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a b s t r a c t

We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap
between field and laboratory studies on fish injury and turbine engineering design. Using this method,
a suite of biological performance indicators is computed based on simulated data from a computational
fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure
of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the
dose of an injury mechanism (stressor) and frequency of injury (dose–response) is known from laboratory
or field studies, the likelihood of fish injury for a turbine design can be computed from the performance
indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists
can identify the more-promising designs and operating conditions to minimize hydraulic conditions
hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced
mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines.
Following the description of the general method, application of the BioPA to estimate the probability of
mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the
John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of

mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s
for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately
below the runner blades, with the lowest values in the gap at the blade tips and just below the leading
edge of the blades. Such information can help engineers focus on problem areas when designing new
turbine runners to be more fish-friendly than existing units.
. Introduction

Anadromous fish often must pass through hydroelectric facil-
ties during their migration to the ocean. Fish may pass a facility
ver the spillway, through the turbines, or using an engineered by-

ass route (Schilt, 2007). Even at facilities where by-pass routes
re present, a significant number of fish pass through the turbines
Hockersmith et al., 2005; Ploskey et al., 2006; Hansel et al., 2008).
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Field studies generally indicate that turbine passage is hazardous,
with mortality rates ranging between 2% and 19% (Whitney et al.,
1997). This incremental mortality is magnified when fish have to
pass through multiple hydropower facilities during their down-
stream migration, as occurs on the Columbia and Snake River sys-
tems in the Pacific Northwest region of the USA (Ham et al., 2005).

Over the past decade, many studies have described injury
mechanisms associated with turbine passage, the response of
various fish species to these mechanisms, and the probability
of survival through specific dams under certain conditions. But
transforming and integrating these data into tools to design tur-
bines that improve survival by minimizing impacts to fish during

Open access under CC BY-NC-SA license.
passage has been difficult and slow. Although identifying the
locations and hydraulic conditions where injuries occur is chal-
lenging, a more robust quantification of the turbine environment
has emerged through integration of balloon tag and sensor fish
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Fig. 1. Typical Kaplan turbine pass

ata with computational fluid dynamics (CFD) modeling (Dauble
t al., 2007). Field-testing new hydro turbines is very expensive,
o engineering design tools that improve the linkage between fish
njury data and turbine characteristics are needed to identify the

ost promising designs before full-scale construction begins.
Past attempts to predict the risk to fish passing through the tur-

ine environment have focused on identifying the locations and
izes of potentially hazardous regions (Garrison et al., 2002; Keller
t al., 2006; Čada et al., 2006). Improving passage survival was a
atter of reducing the volume and number of these regions. How-

ver, the presence of dangerous zones within the turbine may be
iologically inconsequential if few fish experience them. For exam-
le, the undersides and tip regions of runner blades generally have
ery low pressures, which can be harmful to fish, but only a small
raction of the population may pass through these locations.

More recent work has described the use of minimum pressure
hreshold criteria to guide turbine design (Brown et al., 2012a).
n advantage of using minimum pressure criteria is that it is
traightforward to implement because it need not consider the
on-uniform distribution of pressure within the turbine environ-
ent. However, minimum pressure criteria may have a limitation

f assuming, when calculating an estimate of mortal injury rates,
hat all fish passing the turbine are exposed to the same minimum
ressure value. In some cases it is possible that minimum pressure
esign criteria could be overly conservative and lead to the selec-
ion of more costly (e.g., lowering the centerline elevation of the
nit through civil structure modifications) and less hydraulically-
fficient designs.

The Pacific Northwest National Laboratory (PNNL) has
eveloped a new probabilistic design method, the biological
erformance assessment (BioPA), for bridging this gap between

aboratory studies on fish injury and turbine design. With this

ethod, a suite of biological performance indicators for injury

nd mortality are computed based on data from a CFD model
f a proposed turbine design. Each performance indicator is a
easure of the probability of exposure to a certain dose of an
ressure profile along a streamline.

injury mechanism. If the relationship between the magnitude of
exposure to an injury mechanism and frequency of injury is known
from laboratory or field studies, the likelihood of fish injury for a
turbine design can be computed from the performance indicator.
By comparing the values of the indicators from various turbine
designs, the engineer can identify the more-promising designs.

In this work, we introduce the BioPA method with a description
of its theory, assumptions, and implementation. To illustrate the
concepts, we apply the BioPA to estimate fish mortal injury caused
by rapid pressure changes in a Kaplan-type hydro turbine.

2. BioPA method

In order to evaluate the significance of the low pressure
regions, the BioPA method estimates the probabilities that fish
will encounter specific conditions during passage. This is done
with a proportional sampling scheme that uses streamtraces in a
numerical flow simulation to model potential pathways through
the turbine.

2.1. Response of fish to pressure change

Rapid change in barometric pressure, or barotrauma, is a
potential cause of injury and mortality for juvenile salmonids
passing through hydro turbines (Brown et al., 2012c). Computa-
tional fluid dynamics (CFD) models (Keller et al., 2006) and field
studies (Carlson et al., 2008) show that turbine passage exposes
all fish to a slow compression in the intake followed by a rapid
decompression as they pass either the pressure side or the suction
side of the runner blades. This is followed by a return through the
draft tube to hydrostatic conditions in the tailrace. A typical profile
of pressure along a streamline is shown in Fig. 1.
Research into barotrauma in fish can be traced back to the work
of Sutherland (1972) and Tsvetkov et al. (1972) who found a signifi-
cant potential for injury due to rapid decompression. More detailed
studies were performed by Abernethy et al. (2001), who subjected
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everal fish species to a simulated turbine-passage pressure regime
fter acclimatization at two pressures and three levels of dissolved
as saturation. They observed immediate and delayed mortalities
ttributed to the development of gas bubbles in vulnerable organs
nd ruptured swim bladders. Higher levels of dissolved gas in the
ater appeared to increase injury in some species. In a follow-up

xperiment (Abernethy et al., 2002), a less severe pressure regime,
ith a higher nadir pressure and a lower rate of change (3447 kPa/s,

ather than 3930 kPa/s), resulted in lower mortalities of the two
pecies tested. The study design could not establish whether the
ower mortality was due to the lower rate of pressure change or to
he higher nadir pressure.

Recognizing limitations (a lack of true acclimation to depths
elow surface pressure) in the experimental procedures used by
bernethy et al. (2002), a new series of studies were initiated
y Carlson and Abernethy (2005), that progressed to the work of
rown et al. (2012c) where 5767 juvenile Chinook salmon were
xposed to a range of conditions that simulated turbine pressure
egimes to identify the key factors associated with barotrauma. To
uantify the condition of the fish after treatment, they defined a
etric called mortal injury. A fish was mortally injured if it suf-

ered any of eight specific injuries that were highly associated with
ortality (McKinstry et al., 2007). The fish were first acclimated to

onstant pressures equivalent to 1.5, 4.6, or 7.6 m of water depth.
hen they were exposed to simulated turbine pressure regimes
ith minimum pressures (nadirs) that ranged from atmospheric
ressure (101 kPa) to as low as 4.8 kPa and rates of pressure change
anging from approximately 1400 to 4100 kPa/s. During acclima-
ion, these fish were also exposed to total dissolved gas levels of
ither 115% or 125%. Statistical analysis indicated that the log of
he pressure-change ratio (LRP), total dissolved gas (TDG), rate of
ressure change, and condition factor of fish were all factors in
redicting mortal injury. However, LRP, defined as

RP = ln
(

Pa

Pn

)
(1)

here Pa is the pressure to which the fish is acclimated (become
eutrally buoyant) prior to laboratory-generated turbine pressure
hange, and Pn is the lowest pressure (pressure nadir), was, by far,
he most influential variable in predicting mortal injury, with TDG,
ate of change, and condition factor explaining very little of the
elationship. For pressure change histories typical of large Kaplan
urbines in Columbia River powerhouses, LRP was found to be the

ost significant variable explaining the probability of injury from
arotrauma.

The relationship observed by Brown et al. (2012c) (and the
orrected version in Brown et al., 2012b) for Chinook salmon is
xpressed in the empirical formula for mortal injury probability

mort(LRP ≤ LRPi) = e−5.56+3.85×LRPi

1 + e−5.56+3.85×LRPi
(2)

here the notation Pmort(LRP ≤ LRPi) indicates the probability that
he LRP is less than or equal to a certain value LRPi. Note that Eq. (2)
s currently the most complete dose–response model that relates
njury and mortality to pressure change across a broad range of
ressures typical of Kaplan turbines. Eq. (2) is plotted in terms
f absolute pressure (rather than LRP) for several discrete accli-
ation pressures in Fig. 2 to illustrate its effect on mortal injury

robabilities where pressure at the water surface is approximately
01 kPa.

Note that the mortal injury relationship (Eq. (2)) does not

nclude any effects related to indirect mortality where fish may
e in a weakened condition due to pressure exposure and then be
ubject to increased rates of mortality from predation by birds or
ther fish downstream of the powerhouse.
search 154 (2014) 152–164

2.2. Exposure estimation

To assess the exposure of fish to pressure change during tur-
bine passage, the pressure conditions must be characterized. Field
measurements of the prototype turbine flow environment that fish
may encounter are available only for a limited number of potential
pathways and relatively small sample sizes (Carlson et al., 2008).
However, even these limited data confirm that the turbine environ-
ment is extremely heterogeneous, so the level of exposure to low
pressure zones is dependent on the path the fish takes. More com-
plete characterization must be done using reduced-scale physical
modeling or computer simulations to capture the variability of the
turbine environment.

The BioPA relies on three-dimensional steady-state CFD models
to estimate the pressure regime in the turbine domain. To address
the heterogeneity issue, the model domain is sampled using a dense
array of streamtraces that provides a weighted estimate of expo-
sures over paths likely to be taken by fish passing through the
turbine.

2.3. Analysis software

BioPA is built around commercial software packages together
with custom post-processing scripts. Implementation was driven
by the objective to give turbine designers a convenient tool that
could be incorporated into their normal work flow with a minimum
of disruption, cost, and computational resources. The tool needed
to be easy to use, quick to learn, and robust. Results needed to be
consistent and reproducible.

To achieve these aims, the BioPA uses inexpensive, off-the-shelf
software components, often already employed by hydro turbine
manufacturers, running under the widely-used Microsoft Win-
dows 7 environment. Most tasks were automated with scripts for
efficiency and consistency. The application consists of three com-
ponents:

1. CFD solver: simulation software that generates the model result
file.

2. Stressor calculator: a Tecplot360 application that samples CFD
using streamtraces and computes statistics.

3. Scoring application: A Microsoft Excel 2010 application that
computes BioPA scores based on streamtrace statistics.

To allow manufacturers to use their preferred CFD solver, the
BioPA does not require the use of a specific package, so long as
it meets the minimum requirements listed below. The other two
components require the availability of two commercial products:
Tecplot360 and Microsoft Excel. Tecplot360 is a commonly-used
scientific data plotting package that includes specialized capabil-
ities for the analysis of CFD model results. Microsoft Excel is a
popular spreadsheet application that can be used for processing
and charting data sets.

A suitable CFD model of the fluid domain in the turbine system
is needed to conduct a biological performance assessment using
the BioPA tools. While details of general CFD simulation practice
are outside the scope of this paper, certain model characteristics
are necessary in order to use the current version of BioPA:

1. The model should be constructed at prototype scale. Although
it is common for designers to model turbines at the
physical-model scale during development, certain properties of
reduced-scale simulations cannot be scaled up to estimate full-

scale fish exposure.

2. The model must generate a steady-state solution. Although
a transient solution may produce a more-accurate represen-
tation of the flow, the BioPA is not currently configured to
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2.3.2. Exposure probability
After streamtraces have been generated, the nadir pressure

along each path is determined. This value is known as a stressor
ig. 2. Dose–response curves for nadir pressures given a typical range of fish acclima

accommodate this additional level of complexity. Moreover, few
designers have the time or resources to produce transient results
as part of routine design work.

. In order to model the moving components of the turbine with a
steady-state solution, a multiple reference frame (MRF) scheme
is necessary. With the runner in a fixed position, the surrounding
fluid is modeled in a rotational reference frame to simulate the
appropriate movement.

. The model must resolve flow features at areas of interest (blades,
wicket gates, stay vanes, tip gaps, etc.) at a scale smaller than the
length of a fish. Typically, meshes used in these locations are finer
than this length scale in order to resolve boundary layers.

. The model output file must be in a format that can be imported
into Tecplot360 and contain, at a minimum, the following vari-
ables for each node in the mesh:
• position coordinates
• velocity components in the stationary reference frame
• velocity in the rotational reference frame
• static pressure

.3.1. Streamtrace sampling
Because of the heterogeneous nature of the flow, all parts of the

urbine environment are not equally likely to be visited by fish.
ome areas will receive more traffic than others, so these places
hould be sampled in higher proportion.

Proportional sampling of the simulated turbine domain is
ccomplished using a streamtrace method. The model inlet is
eeded with a large number of points, each representing a possi-
le location of a fish entering the turbine. The seeds are distributed

n accordance with available field observations, or a distribution
ay be assumed based on expected behaviors of the species of

nterest. If fish are known to be concentrated in the upper part of
he water column, seeds are proportionately more dense in these
reas. From each seed location, Tecplot360 numerically advects
massless, neutrally-buoyant particle through the flow field to

enerate a streamtrace trajectory (Fig. 3). The analysis software
nterpolates CFD model variables at each point along the stream-
race.

Streamtraces must pass completely through the model domain,
ithout interruption, in order to be used in the analysis. However,

treamtraces may stop if there are gaps in the model mesh, or if

elocity decreases to zero along the route. If these prematurely ter-
inating streamtraces cannot be eliminated through adjustment

f the model, they are excluded from the analysis. In general, a pre-
aturely terminating streamtraces rate of less than 5% is desirable.
epths (0, 5, and 10 m). Pressure at the water surface (0 m) is approximately 101 kPa.

The number and distribution of the initial streamtrace seeds
is an important factor in setting up the BioPA. Ideally, seeds are
placed across the entire intake boundary in a pattern that mim-
ics the actual fish distribution. However, fish distribution data are
often not available or are uncertain, so a uniform distribution is
usually chosen by default.

The number of streamtraces necessary to adequately sample a
model domain depends on the resolution of the model and the
flow dynamics. A more-finely resolved model grid can produce
small flow features that a coarse seeding pattern may not capture.
To determine a sufficient number of seeds, a sensitivity analysis
should be performed by increasing the seed count until the BioPA
score no longer changes significantly. Using fewer seeds will reduce
computational resources as increased numbers of seeds requires
more computer time and generates larger files. The seed sensitiv-
ity analysis determines the optimum number of seeds, which is a
balance between an accurate sampling of the model and a tolerable
computation time.
Fig. 3. Example of streamtraces through a CFD model of a Kaplan turbine based
on 180 uniformly-spaced seeds starting in the intake. Streamlines are colored by
absolute pressure to show the general distribution of higher pressures (reds) and
lower pressures (blue-green) in the turbine. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 4. Histogram of pressur

ariable for pressure. Based on the assumption that each stream-
race represents an equally likely path that a fish might take
hrough the turbine (Section 3), the probability of exposure to a
tressor variable S over the interval from s1 to s2 is given by

(s1 ≤ S ≤ s2) = Ns1−s2

N
(3)

here Ns1−s2 is the number of streamtraces where the stressor vari-
ble S is between s1 and s2 and N is the total number of streamtraces.
f the range of S is subdivided into a finite number of equal intervals
nd the probability of each interval is computed, then a probability
ensity histogram for the exposure can be constructed (Fig. 4).

.3.3. Performance score
The ultimate output of the BioPA process is a score that cor-

elates to the likelihood that a fish can survive passage through a
urbine. The score is dependent on:

Fish species and size. Species and individuals of varying size may
differ in responses to stressors, locations at turbine entry, and
acclimation depth.
Turbine design. The turbine type and geometry dictates the gen-

eral flow environment.
Turbine operating configuration. Changes in discharge through
the turbine together with gate and blade angles affect the flow
conditions for a specific turbine design.

ig. 5. Hatched area under curves represents expected mortal injury for given pressure
xposure is calculated from the pressure nadir histogram (Fig. 4).
irs for 20,352 streamtraces.

The BioPA score is computed by combining the dose–response
information obtained from laboratory studies (Section 2.1) with the
exposure probability determined through streamtrace sampling
(Section 2.3.2). The score is the sum of the products of the prob-
ability of mortal injury (the dose–response) and the probability of
exposure (the exposure estimate) over all stressor-variable values.
If P(I|S) is the probability of sustaining a mortal injury I for a given
stress S and P(S) is the probability of exposure to stress S then this
relationship is expressed as

ˇs =
∫

P(I|S) ·P(S) dS (4)

where ˇs is the performance score. This integral is illustrated by
the hatched area under the exposure and mortality curves in Fig. 5.
Because the probability distributions are discrete functions, this
integral is performed as a sum over n equal stressor-variable inter-
vals:

ˇs =
∑

P(I|Si to Si+1) ·P(Si to Si+1) (5)

3. Assumptions
As with any predictive method, the BioPA process relies on con-
fidence in certain data sets and assumptions in how they may be
used. This section identifies some of these uncertainties and how
they may limit the application of the current BioPA version.

distribution as represented by the integral in Eq. (4). The probability of pressure
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Fig. 6. John Day Dam on the Columbia Ri

.1. Stress response

BioPA depends heavily on the availability of biological test data

elating to fish response to stress. Section 2.1 reviews the results
f research on dose–response to pressure change. However, for
easons of cost and time, laboratory experiments tend to evaluate

Fig. 7. CFD model domain; Part 1 (left) – intake and sp
the Pacific Northwest region of the USA.

very specific situations, which in some cases only approximate the
actual conditions within the turbine. Extrapolation of these data to
more general situations is a challenge. Moreover, injury studies that

yield dose–responses generally do not account for the synergistic
effects of multiple doses of a particular stressor or the combined
effect of multiple stressors because each injury mechanism is

iral case; Part 2 (right) – runner and draft tube.
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Table 1
Turbine operating points.

Operating point Description Wicket gate angle (◦) Blade angle (◦) Discharge (m3/s) Head (m) Efficiency (%)

BP01 Peak 35 26.2
BP02 Lower 1% 28.7 19.6
BP05 Upper 1% 40.8 31.6

Fig. 8. Streamtrace seed distribution patterns below the fish guidance screens
(shown in green) in the intake. Top image shows uniform distribution with 5088
seeds; bottom image shows sigmoidal distribution with 5006 seeds. The view is
looking downstream into the turbine intake and the seed locations are shown in
r
r

e
b
i
e

problems, including hydro turbine applications, the lack of com-
ed. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of the article.)

valuated in isolation. A fish stressed by one mechanism is likely to

e more susceptible to injury by another mechanism or repeated

nstances of the same mechanism, even if the dose of the latter
xposure would not ordinarily harm an unstressed individual.

Fig. 9. Sigmoidal distribution based on hydro-acoustic observations of fish distrib
466 31.4 90.8
334 31.5 89.5
564 31.4 90.1

3.2. Fish characteristics

The behavior of fish before and during turbine passage is also
the subject of considerable uncertainty among biologists. Of signif-
icance to turbine passage is the observation that juvenile salmon
tend to exhibit different body orientations as they pass through
the intake (Coutant and Whitney, 2000). However, direct obser-
vation of fish within the runner region has not been possible
(Moursund and Carlson, 2004) so their behavior and their paths
past the runner blades has never been measured. This knowledge
gap has led many researchers to assume that fish basically fol-
low flow streamlines when encountering the high velocities of
the turbine environment. This is also assumed in the BioPA. This
is substantiated by the observation that burst speed of juvenile
salmon typically do not exceed about nine body-lengths per sec-
ond (Puckett and Dill, 1984), or about 1 m/s, which is significantly
lower than the 5–20 m/s velocities typical of the turbine runner
environment.

A second consideration is the depth to which fish are acclimated
when entering the turbine, which Brown et al. (2012c) found to be
a significant factor in pressure-related injuries. The depth at which
fish are observed to travel in the upstream reservoir or their entry
depth in the turbine intake does not necessarily represent the depth
to which they are acclimated (or the equivalent pressure, Pa in Eq.
(1)). There is a need to develop methods to measure depth accli-
mation of migrating fish in the field. While field data are currently
not available, the laboratory studies of Pflugrath et al. (2012) deter-
mined that the median maximum depth that a Chinook salmon can
become neutrally buoyant is 6.7 m (range 4.6–11.6 m).

3.3. Computational fluid dynamics (CFD)

The BioPA relies on data generated through numerical mod-
eling of the turbine environment. While CFD modeling has a
long history of successful application in a variety of fluid-flow
prehensive prototype-scale validation data must be noted. Direct
measurement of many flow variables in an operating turbine is
exceedingly difficult (Čada, 2001; Moursund and Carlson, 2004),

ution at John Day Dam (Johnston et al., 2000; Moursund et al., 2001, 2003).
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Fig. 10. Rates of increase in processing time and file size with seed number.
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Fig. 11. BioPA scores as a function of number
o model validation is often limited to confirmation of gross
erformance measures, such as power and discharge, and data from
educed-scale laboratory physical models. Even in laboratory phys-
cal models, comprehensive velocity and pressure measurements

ig. 12. Exposure probability distributions associated with various numbers of seeds in u
s 5 m. Note that only a portion of the complete mortal injury curve (Fig. 2) is shown. (Fo

eb version of the article.)
ds. All runs use an acclimation depth of 5 m.

are rarely performed. Despite these difficulties, CFD modeling of

hydro turbines continues to be routinely used by industry in the
development of new turbine designs and the evaluation of installed
turbines (Keck and Sick, 2008).

niform distributions. Operating condition is BP05 (564 cms) and acclimation depth
r interpretation of the references to color in the text, the reader is referred to the
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Fig. 13. BioPA scores based on the vertically-weighted sigmoidal distribution are
consistently higher than corresponding uniform-distribution scores. Acclimation
depth is 5 m.
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survival (Andritz Hydro, 2008). This paper uses results from the

F
t
N

ig. 14. The average nadir pressure increases with seed elevation. The upstream
eed distribution is uniform.

. Case study – John Day Dam

To illustrate the BioPA method, a sample risk assessment
alculation is performed. The analysis uses CFD data from a model
f the John Day Dam (JDA) Kaplan turbine to assess juvenile
hinook salmon (Oncorhynchus tshawytscha) exposure to rapid
ressure change. The John Day Dam is located on the Columbia
iver about 150 km east of Portland, OR (Fig. 6). The powerhouse

as 16 turbine units, each with a maximum generating capacity
f 155 MW and a discharge up to 623 m3/s. The average operating
ross head is 30.8 m.

ig. 16. Effect of acclimation depth is greatest on the BP05 condition because nadir pressu
urbine discharge shift the pressure-nadir exposure distribution to the left, resulting in l
ote that only a portion of the complete mortal injury curves (Fig. 2) are shown.
Fig. 15. Effect of acclimation depth on BioPA scores. Analyses performed with uni-
form distribution of 20,544 seeds.

During the spring and early summer, juvenile Chinook salmon
migrate downstream and must pass through JDA on their way to
the ocean. Estimates of survival rates for Chinook salmon subyear-
lings passing through JDA turbines are as low as 84% (Weiland et al.,
2011). The 2008 Biological Opinion on operation of the Federal
Columbia River Power System (NMFS, 2008), a regulatory docu-
ment that addresses endangered fish species in the Columbia River
basin, mandates that a 96% and 93% survival rate be achieved for
spring and summer downstream migrating juvenile salmonids,
respectively. Although these rates apply to passage through all
routes, powerhouse passage can be significant, especially when
spillway operations are not occurring.

BioPA analyses were performed for three turbine operating con-
ditions. Testing included assessments of the method sensitivity to
the number and distribution of streamtrace seeds. BioPA scores
were also computed for three assumed acclimation pressures to
analyze the sensitivity to this factor.

4.1. CFD simulations

The US Army Corps of Engineers, Turbine Survival Program,
requested Andritz Hydro to develop a CFD model of a Kaplan
turbine unit at the John Day Dam on the Columbia River in order
to better understand the flow conditions relevant to fish-passage
Andritz model to demonstrate the application of the BioPA method.
The CFD model developed by Andritz consists of a multi-block,

primarily hexahedral grid with about 14 million elements. The

re distribution intersects a greater portion of the mortal injury curves. Increases in
ower BioPA scores. Analyses performed with uniform distribution of 20,544 seeds.
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Table 2
Number of seeds and spacings used for uniform distributions.

Number of seeds Spacing (m)

198 1
819 0.5

1248 0.4
2205 0.3
5088 0.2

20,352 0.1
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81,024 0.05
124,188 0.04

FXTM solver used the standard k − � turbulence model and was run
n steady-state multiple reference frame (MRF) mode. The model

as run in two overlapping parts, Parts 1 and Part 2 (Fig. 7). Part
, which extended from the turbine intake to the stator outlet, was
un first to generate inflow conditions for Part 2. Part 2 included
n assembly containing a single stay vane, wicket gate, and runner
lade attached to the remainder of the draft tube and outlet box.

solating a single element of a radially symmetric blade geometry is
common technique used in simulating turbomachinery that sub-

tantially reduces the complexity and run-time of the model. Input
onditions for Part 2 were obtained by circumferentially averag-
ng velocities from the stator inlet of the Part 1 result. To simulate

ovement of the runner assembly, the block containing the blade
as modeled in a rotating frame of reference. The velocity at the

utlet of the runner block was, once again, circumferentially aver-
ged to provide the inflow to the draft tube.

After constructing and validating the CFD model, several scenar-
os corresponding to different operating conditions were simulated.
n a Kaplan turbine, an operating point is defined by a specific
ombination of wicket gate angle, runner blade angle, head, and dis-
harge. For this paper, three operations representing a wide range
f discharges were selected (Table 1). Operating point BP01 is the
ost efficient power-to-discharge configuration. Points BP02 and

P05 are approximately 1% below the peak of the efficiency curve
n the low and high discharge sides, respectively.

.2. Seed distributions

For this study, two seed distributions, uniform and non-uniform
Fig. 8), were analyzed in order to quantify the significance of
his variable. The uniform distribution consists of seeds that are
paced equally in the horizontal and vertical direction on a plane
mmediately below the fish screens. The non-uniform distribution
epresents a vertical fish distribution based on hydro-acoustic stud-
es of fish approaching the intake at John Day Dam (Johnston et al.,
000; Moursund et al., 2001, 2003). This distribution is modeled as
sigmoid function with a higher density of seeds near the top of the
ater column than near the bottom (Fig. 9). The non-uniform seed
attern was created using an algorithm that begins with a uniform
attern and adjusts the spacing of seeds in each horizontal row to
atch the sigmoidal distribution. With this method, the vertical

eed spacing is maintained, but the total seed count differs from
he original.

The uniform seed distributions shown in Table 2 were used in
his study to determine the optimum number of seeds for general
nalysis. Computation time for BioPA analyses with each of these
eed distributions was measured for a Dell Precision T7600 with a
ual six-core Intel Xeon 2.40 GHz (E5645) processor and 96 GB of
AM.
.3. Test fish

The present analysis focuses on the passage of yearling and
ubyearling Chinook salmon, which are one of the most common
Fig. 17. Pressure distribution on pressure (left) and suction (right) sides of the
runner blade.

migratory species present at JDA. Moreover, extensive data on baro-
trauma is available for this fish species (see Section 2.1). A fork
length of 100 mm, typical for this age, was assumed.

As noted in Section 3.2, the acclimation depth of fish before pass-
ing through a turbine is not known. Incidence of barotrauma during
turbine passage is correlated to the ratio of acclimation pressure to
nadir pressure (Eq. (2)). For a given nadir pressure, passage mor-
tal injury increases with acclimation depth (Fig. 2). Pflugrath et al.
(2012) estimated that the maximum acclimation depth for juve-

nile Chinook ranged between 4.6 and 11.6 m. Presuming that not
all fish are acclimated at maximum depth prior to entering the tur-
bine and to test the significance of this factor, BioPA calculations
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ig. 18. Locations of absolute pressure nadirs for operating condition BP05 with 20
he references to color in this figure legend, the reader is referred to the web versio

ere performed for three assumed acclimation depths: 0, 5, and
0 m.

. Results and discussion

Results of the BioPA runs were analyzed for the influence of
everal variables, including prematurely terminating streamtraces,
umber and distribution of seeds, assumed pre-passage fish accli-
ation depth, and turbine operating condition.

.1. Prematurely terminating streamtraces

Initial tests of the simulation results indicated a prematurely
erminating streamtraces rate greater than 10%. Further investiga-
ion revealed two causes. The first was the presence of small (less
han 1 mm) gaps between CFD model blocks. These were corrected
y making slight adjustments to the positions and sizes of the
locks to force small overlaps. After this correction, premature ter-
inations fell to 5.6% of total paths when about 20,000 total seeds
ere used. The remaining terminations were caused when stream-

races overshoot and collide with a no-slip model wall boundary,
here the velocity is zero, and thus terminate the path. This

ffect could not be corrected, even after reducing the streamtrace
dvection integration time step. With the increased availability
f high performance computing resources, the solution to reduce
rematurely terminating streamtraces in future studies is CFD
odel mesh refinement which was not an available option for this

pplication.

.2. BioPA scores

Here we summarize the results of all BioPA runs performed on
he models for the three operating conditions. These results are
nalyzed in the following sections.

.2.1. Seed number sensitivity
Processing time and file sizes for a BioPA run increase linearly

ith the number of streamtraces used (Fig. 10). For the JDA model,

rocessing times were acceptable (under an hour) even for the

argest number of seeds tested.
A BioPA run was performed for each modeled operating condi-

ion using the uniform seed distributions shown in Table 2. Fig. 11
niformly distributed seeds. Points are colored by nadir value. (For interpretation of
e article.)

shows that as the number of seeds increases, the volatility of the
BioPA score decreases. The score stabilizes to within 0.1% of the
value obtained with the maximum number of seeds tested (dashed
line), presumed to be the most accurate result, when the seed count
exceeded about 5000. Moreover, the shape of the pressure expo-
sure distribution (Fig. 12) changes very little above this number
of seeds (green lines). A conservative value of about 20,000 seeds
was selected to assure a representative sample for all further BioPA
analyses.

5.2.2. Seed distribution sensitivity
The elevation at which a fish enters the turbine intake may

affect the hydraulic conditions to which it is subjected. To test this
hypothesis, BioPA scores for two vertical seed distributions were
analyzed. The default uniform seed pattern was compared to a sig-
moidal distribution based on field observations, which indicated
that juvenile salmon at John Day tend to be concentrated nearer
the top of the water column (Fig. 9).

BioPA scores based on the surface-weighted sigmoidal dis-
tribution are consistently higher than corresponding uniform-
distribution scores (Fig. 13). This result suggests that fish entering
the turbine nearer to the top of the intake are subject to a lower
pressure differential, and therefore a higher survival rate, than
those entering at a lower level. In fact, when streamtraces from
a uniform distribution are binned by seed elevation and average
nadir pressure computed for each bin, a clear relationship between
entry elevation and nadir pressure is observed for the John Day
turbine (Fig. 14).

5.2.3. Accilmation depth sensitivity
As expected, deeper acclimation depths resulted in lower BioPA

scores (Fig. 15). However, the impact on the scores for the BP05
condition is much greater than for the other conditions. This occurs
because the left edge of the BP05 nadir-pressure distribution inter-
sects the steep part of the mortality curves (Fig. 16).

5.2.4. Turbine operating point
The three tested operating conditions represent not only differ-
ent discharges, but different power generation points (Table 1). For
both the uniform and sigmoidal seed distributions, the BioPA score
decreases with increasing turbine discharge (Fig. 13) as the abso-
lute pressure decreases on the suction side of the blade (Fig. 17).
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ig. 16 shows how the pressure-nadir exposure frequency distribu-
ions for the three operating points shift to the left (indicating lower
adir pressures) as turbine discharge increases. The estimated rates
f mortal injury increased from 0.3% to 1.7% as discharge through
he turbine increased from 334 to 564 m3/sec for fish assumed to
e acclimated to a depth of 5 m. Such a trend is expected because in
rder to increase power generation, the pressure differential across
he runner blades must also increase.

.2.5. Nadir locations
A byproduct of the BioPA method allows the turbine designer

o determine the locations where potentially hazardous pressure
onditions occur. Based on streamtrace statistics, the vast major-
ty of nadirs occur immediately below the runner blades. Fig. 18
hows the locations of pressure nadirs that occur near the run-
er for the BP05 operating condition. The lowest nadirs (dark blue
oints) occur in the gap at the blade tips and just below the leading
dge of the blades. Such information can help engineers focus on
roblem areas when designing new runners to be more fish friendly
han existing models.

. Summary and conclusions

The BioPA tool combines laboratory fish-response data with
uid simulation models to assess the hydro turbine passage envi-
onment encountered by migratory fish. It differs from other
FD-based methods in that it uses streamtraces to sample the fluid
omain and thereby assigns probabilities of exposure to certain

evels of harmful conditions. This method can help turbine engi-
eers improve the fish friendliness of their designs by identifying

ocations where hazardous conditions are occurring and ranking
roposed alternatives. By using software and methods already rou-
inely employed in the turbine manufacturing industry, such as CFD

odeling, streamtrace generation, and data visualization, the BioPA
pplication is relatively easy to incorporate into the existing turbine
esign workflow.

This paper demonstrated the application of the BioPA method
o the effect of rapid pressure change on juvenile Chinook salmon
assing through a Kaplan turbine at an existing hydroelectric facil-

ty. BioPA results for the John Day Dam turbine show several
nteresting features:

Higher discharges tend to increase mortal injury rates from expo-
sure to low pressures.
A sigmoidal seed distribution, with a higher density of seeds
closer to the roof of the intake, has slightly lower pressure mortal
injury values than uniformly distributed seeds. Fish distribution
at turbine entry could be a more significant factor at projects
where intake screens are not used.
Depth of fish acclimation is a significant factor in the prediction
of passage mortal injury due to rapid pressure change.

The next step toward extending the applicability of the BioPA
ool is to include other key hydraulic stressors for blade strike
Amaral et al., 2007; Amaral and Hecker, 2008), hydraulic shear
nd turbulence (Neitzel et al., 2000, 2004; Guensch et al., 2005),
esulting in a more comprehensive assessment of the passage
nvironment. Currently, laboratory dose–response data for these
tressors are more limited and not as extensive as those for
ressure-related injury for juvenile Chinook salmon. Performing

aboratory dose–response tests for additional fish species (Brown

t al., 2012a; Colotelo et al., 2012) would extend BioPA to be
irectly applicable to a greater variety of rivers in the world. How-
ver, such tests can be expensive and it would be beneficial to
xtend the framework for unstudied fish species by other means,
search 154 (2014) 152–164 163

such as those described in (Čada and Richmond, 2011; Čada and
Schweizer, 2012). As more studies are conducted, biological criteria
and dose–response relationships will be updated accordingly.

The BioPA method should also be applied to a wider range of tur-
bine types that are operating under different site conditions. These
additional application tests should include, for example, Kaplan and
Francis turbines of different diameters, numbers of blades, rotation
rates, and operating heads. Predictions made by the BioPA model
also need to be compared to live-fish survival data from prototype
field tests (e.g., Dauble et al. (2007)). In addition, the model can be
applied to different fish passage routes such as spillways.

The power of computational resources is increasing rapidly and
access to parallel computing clusters is becoming widely available.
This will allow for more realistic CFD simulations of the hydraulic
environment that can include, for example, unsteady turbulence,
motion of the runner blade, and cavitation. The BioPA model itself
can be enhanced to include the effects of fish mass to the calcula-
tions by using Lagrangian particle tracking to simulate the potential
pathways taken through the turbine.

Uncertainty analysis for the simulated hydraulic variables such
as pressure could be included. The sensitivity to uncertainties in
the biological dose–response relationships such as fish acclima-
tion depth could be further tested using depth distribution data
in the upstream reservoir and forebay from fish-tracking technolo-
gies such as hydroacoustics (Ham et al., 2007) and/or acoustic tags
(McMichael et al., 2010). Research to develop direct methods of
measuring fish acclimation depth in the field are also needed.

Ultimately, economic analyses must be included to determine
costs and benefits associated with incremental BioPA score shifts
that are computed for specific turbine operational and design
alternatives. For example, what are the cost tradeoffs between a
99 score as compared to a score of 97?

Implementing these improvements in the BioPA model will
allow it to be used on a wider basis as a design tool for fish-friendly
turbines that are a critical part in the development of sustainable
hydropower.
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arrison, L.A., Fisher, R.K., Sale, M.J., Čada, G.F.,2002. Application of biological design
criteria and computational fluid dynamics to investigate fish survival in Kaplan
turbines. In: HydroVision 2002. HCI Publications, pp. 1–11.

uensch, G., Mueller, R., McKinstry, C., Dauble, D., 2003. Evaluation of
fish-injury mechanisms during exposure to a high-velocity jet. Technical
Report PNNL-14173. Pacific Northwest National Laboratory, Richland, WA
http://www.pnnl.gov/publications/

am, K.D., Anderson, J.J., Vucelick, J.A., 2005. Effect of multiple turbine passage on
juvenile Snake River salmonid survival. Technical Report PNNL-15450. Pacific
Northwest National Laboratory.

am, K.D., Titzler, P.S., Reese, S.P., Moursund, R.A., 2007. Hydroacoustic evaluation
of fish passage distribution at the Ice Harbor Dam Removable Spillway Weir,

2006. Technical Report. Pacific Northwest National Laboratory.

ansel, H.C., Beeman, J.W., Hausman, B.J., Juhnke, S.D., Haner, P.V., Phelps, J.L., 2008.
Estimates of fish-, spill-, and sluiceway-passage efficiencies of radio-tagged
juvenile Chinook salmon during spring and summer at The Dalles Dam in 2003.
Technical Report. U.S. Geological Survey.
search 154 (2014) 152–164

Hockersmith, E.E., Axel, G.A., Eppard, B.M., Ogden, D.A., Sandford, B.P., 2005. Passage
behavior and survival for hatchery yearling Chinook salmon at Lower Monu-
mental Dam, 2004. Technical Report. National Marine Fisheries Service.

Johnston, S.V., Nealson, P.A., Horchik, J.W., 2000. Hydroacoustic studies at John Day
Dam, spring/summer 1999. Technical Report. Hydroacoustic Technology Inc.

Keck, H., Sick, M., 2008. Thirty years of numerical flow simulation in hydraulic
turbomachines. Acta Mechanica 201, 211–229.

Keller, M., Sick, M., Grunder, R., Grafenberger, P.,2006. CFD-based assessment of fish-
friendliness of the time dependent flow field in a Kaplan runner. In: HydroVision
2006. HCI Publications.

McKinstry, C.A., Carlson, T.J., Brown, R.S., 2007. Derivation of mortal injury met-
ric for studies of rapid decompression of depth-acclimated physostomous fish.
Technical Report PNNL-17080. Pacific Northwest National Laboratory.

McMichael, G.A., Eppard, M.B., Carlson, T.J., Carter, J.A., Ebberts, B.D., Brown, R.S.,
Weiland, M., Ploskey, G.R., Harnish, R.A., Deng, Z.D., 2010. The juvenile salmon
acoustic telemetry system: a new tool. Fisheries 35, 9–22.

Moursund, R.A., Carlson, T.J., 2004. Turbine imaging technology assessment. Tech-
nical Report PNNL-14759. Pacific Northwest National Laboratory.

Moursund, R.A., Ham, K.D., McFadden, B.D., Johnson, G.E., 2001. Hydroacoustic eval-
uation of downstream fish passage at John Day Dam in 2000. Technical Report.
Battelle Pacific Northwest Division.

Moursund, R.A., Ham, K.D., Titzler, P.S., 2003. Hydroacoustic evaluation of down-
stream fish passage at John Day Dam in 2002. Technical Report. Battelle Pacific
Northwest Division.

Neitzel, D.A., Dauble, D.D., Cada, G.F., Richmond, M.C., Guensch, G.R., Mueller, R.R.,
Abernethy, C.S., Amidan, B., 2004. Survival estimates for juvenile fish subjected
to a laboratory-generated shear environment. Transactions of the American
Fisheries Society 133, 447–454.

Neitzel, D.A., Richmond, M.C., Dauble, D.D., Mueller, R.P., Moursund, R.A., Abernethy,
C.S., Guensch, G.R., Cada, G.F., 2000. Laboratory studies on the effects of shear
on fish. Technical Report PNNL-13323. Pacific Northwest National Laboratory,
Richland, WA http://www.pnnl.gov/publications/

NMFS, 2008. Biological opinion – consultation on remand for operation of the fed-
eral Columbia river power system, 11 bureau of reclamation projects in the
Columbia Basin and ESA section 10(a)(1)(a) permit for juvenile fish transporta-
tion program.

Pflugrath, B.D., Brown, R.S., Carlson, T.J., 2012. Maximum neutral buoyancy depth of
juvenile Chinook salmon: implications for survival during hydroturbine passage.
Transactions of the American Fisheries Society 141, 520–525.

Ploskey, G.R., Weiland, M.A., Zimmerman, S.A., Hughes, J.S., Bouchard, K., Fisher,
E.S., Schilt, C.R., Hanks, M.E., Kim, J., Skalski, J.R., Hedgepeth, J., Nagy, W.T., 2006.
Hydroacoustic evaluation of fish passage through Bonneville Dam in 2005. Tech-
nical Report PNNL-15944. Pacific Northwest National Laboratory.

Puckett, K.J., Dill, L.M., 1984. Cost of sustained and burst swimming to juvenile
coho salmon (oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic
Sciences 41, 1546–1551.

Schilt, C.R., 2007. Developing fish passage and protection at hydropower dams.
Applied Animal Behaviour Science 104, 295–325.

Sutherland, D.F., 1972. Immobilization of fingerling salmon and trout by decom-
pression. Technical Report NMFS SSRF-665. National Oceanic and Atmospheric
Administration.

Tsvetkov, V., Pavlov, D., Nezdoliy, V., 1972. Changes of hydrostatic pressure lethal to
the young of some freshwater fish. Journal of Ichthyology 12, 307–318.

Weiland, M.A., Ploskey, G.R., Hughes, J.S., Deng, Z.D., Fu, T., 2011. Acoustic telemetry
evaluation of juvenile salmonid passage and survival proportions at John Day
Dam, 2009. Technical Report PNNL-20766. Pacific Northwest National Labora-

tory.

Whitney, R.R., Calvin, L.D., Erho, M.W., Coutant, C.C., 1997. Downstream passage
for salmon at hydroelectric projects in the Columbia River Basin: develop-
ment, installation, and evaluation. Technical Report. Independent Scientific
Group.

http://www.pnnl.gov/publications/
http://www.pnnl.gov/publications/

	Quantifying barotrauma risk to juvenile fish during hydro-turbine passage
	1 Introduction
	2 BioPA method
	2.1 Response of fish to pressure change
	2.2 Exposure estimation
	2.3 Analysis software
	2.3.1 Streamtrace sampling
	2.3.2 Exposure probability
	2.3.3 Performance score


	3 Assumptions
	3.1 Stress response
	3.2 Fish characteristics
	3.3 Computational fluid dynamics (CFD)

	4 Case study - John Day Dam
	4.1 CFD simulations
	4.2 Seed distributions
	4.3 Test fish

	5 Results and discussion
	5.1 Prematurely terminating streamtraces
	5.2 BioPA scores
	5.2.1 Seed number sensitivity
	5.2.2 Seed distribution sensitivity
	5.2.3 Accilmation depth sensitivity
	5.2.4 Turbine operating point
	5.2.5 Nadir locations


	6 Summary and conclusions
	Acknowledgments
	References


