 
Visualizations are on the response scale and warmer colors indicate a 
higher predicted number of individuals. Predicted number of individuals 
are shown on contour bands of colors. 
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Table 5. Parameter and pairwise factor comparison significance for weekly 
species residency GAMMs. Significance of model parameters and pair- 
wise tagging region factors (Origin) are indicated by asterisks ( < 0.001 = 

∗∗∗; 0.0 01–0.0 09 = ∗∗; 0.01–0.0 09 = ∗; 0.05–0.1 = .). Striped bass tagging 
regions are: Hudson = Hudson Riv er, Ne w York; Potomac = Potomac River, 
Maryland; MA = Coastal Massac huset ts; K ennebec = K ennebec Riv er, 
Maine. 

Term P- value df AIC 

Deviance 
explained 

s(SST) < 0.001 ∗∗∗ 46.12 9350.70 64.5% 

s(Week) < 0.001 ∗∗∗

s(CHL-A) < 0.001 ∗∗∗

s(Lag 1 Residency) < 0.001 ∗∗∗

s(Transmitter) 0.409 
Origin 
Hudson with Potomac 0.159 
Hudson with Kennebec 0.351 
MA with Potomac 0.236 
Hudson with MA 0.548 
Kennebec with Potomac 0.796 
DE River with Potomac 0.963 
DE River with Kennebec 0.780 
Kennebec with MA 0.476 
DE River with MA 0.020 ∗
DE River with Hudson 0.014 ∗
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aried in depth, reflecting the inshore-offshore gradient: dur-
ng early winter, relative abundance was highest at mid-range
epths (20–30 m) but shifted toward greater depths ( > 30 m)
uring later winter months ( Fig. 4 ). Although the top model in
pring/Summer contained terms for DOY and an interaction
etween Depth and CHL-A, these terms were not significant
redictors of occurrence in the model output (thus, figures are
ot shown). The effect of lagged SST was the only significant
redictor in the top-ranked model for striped bass occurrence
n Spring/Summer. 

The 5-fold cross-validation RMSE of the best-performing
utumn/Winter model was 0.93 ± 0.03, meaning that the
odel-predicted abundance was 0.05 of the maximum num-
er of striped bass per receiver deployed (maximum = 19).
eanwhile, the optimal model for the Spring/Summer migra-

ion season had a 0.03 error rate compared to the maximum
maximum = 19; RMSE 0.64 ± 0.13). Overall, model pre-
ictions were off by < 1 individual for both migration sea-
ons (RMSE calculations are on the same scale as the re-
ponse variable: the number of individuals detected), though
he Spring/Summer model had slightly less error. Model diag-
ostics did not show spatial or temporal autocorrelation in
esiduals. 

eekly residence model 

he weekly residency models for striped bass showed that SST,
eek-of-year, and CHL-A were significant predictors of the
umber of days individuals were present in the array ( Table
 ). However, the random effect of the transmitter was not
ignificant. Pairwise comparison between tagging regions re-
ealed differences in response between the Delaware River vs.
oastal Massachusetts and Delaware River vs. Hudson River
rigins ( Table 4 : Wald test, P < 0.05). 
Partial effects of environmental and temporal variables in

pecies residency GAMMs were largely consistent with the re-
ponses observed in daily relative abundance models, but re-
ealed variation in how these factors affected the amount of
ime individuals spent in the area. Partial effects showed that
emperatures < 15 

◦C were associated with higher residency
hile temperatures higher than this threshold negatively af-

ected residency duration ( Supplemental Fig. S2 ). Similar to
he GAMM occurrence model, striped bass were likely to oc-
ur for more days per week during winter and spring months
nd were unlikely to reside in the area during summer. Striped
ass occupancy had an inverse relationship with CHL-A in
hich occupancy was predicted to be higher at low values
f CHL-A concentrations and decreased as concentrations in-
reased ( Supplemental Fig. S2 ). 

opulation-level differences in residency response 

roup-level differences occurred in how striped bass re-
ponded to SST and week-of-year ( Figs. 5 , 6 ), but varia-
ion in response to CHL-A concentration was less appar-
nt ( Supplemental Fig. S3 ). Residency predictions were high-
st when SST was < 15 

◦C, with striped bass tagged in the
elaware and Potomac Rivers showing peaks in the number
f days detected just above 10 

◦C. Individuals tagged in coastal
assachusetts and the Kennebec River had a slightly flatter re-

ponse to SST and were predicted to reside for less time over
 broader range of temperatures ( ∼5 

◦C–12 

◦C) compared to
he other groups. Striped bass tagged in the Hudson River ap-
eared to have a bimodal response to temperature in which
esidency was highest at 10 

◦C but also peaked near 5 

◦C. All
agging regions showed a similar pattern of lower residency
n the spring (weeks 10–22) and slightly higher and more pro-
racted residency in the winter (from week 48 to week 9 the
ollowing year), but individuals tagged in the Hudson River
ere predicted to occupy the region for the greatest amount of

ime in the spring ( Fig. 6 ). The Hudson fish were also the only
roup that did not have a second, smaller peak in residency
ollowing the initial spring peak. Group-level heterogeneity
as not obvious in the response of striped bass to CHL-A

oncentration ( Supplemental Fig. S3 ). 

iscussion 

s the Eulerian per specti ve sufficient? 

ere we used modeling approaches that were dynamic in
llowing the incorporation of time-varying and hierarchical
ariables to understand the local occurrence of a highly mo-
ile, migratory species within the context of a standard teleme-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad212
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad212
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad212
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad212
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Figure 5 Predicted residency function (days per week ± 2 SE) of striped bass for each tagging region based on the SST across the MD WEA. 

Figure 6 Predicted residency function (days per week ± 2 SE) of striped bass in the MD WEA array for each tagging region based on week-of-year. 
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try framework. Our results present methods that can be used 

by other researchers and managers to better understand the 
drivers of migratory species occurrence in regions where they 
are relatively transient. Although a singular, static acoustic re- 
ceiver array can never fully capture the range of environmen- 
tal factors influencing a species like striped bass during long- 
range migrations, the model formulations presented herein 

provide options for approximating conditions and variables 
that exist outside the window of observation. Dynamic mod- 
eling of telemetry detections in our study demonstrated that 
striped bass occurrence was influenced by conditions occur- 
ring both within and outside the MD WEA. A separate teleme- 
try study by Ingram et al. 2019 showed that the presence of At- 
lantic sturgeon in the NY WEA was similarly driven by long- 
term environmental cues, including photoperiod and temper- 
ature, occurring outside the window of detection. Despite the 
fact that we could not account for all potential environmental 
or population factors that shape striped bass migration and 

occurrence patterns, evidence suggests that future telemetry 
studies on the migration behavior of species transiting through 

coastal OWF regions will be improved by the inclusion of 
broad-scale variables in addition to variables occurring at the 
local scale of OWF monitoring arrays. 

We found that lagged SSTs, acting as proxies for warm- 
ing or cooling patterns across the broader region, were bet- 
ter predictors of daily incidence than surface temperatures 
experienced by striped bass within the study region. Dur- 
ng both migration seasons, daily striped bass occurrence 
as largely driven by warming regional SSTs, with some ev-

dence of cooling temperatures driving incidence in the Au- 
umn/W inter. W ithin the MD WEA, warming temperatures 
uring spring likely emulate warmer conditions to the South,
hus aligning with striped bass migrations northward toward 

ooler temperatures. Meanwhile, warming temperatures dur- 
ng the autumn or winter seasons correspond with cooler 
emperatures to the north, which aligns with the movement 
f striped bass southward toward warmer waters. Although 

helf SST patterns may influence the speed of oceanic migra-
ions by striped bass (Rothermel et al. 2020 ), their timing is
ikely dependent on temperature and other variables occurring 
ithin areas of extended residency, such as estuaries or sum-
er feeding grounds. Similar to other anadromous species,

emperature changes are widely considered the primary cue 
or striped bass to initiate migrations and spawning behavior 
Crozier and Hutchings 2014 , Peer and Miller 2014 , Lom-
ardo et al. 2020 ). These environmental responses allow mi-
ratory species to depart an area before it becomes unfavor-
ble (Dingle and Drake 2007 ). While SST may modify prey
vailability or metabolic demands during shelf transit once 
igrations begin, the importance of lagged temperature in our 

tudy supports emerging evidence that the oceanic movements 
f striped bass are generally rapid (Secor et al. 2020b ); like
pawning behaviors, regional temperature cues likely prompt 
ndividuals to move toward more-favorable feeding grounds 
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o the North in Massachusetts or to warmer overwintering
aters in the South. Other regional migratory species, such as
tlantic sturgeon, likely exhibit similar regional temperature
ues (Rothermel et al. 2020 ). 

Although environmental variables recorded within the ar-
ay were retained in daily incidence models, the influence of
hese factors was not consistent among seasons. For instance,
he best model for relative occurrence during the spring mi-
ration season contained terms for DOY and an interaction
etween Depth and CHL-A, but these terms were not sig-
ificant. In contrast, the model for Autumn/Winter showed
hat striped bass incidence was associated with certain CHL-
 concentrations and that depth selection depended on DO Y ;

triped bass were more likely to occur in deeper shelf waters
s the winter season progressed. Relative occurrence models
herefore support previously observed seasonal differences in
ceanic striped bass behavior in which spring migrations are
ore-rapid and Autumn/Winter migrations are protracted or
evelop into an extended offshore residency during winter
onths (Kneebone et al. 2014 , Rothermel et al. 2020 ). 
Temperature changes over the broader region, represented

y lagged variables, likely present over-arching cues for striped
ass to migrate, with in-situ factors seasonally varying in their

mportance. Depth and productivity variables may be less in-
uential during the spring because striped bass are rapidly de-
arting southern spawning locations in favor of cooler north-
rn summer feeding grounds. In comparison, migrations to
he South, initiated by cooling temperatures, may be altered
y local environmental conditions in the Southern MAB. For
nstance, during winter, individuals may shift toward greater
epths as the season progresses in order to take advantage of
aters that are relatively warm compared to shallow, near-

helf regions (Rothermel et al. 2020 ). 

ultistock flyways 

he Eulerian flyway approach allowed comparison between
triped bass stocks in their migration timing under the as-
umption that stocks were represented by tagging region.
cross single-origin and mixed-stock tagging groups, individ-
als were more likely to be detected for multiple days during
inter months compared to spring, when transit rates were
ore rapid across groups. This finding was consistent with
revious results showing faster migrations for striped bass
uring spring with increased likelihood of residency during
inter (Kneebone et al. 2014 , Callihan et al. 2015 ). How-

ver, weekly residency for individuals tagged in Chesapeake
nd Delaware estuaries peaked just above 10 

◦C temperatures,
hile fish tagged in regions north of Delaware were likely to

eside for a longer period when SSTs were between 0 

◦C–10 

◦C.
roader - and lower -temperature preferences for fish tagged in
aine may reflect their northern origin, and acclimatization

nd/or genetic selection to colder temperatures. Similar pat-
erns of temperature response observed in the Massachusetts-
agged fish may suggest that these mixed stocks contained a
igher proportion of individuals with northern natal origin.
he bimodal pattern in weekly residence response to temper-
ture of Hudson River fish reflected their two pulsed migra-
ions, which were more protracted than other groups, where
election for lower temperatures occur during spring than dur-
ng late Autumn/Winter (Rothermel et al. 2020 ). 

Because tagging region cannot be definitively related to ge-
etic origin (source population), group-level findings should
hus be considered preliminary and warranting further inves-
igation with regard to genetic assignments to populations of
rigin. Many striped bass were tagged in known spawning re-
ions that may correspond with genetic origin, but fish tagged
n Massachusetts are likely comprised of multiple spawning
tocks (Kneebone et al. 2014 ) and a small degree of straying
 < 5%) has been observed for Hudson and Chesapeake Bay
triped bass (Gahagan et al. 2015 , Secor et al. 2020b , 2020c ).
till, these analyses offer a potential means of comparing mi-
ration behaviors between groups of striped bass or indeed
etween other marine fish species that transit the Mid-Atlantic
yway (Rothermel et al. 2020 , Lowerre-Barbieri et al . 2021 ). 

mproving Eulerian models 

ynamic habitat models for marine fishes, turtles, birds, and
ammals have shown that mesoscale oceanographic features

uch as eddies, thermal fronts, upwelling zones, and wind-
riven mixing play key roles in structuring species distribu-
ion in pelagic habitats (Bigelow et al. 1999 , Nel et al. 2001 ,
ai and Marsac 2010 , Benson et al. 2011 , Hobday and Har-

og 2014 , Hazen et al. 2017 ), features that could not be rep-
esented in the current analysis owing to limitations in the
emporal resolution of environmental data. Although vari-
bles such as CHL-A or DOY could act as proxies for other
ey variables such as ocean currents or prey availability, ad-
itional analysis would be needed to verify these connections.
o better understand the biological drivers of striped bass be-
avior along their migration route, future studies could incor-
orate modeled oceanographic dynamics from products like
he Finite-Volume Community Ocean Model (FVCOM: Chen
t al. 2003 ) or the Regional Ocean Modeling System (ROMS;
ww.myroms.org ), which may enable more-robust inferences

urrounding species behavior and movement decisions (Ze-
eckis et al. 2017 , Breece et al. 2018 , Secor et al. 2018 ). 
Biological inferences surrounding striped bass migration

ehavior could be further improved through the addition of
agrangian methods to the current fixed framework. State-
pace modeling and particle tracking are two key approaches
hat have been applied in modeling how individuals inter-
ct with their environment (Royer et al. 2005 , Phillips et al.
018 ). Dynamic habitat modeling, or dynamic ocean manage-
ent, links animal tracks to satellite oceanographic products

nd is a particularly promising framework in this area (Žy-
elis et al. 2011 , Vandeperre et al. 2016 , Hazen et al. 2017 ).
hese models often rely on satellite telemetry and have been
iased toward larger marine fauna (Block et al. 2011 ). In-
reased acoustic receiver coverage of ocean environments has
ecently allowed individuals to be tracked across broader re-
ions. Modeling movement behaviors between arrays can al-
ow for quasi-Lagrangian migration inputs in the develop-
ent of dynamic habitat models (Breece et al. 2018 , Lowerre-
arbieri et al ., 2021 ). Acoustic telemetry technologies such as
epth-transponding tags, accelerometers, or condition-sensing
ransponders may further help elucidate potential biological
r physiological drivers of shelf habitat selection at the in-
ividual level. Advances in autonomous underwater vehicle
AUV) technology (Skomal et al. 2015 , Dodson et al. 2018 )
lso allow direct tracking of individuals or groups through
ime, environments, and space. An additional promising direc-
ion for future research lies in fish-deployed mobile telemetry
eceivers, which allow investigators to take a Lagrangian ap-
roach to group sociality, which could help researchers bet-

http://www.myroms.org
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ter understand the interactions driving movement patterns 
of striped bass and other migratory species along the shelf 
(Barkley et al. 2020 , Roose et al. 2022 ). 

Implications for understanding the cumulative 

impacts of OWFs on megafauna 

The modeling framework presented herein can be used to 

improve regional assessments of migratory species behaviors 
through project-scale sampling efforts. Previously, applica- 
tions of dynamic ocean management have focused on evaluat- 
ing the imposition of local impacts such as ship strikes, fishery 
bycatch, and marine protected areas as marginal impacts on 

habitat and species risk (Maxwell et al. 2011 , Hazen et al.,
2018 ) ; Abrahms et al. 2019 ). A key challenge is in under- 
standing the influence of many distributed OWFs on chang- 
ing and curtailing fish habitats and distributions (Gill et al.
2020 ). Owing to staggered developments and data sharing 
constraints, past and ongoing monitoring efforts have been 

focused on single OWFs. This piecemeal monitoring may ini- 
tially necessitate an Eulerian perspective to develop a broader 
understanding of possible regional-scale impacts. Designs that 
incorporate lagged variables can further add to the power of 
cumulative impact inferences, as these will allow for consid- 
eration of dynamics occurring at times and places outside the 
immediate footprint of the OWF project area, where monitor- 
ing is most likely to occur. 

Moving forward, OWF developers could choose to moni- 
tor SST changes or use past seasonal trends to predict when 

species interactions may be most likely to occur. For instance,
it may be advisable to avoid construction disturbances dur- 
ing early spring months when strong regional (MAB) warm- 
ing is most likely to occur if limited interaction with striped 

bass is desired. Modeled incidence also confirmed that sum- 
mer months will provide the most favorable window for wind 

turbine installation since striped bass were consistently absent 
during these time frames in our study. Results suggest that be- 
havioral differences between tagging groups are limited and 

that coastal stocks of striped bass can be treated similarly 
at the level of concern to wind energy developers. Here, in- 
teractions with all tagging origin groups examined could be 
broadly avoided in the MD WEA by limiting construction ac- 
tivities between November and May. Though our results pro- 
vide an explanation of drivers of striped bass incidence off 
the coast of Maryland, previous studies suggest that habitat 
models developed in one coastal shelf region do not always 
apply to another (Haulsee et al. 2020 ). Thus, similar studies 
will need to be applied across the MAB to fully understand the 
appropriate timing of activities at other OWF locations; gradi- 
ents, lagged variables, and hierarchal formulations could also 

be applied to monitoring frameworks to establish better un- 
derstanding of the factors driving incidence for any species of 
concern. 

As wind energy development progresses along the MAB 

and elsewhere, dynamic modeling techniques could provide 
crucial information on changes in species behavior in re- 
sponse to wind turbine construction and maintenance. Such 

techniques will also be crucial in determining changes to 

coastal migrations caused by climate change and other an- 
thropogenic pressures; already marine fish distributions are 
being impacted by shifting temperatures (Nye et al. 2009 ,
Pinsky et al. 2013 ). Seasonal temperature changes, especially 
within estuaries, may differentially alter spawning phenol- 
gy and migration timing among population contingents of 
triped bass and other anadromous fish (Pan et al. 2023 ).
or instance, striped bass have been documented to shift 
heir arrival on Chesapeake Bay spawning grounds by ∼3 

ays earlier for every 1 

◦C increase in spring water tempera-
ure (Peer and Miller 2014 ), a shift which is likely to vary
y population and natal spawning location. A comprehen- 
ive and coordinated monitoring approach, using appropri- 
te modeling techniques, will therefore be needed to under- 
tand the confounding effects of development and climate 
hange on the timing or speed of anadromous species mi-
rations. Ideally, networks of receiver arrays, strategically lo- 
ated in OWFs, could be used to inform a shelf-wide Eulerian-
agrangian perspective on migratory species in a cumula- 

ive impact framework. Corresponding models developed 

ithin this study align with impact study frameworks such as
efore-After -Control-Impact and Before-After -Gradient de- 
igns, which include year or phase of development as factors
o efficiently test for significant changes in species response ac-
ording to the impact of interest. Within such a framework,
ast (lagged) and current environmental variables, as well as
opulation factors, would be used to evaluate the incidence 
long the entire migratory route of any telemetered species 
f concern, providing managers and developers with a more 
omprehensive view of the dynamics that drive movement 
ehavior. 
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