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the proximity to the headland), negligible seabed slope (necessary to deploy the gravity foundation), 
separation from high vessel traffic areas (federal navigation lanes, ferry route), and ease of cable routing 
back to shore. 

During deployment, the turbines will be lowered to the seabed by the three points on the triangular base 
shown in Figure 1. Hydraulic jacks are used to connect to the frame and are detached and recovered once 
the turbine is in position on the seabed. During recovery, a frame is positioned over the subsea base. The 
forward face of the shroud (facing the apex of the triangular base) is used to align the recovery frame. 
Hydraulics on the frame then engage with the subsea base and the entire turbine is recovered, much in the 
same manner as it is deployed. Each turbine will be connected to shore by a separate power cable. These 
cables will also provide power for monitoring instrumentation and fiber optic communication with the 
turbine and monitoring instrumentation. 

The seabed is primarily cobbles (softball size and larger) intermixed with shell hash, gravel, and boulders 
(Greene, 2011). Cobbles and boulders are colonized by barnacles, sponges, and algae. Consolidated 
sediments underlay the cobble layer (Golder Associates, 2011; Landau Associates, 2011). The water 
column is generally well mixed, with weak stratification occurring only during neap tides. Turbidity is 
low (< 1 NTU), though there is considerable biological detritus at depth (Polagye and Thomson, 2010). 
Owing to the high level of commercial vessel traffic, mean broadband noise levels are relatively high at 
117 dB re 1 µPa (Bassett et al., in press). Broadband received levels range from less than 100 dB during 
the quietest periods to more than 140 dB when vessels are in the immediate area. Strong currents also 
mobilize the gravel and shell hash on the seabed, periodically generating noise at higher frequencies (5-50 
kHz, Bassett et al., submitted). 

The biological environment is less-well understood, owing to the difficulty of conducting biological 
studies in high flow environments. The area is utilized by a number of marine mammal species (Southern 
Resident killer whales being the most notable due to their endangered and iconic status). Harbor porpoise 
are routinely present at the site with a strong diel pattern (much higher echolocation activity at night, 
Tollit et al., 2010; Cavagnaro et al., in prep). Harbor porpoise are much more common at this site than for 
other tidal energy sites where comparable data exists (Strangford Lough, Northern Ireland; Minas 
Passage, Nova Scotia). Several migratory fish species transit through the area, though spatial and 
temporal distributions are not well-understood. 
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3 Environmental Monitoring Objectives 

Before discussing the tools that will be applied to environmental monitoring, it is first helpful to 
understand the desired objectives for environmental monitoring at the pilot-scale. The following 
hierarchical framework is adopted for discussion purposes: 

 Stressor: a characteristic of tidal turbine operation (e.g., rotating blades, noise, EMF) 

 Change: a detectable or measureable alteration to the environment caused by a stressor 

 Effect: a change threshold denoting environmental significance 

 Impact: a negative effect 

 Benefit: a positive effect 

At the scale of this project, environmental effects (either impacts or benefits) are unlikely (see Polagye et 
al. (2011) for a complete discussion). This pilot project does, however, provide a unique opportunity to 
collect data about environmental effects that could become changes for larger scale projects. Developing 
this information is crucially important for both resource agencies and industry. This pilot project is 
intended as a learning tool and, over the course of the project, the District will work with regulators and 
stakeholders through an Adaptive Management framework to maximize knowledge gain and transfer. 

The focus study areas for this project are in the areas of static effects (e.g., presence of device 
foundation), dynamic effects (e.g., rotating blade), and acoustic effects. Studies are described in four 
monitoring plans, as summarized in Section 5. Some plans focus on stressors, while other focus on 
stressor-receptor interactions. This is not intentional, merely a product of how these plans evolved 
through collaborative discussion.  Each of the plans also includes resource protection triggers based on 
monitoring data, which are not described in this summary. Over the course of project operation, other 
studies may need to be developed to address new questions or close gaps identified in these monitoring 
plans. The four plans and the areas addressed are: 

 Benthic Habitat Monitoring: static effects on near-field physical environmental, habitat, and fish 
 Near-turbine Monitoring: dynamic effects on fish and marine mammals at ranges up to several 

meters from the turbine. 
 Acoustic Monitoring: acoustic stressor produced by the turbine in operation. 
 Marine Mammal Monitoring: avoidance, attraction, or change in behavioral state for marine 

mammals exposed to with static, dynamic, or acoustic stressors. 

This study prioritization is driven by the outcomes of an environmental workshop (Polagye et al., 2011) 
that brought together over seventy experts from academia, regulatory agencies, and industry drawn from 
the US, Canada, and Europe. Workshop discussions focused on the potential significance of stressor-
receptor interactions and the uncertainty around those interactions at both pilot and commercial scales of 
development. Workshop participants identified critical knowledge gaps that hindered their assessment of 
environmental risks and recommended monitoring priorities for pilot-scale deployments.   

Figure 3 presents the stressor-reception interaction matrix developed by workshop participants for 
commercial-scale deployments (generalized over all sites and all turbine technologies). The color the 
severity of a potential interaction (i.e., red indicates a potentially significant interaction while green 
indicates a low significance interaction). Similarly, the number of triangles denotes the uncertainty around 
the significance of this interaction (e.g., three red triangles denote high uncertainty). Areas that are of 
potentially high significance but also have high uncertainty (yellow/red cells with three red triangles) 
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by hydrophones on the turbine foundation, notification of a Southern Resident killer whale transit would 
result in a rapid-response intensification of observations from several monitoring systems (shoreline 
observers, turbine instrumentation) intended to detect attraction, avoidance, or change in behavioral state 
associated with turbine noise or prey aggregation around the device.  

The third is an Automatic Identification System (AIS) receiver deployed on Admiralty Head to monitor 
vessel traffic in the project area. This information provides helpful context for noise and marine mammal 
monitoring (e.g., Bassett et al., in press). Specifically, marine mammal observations must be stratified by, 
among other factors, proximity of shipping since marine mammals are expected to demonstrate avoidance 
to high-intensity (e.g., > 140 dB re 1µPa) ambient noise. Additionally, characterization of turbine noise 
described in the acoustic monitoring plan will be most effective when vessels are not underway in close 
proximity to the project. The effective range for the AIS receiver is approximately 20 km, which will 
detect vessel traffic beyond a distance where it would significant elevate ambient noise levels. 

4.2 Vessel Monitoring 

Vessel-based monitoring excels at collecting data over broad spatial scales. For example, vessel-based 
monitoring has been used to characterize ambient noise variability in the project area. Noise data are 
collected either by hydrophones cabled back to a survey vessel or autonomous near-surface drifters. Both 
techniques are suitable for collecting ambient noise data without contamination from pseudo-sound 
(turbulent eddies shed by the hydrophones, Bassett et al., submitted). Similar techniques will be used for 
characterizing the noise produced by turbines. Pre-installation monitoring also utilized a vertical line 
array of hydrophones to study diving patterns of killer whales by localizing their vocalizations (Tollit et 
al., 2010). This type of line array provides information about the depth and range of a noise source and 
may be used for post-installation monitoring of Southern Resident killer whales. When combined with 
information from shoreline observers, the bearing (as well as depth and range) to a Southern Resident 
could be estimated, as well.   

While pre-installation studies have used vessel-based Doppler profilers to characterize the tidal resource 
intensity (Palodichuk et al., in press), these tools are not well-suited to studying turbine wakes due to 
beam spreading. At turbine depth, the four beams of a profiler bracket a circle 50 m in diameter, which is 
much greater than the width of the turbine wake (approximately 6 m). Measurements of wake and inflow 
conditions will be provided by instrumentation on the turbine foundation. 

Pre-installation studies included the successful deployment of ROVs from surface vessels for benthic 
habitat monitoring (Greene, 2011). In order to be effective, ROV surveys must be timed around diurnal 
inequalities with protracted weak currents (e.g., < 1 m/s). This can provide several hours of operating 
time. ROVs will be used to survey the turbine foundation and cable route to characterize colonization and 
verify the assumption that the project will not increase scour or sedimentation. 

4.3 Turbine Monitoring 

Instrumentation deployed on the turbine foundation is best suited to long-term monitoring efforts with 
higher data and power requirements than pre-installation, autonomous monitoring to characterize a site 
(e.g., Sea Spider instrumentation packages, Polagye and Thomson, in press). Monitoring systems 
deployed on the turbine foundation represent the most ambitious aspect of project monitoring and, 
potentially, the source of highest-value monitoring data. Turbine monitoring systems are grouped into two 
categories – instruments that will be deployed for the duration of the demonstration project (fixed) and 
instruments that will be periodically recovered for maintenance (recoverable).  Unless otherwise 
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 Turbine performance sensors monitored by OpenHydro’s Supervisory Control and Data 
Acquisition (SCADA) system. Monitoring includes generator voltage/current, rotor rotational 
rate, structural vibrations, and generator temperature. While not directly related to environmental 
monitoring, pre-installation acoustic estimates (Polagye et al., in prep) suggest that observations 
of turbine noise and marine mammal responsiveness to turbine noise should be stratified by 
power generation state. 

The fixed instrumentation system is being designed with limited expansion capability in order to allow 
other instrumentation to be incorporated ahead of project deployment. This could, for example, include an 
instrumentation package being developed by the National Renewable Energy Laboratory that would 
augment turbine performance monitoring. 

Recoverable instrumentation on each turbine is centered around an Adaptable Monitoring Package and 
includes: 

 A stereo imaging system to monitor the turbine rotor and characterize species-specific 
interactions with the turbine at close range. Because artificial illumination is required, the 
functional range for optical measurements is likely to be limited by the presence of biological 
“snow” to somewhere between 3 and 7 m. Field tests of this system are planned for summer 2012 
to reduce this uncertainty. Additionally, because of the potential for behavioral disturbance 
caused by artificial lighting and high data bandwidths (100 MB/s at 10 Hz frame rate), this 
system will not be generally configured to operate continuously. Higher duty cycles could be 
enabled when Southern Resident killer whales might venture into the field of view for the camera 
systems. Bioaccumulation on the camera optical ports will require maintenance interventions 
every 3-6 months (less intervention in winter months, more intervention in summer months). 

 An acoustic imaging system (BlueView P900-2250) with a similar field of view to the stereo 
imaging system, initially used to verify the limits for artificial illumination (frequency, duration) 
that do not cause a significant biological response. 

 Water quality (one turbine) as part of a long-term study of dissolved oxygen levels in Puget 
Sound by the Washington Department of Ecology. Oxygen sensors drift over time and require 
recalibration every 3-6 months. This pilot project will not affected dissolved oxygen 
concentrations, but this partnership is intended to demonstrate the long-term potential for 
integrating tidal energy projects with Ocean Observing Systems (OOS). 

 Click detectors (stand-alone) to monitor cetacean echolocation activity (principally harbor 
porpoise). These instruments (C-PODs) will not be connected to turbine power and data systems. 
Instruments will be deployed in redundant pairs. On board battery and storage capacity is 
sufficient for 3+ months of deployment. The detection radius for echolocation activity is 
approximately 200 m. Data from C-PODs will be compared to the 3+ year pre-installation 
baseline data for harbor porpoise activity to evaluate whether turbine operation reduces 
echolocation activity or alters factors underlying echolocation activity (day/night, current speed, 
season, etc.). Click train data from C-PODs also can be used to identify “landmark” activity, 
periods in which marine mammals are echolocating directly at the C-POD (or the structure it is 
attached to). This information will be compared to the rate of pre-installation “landmark” 
encounters for Sea Spider instrumentation packages to evaluate whether harbor porpoise are 
taking direct notice of the turbine during operating and/or idle periods. 
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Pre-installation surveys (Greene, 2011) have characterized the benthic habitat in the Project area as 
cobbles and boulders, colonized by barnacles, sponges, and algae. The turbine foundation will have 
considerably greater vertical relief (e.g., turbine shrouds will extend to 13 m above the seabed) and may 
support different benthic communities. Anecdotal reports from tidal energy projects in Europe indicate 
that turbine foundations are often colonized within a year of deployment. Information about how this 
project affects the local benthic community structure would provide information about how a larger array 
might affect the community and guidance for engineering refinements to foundations that promote 
desirable benthic communities (potential benefit) and minimize undesirable benthic communities 
(potential impact). 

Surveys to characterize colonization of the turbines (e.g., coverage, colonization rates, and species 
involved) will consist of focal observations of specific regions of one turbine by an ROV deployed from a 
surface vessel. Surveys will be timed around diurnal inequalities that provide extended periods (i.e., 
multi-hour) when currents are weak enough to operate an ROV. Surveys will be conducted every three 
months for the first year of project operation and twice per year thereafter. 

Hypothesis 2: The contact points between the turbines and the seabed will not result in deposition of fine 
sediments or scour. 

Pre-installation surveys indicate that the seabed in the project area is predominantly scoured of fine-
grained sediments due to the strong tidal currents in the project area. Because turbidity is relatively low in 
Admiralty Inlet (Polagye and Thomson, 2010) and the currents reverse direction approximately every six 
hours no net accumulation of fine-grained sediments are expected in the turbine wake or around turbine 
structures. Accumulation of fine-grained sediments where none presently exist would alter benthic 
communities and could be environmentally significant (i.e., rise to the level of a change) for a large-scale 
installation. 

During the ROV surveys to characterize colonization of the turbine structures, the ROV will survey the 
locations the turbine foundation contact the seabed to evaluate scour or deposition. 

Hypothesis 3: The power cable and horizontal directional drill exit point will be colonized and are likely 
to return to pre-installation conditions over time. 

As for the subsea base, the power and data cables to shore are likely to be colonized by marine life. 
Unlike the subsea base, these will not have significant vertical relief, so the creation of different benthic 
habitat is unlikely and the primary interest is in determining the rate at which these cables are colonized 
and whether, over time, any significant cable movement occurs. Similarly, the rate at which the horizontal 
directional drill exit point is colonized and returned to a pre-installation state is of interest.  

During the ROV surveys to characterize colonization of the turbine structures, the ROV will also survey 
several focal points along the cable route and the horizontal directional drill exit point. 

5.2 Acoustic Monitoring Plan 

The acoustic monitoring plan is intended to verify the suitability of assumptions made in a pre-installation 
acoustic estimate (Polagye et al., in prep) and inform the spatial and temporal extent for marine mammal 
monitoring activities. 

Hypothesis 1: Turbine sound will vary with power generation state 

Turbine sound is likely to vary with power generation state (i.e., more sound will be produced when the 
turbines are closer to their rated capacity than around cut-in speed). However, no studies to date have 
rigorously assessed this relation. Pre-installation estimates indicate that if turbine sound does vary with 
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5.3 Near-turbine Monitoring Plan 

Note: the hypotheses and specific approaches described here are presently under active development, 
pending the outcome of stereo-camera instrumentation trials during the summer of 2012. 

Hypothesis 1: Strobe illumination may result in a species-specific startle response, avoidance response, 
or attraction. 

Artificial illumination is necessary for optical image capture at the depth of the project. Additionally, in 
order to “freeze” motion and produce a crisp image of objects moving at velocities on the order of several 
meters per second an exposure time of 2-50 µs is recommended (Gallager et al., 2004). This cannot be 
achieved with a mechanical shutter, but is within the capabilities of machine vision strobes in dark 
environments (i.e., strobe acts as a virtual shutter). However, the use of strobe illumination may affect 
behavior of marine animals in a manner that depends upon a number of factors including strobe rate and 
duration of illumination, organism or fish species and life stage, and hydrodynamic conditions. Fish 
behavior in response to strobe lights may be complex; based on studies at dams on the Columbia River 
(Johnson et al. 2003, Johnson et al. 2005, Simmons et al. 2006), there was a wide range of attraction and 
avoidance behaviors that varied with time of day and species. Marine fish behavior in response to lighting 
appears to be similarly complex, with great variation among different species and life stages, from 
avoidance to attraction, or no reaction to lights (Marchesan et al. 2005, Stoner et al. 2008, Ryer et al. 
2009). 

The objective of this study is to establish species- and season-specific thresholds for fish responsiveness 
to the strobes (duration and strobe frequency) that will inform appropriate use of the camera system for 
studies of presence/absence (Hypothesis 2), interaction with the moving rotor (Hypothesis 3), artificial 
reef effects (Hypothesis 4), and avoidance behavior (Hypothesis 5). In other words, this study will 
develop operating guidelines for the strobes that minimize behavioral changes associated with its 
operation. It is unlikely that these thresholds will be absolute and close consultation with the MARC will 
be required to develop these guidelines. Studies will be structured to evaluate the effect of strobe 
frequency (up to 10 Hz), duration of lighting (up to 60 seconds), and time between successive lightning 
periods. Information from the acoustic camera will serve to detect strong startle responses, avoidance 
responses, and the “cool down” time required for behavior to return to normal once strobe illumination 
ceases. 

Hypothesis 2: The turbine may attract aquatic species due to the area of refuge offered by the low-
velocity wake. 

Observations of the OpenHydro turbine at EMEC have shown that fish (specifically, Pollock) aggregate 
in the turbine wake during low-velocity conditions because this offers an energetically preferable area of 
refuge. As water velocity increases, fish leave the area, either for energetic reasons or because of the 
acoustic stressor. Understanding the attraction of aquatic species (predators and prey) to turbines is 
needed to evaluate environmental impacts for large-scale development. 

The primary monitoring tool will be the stereo cameras deployed on the turbine foundation, though some 
supplemental information may be provided by Vemco receiver detections from outside the cameras’ field 
of view. The need to periodically maintain these cameras (biofouling, repositioning) is the principal driver 
for the recoverable instrumentation package on the turbine foundation. Observations will be duty-cycled 
in order to limit the behavioral changes associated with artificial lighting and to provide a manageable 
data stream for analysis (at maximum frame rates, each stereo camera pair generates ~100 MB of data per 
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second). Adaptive Management will be employed, post-installation, to determine an optimal duty cycle 
and duration of measurements. 

Hypothesis 3: Marine animals are unlikely to pass through the rotor or open center during turbine 
operation. 

Video observations of the OpenHydro turbine at EMEC have not shown aquatic species (fish, marine 
mammals, or diving seabirds) to pass through the rotor or open center during turbine operation. Passage 
through the turbine during operation poses a risk of blade strike. Active acoustic observations of the 
Ocean Renewable Power Company turbine in Eastport, Maine indicate that smaller fish may swim 
through the turbine during all operating states. The differences between these observations may be 
associated with the species involved or type of device. Certainly, concern over potential injury or 
mortality associated with blade strike represents a critical uncertainty associated with potential 
environmental impacts of tidal energy development. 

The primary monitoring tool to address the hypothesis that aquatic species are unlikely to pass through 
the rotor (based on the experience testing a similar turbine at EMEC) will also be stereo cameras. As for 
the second hypothesis, the most appropriate duty cycle and duration of observation will be determined 
through Adaptive Management with resource agencies. During observations, the cameras will be oriented 
towards the turbine rotor to maximize the portion of the rotor in the field of view. 

Hypothesis 4: The turbine may attract marine animals due to an artificial reef effect. 

It is likely that the turbine support structure will act as an artificial reef and attract fish that associate with 
complex habitat. This may have positive or negative effects, depending on the attracted species.  

The objective of this study is to characterize how marine animals are using the turbine support structure 
over all stages of the tide. This will be correlated with information about the colonization of the subsea 
base and turbine support structure collected by the Benthic Habitat Monitoring and Mitigation Plan. 

Since reef effects are a lower priority than strike/collision, this study will be conducted after the 
presence/absence, artificial illumination, and rotor interaction studies planned for the first year of 
operation. 

The primary monitoring tools to address the hypothesis will be the stereo cameras, complemented by 
imagery from the acoustic cameras. The objective will be characterize, to the lowest taxonomic level 
possible, marine animal use of the turbine support structure over various time scales and tidal current 
conditions. 

Hypothesis 5: Fish may avoid the turbine due to its pressure field or sound (particle velocity or acoustic 
pressure). 

In addition to direct interaction and attraction/aggregation, fish may avoid the turbines. This could occur 
at relatively close range (within a few rotor diameters) as they detect hydrodynamic pressure changes 
upstream of the turbine on their lateral line system. Detection of acoustic particle velocity may be 
possible for some fish species at similar distances by the same biological mechanism. At greater 
distances, up to several hundred meters, fish may exhibit avoidance behavior in response to acoustic 
pressure (i.e., turbine sound), though fish behavioral responses to sound are not well understood 
(Hawkins and Popper, 2012). Avoidance at close range, if preventing strike or collision, could be 
beneficial. However, avoidance at greater range would be undesirable, since a large array could create a 
barrier to migratory species. 
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Since avoidance of the pilot-scale turbines is a lower priority than strike/collision, this study will be 
conducted after the seasonal presence/absence, artificial illumination, and rotor interaction studies 
planned for the first year of operation. 

The primary monitoring tools to address the hypothesis will be the stereo cameras, complemented by 
imagery from the acoustic cameras for avoidance associated with upstream pressure changes or acoustic 
particle velocity. Avoidance at greater range would likely require lower frequency active sonars. Because 
these systems may produce sound at frequencies audible to marine mammals, study plans for longer range 
avoidance will need to be developed in consultation with appropriate resource agencies. 

5.4 Marine Mammal Monitoring Plan 

Hypothesis 1: Pinnipeds may respond to the acoustic stressors from turbine operations or prey 
aggregations through attraction or avoidance. 

Marine mammal behavioral responsiveness to noise is a well-known, but not well-understood in terms of 
relating a particular noise to a particular response (e.g., as discussed in Southall et al., 2007). The acoustic 
stressor from project operation is, however, likely to be the first cue associated with the project that is 
detected by marine mammals. The zone of noise detection establishes an upper bound on the zone of 
responsiveness. As described in Polagye et al. (in prep), given assumptions regarding the time variation 
of turbine noise and pre-installation measurements of ambient noise, the zone of probable detection 
extends no further than a few hundred meters around the turbines for mid-frequency cetaceans, high-
frequency cetacean, and pinnipeds. The zone of detection for low-frequency cetaceans is likely to be 
somewhat greater, but cannot be estimated with certainty due to a lack of audiogram information for this 
class of marine mammal. 

Pinniped responsiveness to turbine noise will firstly be evaluated by 2-3 experienced shoreline marine 
mammal observers positioned on Admiralty Head, utilizing a scan sampling procedure. Observations will 
focus on identifying attraction or avoidance within the zone of detection for turbine noise. Initially, the 
zone of detection will be as established by the pre-installation estimate (Polagye et al., in prep), but will 
be updated once information is available from post-installation noise characterization (§ 5.2). 
Observations will be stratified by month, time of day, and presence of prey species in the vicinity of the 
turbines (as informed by the Near-turbine Monitoring and Mitigation Plan). The duration and frequency 
of shoreline observations will be developed through collaborative discussions with resource agencies and 
may be modified, post-installation, through Adaptive Management. 

Hypothesis 2: Harbor porpoise may respond to the acoustic stressors or prey aggregations through 
attraction or avoidance. Their high rate of occurrence in the Project area provides an opportunity to 
conduct studies with greater statistical power than for other marine mammals. 

Pre-installation monitoring indicates a high level of porpoise activity at this location (Tollit et al., 2010; 
Cavagnaro et al., in prep). Consequently, observations of harbor porpoise may have greater statistical 
power to detect behavioral change. First, shoreline observers will monitor the point of closest approach 
(POCA) and directionality (i.e., approach towards the turbine outside of zone of audibility and movement 
while inside zone of audibility) in comparison to the estimated signal excess of turbine sound at various 
distances. Second, click train data from C-PODs also can be used to identify “landmark” activity, periods 
in which marine mammals are echolocating directly at the C-POD (or the structure it is attached to). This 
information will be compared to the rate of pre-installation “landmark” encounters for Sea Spider 
instrumentation packages to evaluate whether harbor porpoise are taking direct notice of the turbine 
during operating and/or idle periods. Third, comparisons will be made to pre-installation information (3+ 
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years), in order to determine if statistically significant differences in echolocation activity, or the factors 
underlying echolocation activity (as determined by a Generalized Linear Model) have changed 
significantly as a consequence of turbine operation. Finally, shoreline observations associated with the 
first hypothesis will be used to evaluate the detection probability for C-PODs (e.g., after Kyhn et al., 
2012). C-PODs will be deployed for the duration of the pilot project and recovered every 3-6 months as 
part of the maintenance cycle for the Adaptable Monitoring Package. 

Hypothesis 3: Killer whales may respond to the acoustic stressors or prey aggregations in the vicinity of 
the turbine through attraction, avoidance, or change in activity state. Their endangered and iconic status 
warrants special consideration. 

Killer whales are an endangered and iconic species in Puget Sound. In recognition of this, the Marine 
Mammal Monitoring and Mitigation Plan allocates a higher intensity of effort to observing their 
behavioral response to the turbines than other marine mammals. Information about how killer whales 
interact with tidal turbines must be established before larger-scale or longer-term projects could be 
considered in Admiralty Inlet. While pre-installation studies indicate that interaction with a tidal turbine is 
unlikely to result in significant injury or mortality (Carlson et al., 2012), behavioral changes are also of 
concern. 

Unlike pinniped and harbor porpoise monitoring, monitoring of killer whales will continue throughout the 
project lifetime and utilize shore-line observers, localizing hydrophones, and the near-turbine monitoring 
system. These tools will be utilized in a rapid-response mode when killer whales are transiting through 
Admiralty Inlet. Based on pre-installation monitoring (Wood et al., 2010), ~40 transits occur each year. 
Rapid responses would likely be possible for at least 50% of these and would be informed by existing 
sighting networks and detections of Southern Resident killer whale vocalizations by the shore-based 
hydrophone in Port Townsend or the hydrophones on the turbine foundations. First, shoreline observers 
would provide high-accuracy information about group and individual positions and behavioral states 
while within the zone of turbine sound detection. Second, localizing hydrophones (either on the turbine 
foundations or deployed from a vessel as a line array) would be used to track killer whales as they pass 
through the zone of detection. Passive acoustic data would also be post-processed if a transit is reported 
after the fact (i.e., passive acoustic data will be archived). Further, the stereo-camera systems could be 
operated at higher duty cycle to investigate whether killer whales are interacting directly with the turbine 
(as limited by the need to not artificially influence behavior). Additionally, information from the near-
turbine monitoring plan will identify potential prey aggregations that might serve to attract killer whales 
to the turbines. Unlike harbor porpoise or pinnipeds, the number of killer whale transits will not be large 
enough to employ a grid-based GAM/GEE analytical approach, as power to detect change will be too 
low. In order to test the hypotheses of attraction/avoidance or behavioral change, the following metrics 
will be used for shoreline observations: directionality of transit, surfacing interval, behavior state, surface 
active behavior (SAB), click rate, and call rate. The data collected will be analyzed to identify behavioral 
responses and modifications to the monitoring approach will be developed collaboratively with resource 
agencies through Adaptive Management. 
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