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1  |  INTRODUC TION

The concept of an “ecological niche” was first applied by 
Grinnell (1917) and referred to the abiotic demands of a species 
toward its environment and the behavioral adaptations of the 
species to the same (Grinnellian niche). A formal definition of the 
concept followed in Hutchinson (1957), describing an ecological 
niche as an ‘n- dimensional hypervolume’, where each dimension is 
influenced by a different environmental parameter. A further spec-
ification by Hutchinson (1957) was the distinction between fun-
damental and realized ecological niches. While the fundamental 
niche represents the total area that allows a population to survive, 

the realized niche describes the area where a species dominates 
over competitors. The latter refers more to the “Eltonian niche”, 
which focuses on the interaction of different species (Elton, 1927), 
especially in the more modern differentiation of the two (Dehling 
& Stouffer, 2018). The original understanding of the Eltonian niche 
as stated by Hutchinson (1957) assumes that co- occurring spe-
cies occupy different niches that do not intersect. The paucity of 
readily observable physical niches in the pelagic zone (Behrenfeld 
et al., 2021) and a seemingly unstructured environment (Martin 
et al., 2021) let to the formulation of the ‘paradox of plankton’ by 
Hutchinson (1961): the co- existence of relatively many species in 
an apparently homogeneous environment, even though species 
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richness tends to increase with habitat heterogeneity (Lapointe & 
Bourget, 1999; MacArthur & MacArthur, 1961). However, niche- 
based models do not explain redundancy (Leibold & McPeek, 2006) 
or the existence of functional groups or traits (Barton et al., 2013; 
Dehling & Stouffer, 2018), both of which have been observed in 
plankton communities and are generally considered positive as-
pects of biodiversity (Leibold & McPeek, 2006).

The term “plankton” encompasses a diverse group of organisms 
in the oceans, including pytho-  as well as zooplankton. Here we 
will use it to refer to the zooplankton component only. Traditional 
methods in plankton ecology have been time- consuming and 
thus prevented the up- scale to pan- oceanic observations (Irisson 
et al., 2022). This paucity of data and the inconsistency in sampling 
methods and scales have limited our understanding of the factors 
and processes determining the abundance or diversity of plankton 
(Lombard et al., 2019). New optical sampling methods have emerged 
in the last decade which produce a wealth of information (Irisson 
et al., 2022), but their scientific use was limited by the concepts 
and methods applicable to the huge amount of data they gener-
ate (Alvarez- Berastegui et al., 2014; Irisson et al., 2022; Lombard 
et al., 2019; North et al., 2016). In addition, the traditional view of 
turbulence- homogenized plankton communities has been chal-
lenged by recent studies, suggesting that biological and physical pro-
cesses create a structured realm at scales down to a few centimeters 
(Basterretxea et al., 2020; Mitchell et al., 2008).

One way to handle these data is habitat maps, which link bio- 
physically distinct areas to specific species communities (Harris & 
Baker, 2012). However, due to the high variability of relevant spatial 
and temporal scales in the pelagic environment (Hinchey et al., 2008; 
Thompson et al., 2016) it is a daunting task to accurately determine 
pelagic habitats and identify associated plankton communities.

That is where machine learning excels. Several studies have re-
cently created a link between global plankton datasets and associ-
ated physical variables (Busseni et al., 2020; Cael et al., 2021; Drago 
et al., 2022; Sonnewald et al., 2020). But even though machine learn-
ing has already successfully brought insights into plankton ecology 
in the past, fully automated predictions can still only be trusted for 
the most abundant species (Irisson et al., 2022; Plonus, Conradt, 
et al., 2021). Fortunately, plankton communities are usually highly 
diverse (Siegel, 1998) but dominated by a few, very abundant taxa 
(Fuhrman, 2009).

For example, there are 31 species known to have pluteus lar-
vae, the larval form of echinoderms, in the North Sea (Laakmann 
et al., 2016). However, Echinocardium cordatum (Pennant, 1777) is 
the most abundant one, probably due to higher winter tempera-
tures (Kirby et al., 2007), complemented by Amphiura spp. (Lindley 
et al., 1995). Since the 1980s, pluteus larvae have become even 
more abundant than copepods at times (Kirby et al., 2007; Lindley 
et al., 1995), which usually numerically dominate the zooplank-
ton community. An extensive overview of copepod species in the 
North Sea was provided by Fransz et al. (1991). Even though there 
are several different species, four of them provide 85% of the bio-
mass, namely Acartia clausi (Giesbrecht, 1889), Centropages hamatus 

(Liljeborg, 1853), Temora longicornis (Müller, 1785), and Pseudocalanus 
elongatus (Boeck, 1865) (Beaugrand et al., 2002; Hickel, 1975). The 
by far most abundant one is P. elongatus (Fransz et al., 1991). Second 
in abundance only to copepods (Landry et al., 1994), appendicular-
ians are of special importance for the vertical particle fluxes in the 
world's oceans (Winder et al., 2017). Due to their affinity for higher 
temperatures and tolerance toward more acidic conditions, it is likely 
that their importance will increase under global warming (Winder 
et al., 2017). The most abundant species in European coastal waters 
are Oikopleura longicauda Vogt, 1854, Oikopleura dioica Fol, 1872, 
Oikopleura fusiformis Fol, 1872, and Fritillaria borealis Lohmann, 1896 
(Lopez- Urrutia et al., 2005). Although all species tolerate the range 
of temperatures and salinities observed in the North Sea (Lopez- 
Urrutia et al., 2005), O. dioica dominates the other species at tem-
peratures below 20°C (Lombard et al., 2010).

Plankton communities shape the seascape for higher trophic 
levels (Bertrand et al., 2014) and are considered sentinels of ocean 
changes (Barton et al., 2013; Benedetti et al., 2021; Cael et al., 2021; 
Drago et al., 2022), which makes it an important task to understand 
and monitor their spatio- temporal variation (Friedland et al., 2020; 
Hays et al., 2005; McGill et al., 2006; McGinty et al., 2018) and their 
responses to changing environmental conditions.

Here, we map plankton communities to physically distinct habi-
tats using a fully automated method applied to a high- frequency in- 
situ dataset sampled in the North Sea. Our approach takes advantage 
of machine learning speed to pry information from a wealth of data 
and makes the information therein accessible to human researchers. 
Using a fully connected Autoencoder (AE) and a density- based cluster-
ing algorithm we generate habitat maps from physical and biological 
variables, sampled with a Remotely Operated Towed Vehicle (ROTV) 
and investigate plankton–habitat interactions to reveal driving factors 
behind the compositions of the local plankton communities.

2  |  MATERIAL S AND METHODS

2.1  |  Data acquisition and preparation

Physical and biological oceanographic measurements were re-
corded on different North Sea surveys with the RV Heincke (Knust 
et al., 2017) using a MacArtney TRIAXUS ROTV, complemented by 
a video plankton recorder (VPR). The TRIAXUS was towed behind 
the research vessel in an undulating fashion between the sea sur-
face and bottom. A detailed description of the TRIAXUS and the 
associated sampling procedure can be found in Plonus, Conradt, 
et al. (2021) and Plonus, Vogl, and Floeter (2021). General data han-
dling was accomplished with R 4.4.0 (RCoreTeam, 2020) and the 
tidyverse packages “purrr”, “tibble”, “dplyr”, “ggplot2”, “rstatix”, and 
“tidyr” (Wickham et al., 2019). The map was generated using ‘gg-
plot2’ and “marmap” (Pante & Simon- Bouhet, 2013) in R (Figure 1). 
For our analyses, we selected the following parameters to determine 
bio- physical niches in the pelagic realm: temperature (°C), salinity 
(psu), oxygen (μmol L−1), and chlorophyll- a (RFU). Furthermore, we 
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had	 sufficient	 VPR-	derived	 density	 data	 (N L−1) available for the 
plankton groups “Appendicularia”, “Copepoda”, “Dinoflagellates”, 
“Marine snow”, and “Pluteus larvae”.

Transect diagrams were generated using Ocean Data View (ODV, 
Schlitzer, 2020) with the embedded spatial interpolation software 
DIVA (Troupin et al., 2012) and exported as grids with a resolution 
of ~25 m	length × 1 m	depth.	Abiotic	measurements	were	normalized	
and	rescaled	to	range	from	−1	to	1.	All	plankton	density	values	and	
chlorophyll a measurements were transformed using the natural 
logarithm of x + 1.	The	Euclidean	distances	in	the	multidimensional	
space defined by the plankton densities and the chlorophyll a con-
centration between each grid cell and the top left grid cell of each 
transect were calculated (Harris et al., 2020). Those distances were 
normalized and rescaled as described above. This was necessary 
since deep learning models generally perform better with homoge-
neous, small values (Bishop, 1995).

The exported grids for each selected parameter and the above- 
calculated distance measure were stacked and transformed into 
feature- vectors where each grid cell became one vector with 4 
features	(1	parameter = 1	feature).	In	our	definition,	a	pelagic	micro-	
habitat with a spatial extent of ~25 m × 1 m	 corresponds	 to	one	of	
those feature- vectors, which reflect the niche space at this point 
(Colwell & Rangel, 2009).

Based on these feature- vectors, the AE was trained to re-
construct the original microhabitats and thereby learn relevant 
abstractions that represent important patterns in the pelagic en-
vironment. We used a GPU- supported Tensorflow backend (Abadi 
et al., 2015) for Keras (Chollet, 2015) under Python 3.7 (Van Rossum 
& Drake, 2009) to build and train our AE.

2.2  |  Model description

The AE consisted of four fully connected layers in the Encoder and 
Decoder, respectively. The Decoder used the transposed weights 
of the Encoder in reversed order, e.g., the weights of the first 

Encoder- Layer were shared with the last Decoder- Layer. The first 
layer of the Encoder inflated the 4- dimensional feature- vector to a 
200- dimensional feature- vector, which was reduced to a 100- , 50- , 
and 4- dimensional feature- vector by the following layers (4–200–
100–50–4). The Decoder did the same in reverse (4–50–100–200–
4). The batchsize (number of input microhabitats that are processed 
simultaneously) was set to 100 and the learning rate followed a 
sawtooth- like undulating scheme, initialized at 5e−8. Each input 
feature- vector corresponded to one microhabitat and included one 
measurement of each parameter. The model was trained using data 
recorded during the research cruises HE429 (July 2014) and HE534 
(June 2019). The best performance was achieved using a limited 
training set of only 50.000 randomly selected micro- habitats over 
250 epochs while reserving the remaining ~200.000 microhabitats 
for validation. During one Epoch each micro- habitat is presented to 
the model exactly once.

2.3  |  Microhabitat segregation

The final model was tested using data generated on the research 
cruise HE466 (June 2016). Compared to the human- validated 
plankton densities from HE429 and HE534, the plankton den-
sities for HE466 were estimated exclusively in an automated 
manner using the threshold procedure proposed by Faillettaz 
et al. (2016). By applying the trained Encoder only, we created 
4- dimensional representations of the original input. In the follow-
ing, we will refer to the processing of the micro- habitats by the 
Encoder as “projection”. Microhabitats with similar characteris-
tics were projected closer to each other than micro- habitats with 
different characteristics. HDBSCAN calculates the Euclidean 
distance to build clusters from the, in this case, 4- dimensional 
inputs (McInnes et al., 2017). We refer to the clustered micro-
habitats as macrohabitat (MH). MHs were labeled manually. For 
more information regarding the clustering, see Plonus, Vogl, and 
Floeter (2021).

F I G U R E  1 Sampling	transects	from	
HE466 (T1–T6, yellow) and HE446 (T1–T2, 
orange). Red polygons: Wind turbines. 
Water	depth	ranges	from	0–10 m	(white)	
to	40–50 m	(dark	blue).	A	map	of	the	
cruises HE429 and HE534 was provided in 
Plonus, Vogl, and Floeter (2021).
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2.4  |  Identification of key parameters

While very deep architectures can easily become some kind of 
“black box”, it was still possible to trace individual inputs in our 
relatively shallow model which on top consisted only of fully con-
nected Dense- Layers and did not rely on convolutional filters. Fully 
connected layers take an n- dimensional input which is multiplied 
by a pre- defined number “X” of weight sets of length n, result-
ing in a weight matrix of n × X	weights.	Basically,	 the	output	of	a	
Dense- Layer is the dot product of the input and the weight matrix 
fed into some nonlinear activation function, and thus the weights 
ultimately define the relative influence of a given input upon the 
final output. Weights close to zero results in minor changes in 
the output even if the input variable varies a lot while increasing 
weights (positive as well as negative) can facilitate major changes 
in the output. Thus, analyzing the final weights after completion of 
the training phase revealed the relative influence each input vari-
able had upon a specific output dimension of the Encoder, regard-
less of the analyzed transect. A similar approach has been used in 
Drago et al. (2022) to evaluate the importance of single nodes in a 
random forest algorithm.

2.5  |  Sensitivity analysis

Sensitivity analysis (SA) estimates the importance of an input variable 
for the model output. We applied a global SA following Sobol (2001) 
to estimate the importance of each output dimension (D1–D4) of our 
AE. In a global SE, all parameters are varied simultaneously, allowing 
not only the contributions of individual parameters to be assessed 
but also the contribution of their interactions to the variability of the 
model output.

HDBSCANs prediction method performed poorly on the ran-
domly generated inputs for the SA, likely due to the “curse of dimen-
sionality” (Bellman & Dreyfus, 2015). Randomly generated points 
were unlikely to be close to HDBSCAN's pre- estimated “core points” 
and were therefore usually classified as outliers. Thus, we trained 
a support vector machine (SVM) to separate the clusters identi-
fied by HDBSCAN and to predict the randomly alternating data 
for the SA. SVMs define boundaries between existing clusters by 
maximizing the distance between the boundary and each adjacent 
cluster. Because HDBSCAN forms clusters from spatially distinct 
groups, SVMs are uniquely qualified to assign randomly generated 
data points to the closest cluster despite the “curse of dimension-
ality”. The SVM was trained with the e1071- package in R (Meyer 
et al., 2023) and the SA was performed with the SALib- library in 
Python (Iwanaga et al., 2022).

2.6  |  Plankton–habitat associations

Plankton–habitat associations were investigated with the R- package 
“shar” (Hesselbarth, 2021) which is based on the methods in Plotkin 

et al. (2000) and Harms et al. (2001). Basically, the expected abun-
dance of a given species is estimated based on bootstrapped rand-
omized habitat maps. Above (or below) a certain threshold a positive 
(or negative) association between the habitat and the species is as-
sumed. We used 100 randomized habitat maps for each of the orig-
inal habitat maps and a significance level of 0.01 for the analysis. 
For comparability, we used the same 100 randomized habitat maps 
for each of the three investigated groups, namely “Appendicularia”, 
“Copepods”, and “Pluteus”. We reduced the resolution of our origi-
nal	feature-	vectors	(25 m × 1×)	to	100 m × 1 m	due	to	computational	
costs.

3  |  RESULTS

3.1  |  Model training

Each training epoch took ~5 s	 using	 a	 graphic	 card	with	 768	 gpu-	
cores and we trained the model for 250 epochs. The final training 
(Tr) and validation (Val) Root Mean Squared Error (RMSE) of our 
model were RMSETr ~ 0.69	 and	 RMSEVal ~ 0.48	 (Figure 2). As the 
RMSE	were	summed	over	the	four	features	which	ranged	from	−1	
to 1, this equals a deviation of ~9% during training and ~6% during 
validation between the reconstructed and original parameters.

3.2  |  Identification of key parameters

Temperature had the highest impact upon the output dimension 1 
(D1) with a ~46% share on the final outcome, followed by salinity 
with ~36% and the Euclidean distance (~17%). Variations in oxy-
gen had likely no effect on D1 since the oxygen components were 
weighted down to a share of only ~1%. D2 was dominated by the 
Euclidean distance (~45%). Temperature and salinity had an equal 
share of ~23% and oxygen had again the least influence but with ~9% 
more than on D1. D3 was affected by all input variables similarly with 
shares between 19% and 29%. D4 was most sensible toward salinity 
(~39%) followed by temperature (~27%), oxygen (~20%), and finally 

F I G U R E  2 History	of	the	model	training.	Root-	mean-	squared	
error (RMSE—dotted) and validation RMSE (dashed).
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the Euclidean distance (~14%). Temperature was twice as influential 
on D1 than on any other output dimension. Variations in oxygen had 
nearly no effect in D1 but increasingly so on D2, D4, and D3. Overall, 
salinity was the most influential variable but was never as dominant 
as temperature or Euclidean distance on a single output dimension. 
Similar to temperature on D1, the Euclidean distance was twice as 
influential on D2 as on any other output dimension (Table 1).

3.3  |  Sensitivity

The most sensitive dimension was D3 in more than half of the 
cases (Figure 3). D3 was also the most balanced output dimension 
regarding the influence of different input parameters. The other 
dimensions were equally important, with D2 never being the most 
sensitive dimension.

3.4  |  Characterization of macro- habitats

The habitat map of HE466 T5 (Figure 4) features everything one 
could expect from a tidal mixing front as it was described in Hill 
et al. (1993). At the beginning of the transect is a stratified water 
column.	The	surface	layer	(MH4)	is	outlined	by	the	240 μmol L−1 iso-
line for oxygen, with higher concentrations within the MH. The bot-
tom layer (MH6) is characterized by temperatures below 12.25°C. 
MH7 probably resembles the area of density- driven circulation and 
is framed by the 13°C isoline for temperature. Toward the end of 
the transect (MH5), there is a fully mixed water column with salin-
ity	below	33.95 psu.	The	area	 left	out	by	those	 isolines	belongs	to	
MH13, which shows the typical characteristics of an along front jet, 
namely reduced temperatures and upward doming of bottom front 
isolines.

At the beginning of the transect T1 is a stratified water column 
with the surface layer this time limited to temperatures above 13.5°C 
(MH4).	The	downwelling	pole	(MH6)	is	outlined	by	the	34.3 psu	sa-
linity isoline, with higher salinities within the MH. In contrast, the 
upwelling pole (MH7) is characterized by oxygen concentrations 
below	 225 μmol L−1. There is no fully mixed water column toward 
the end of the transect, however, what is clustered into MH5 has 
mostly pluteus larvae densities above 6 individuals per micro- habitat 
(ind mh−1). The presence of an along front jet as in T5 (MH 13) could 
explain the accumulation of particles observed in MH5. However, 
the temperatures do not fully support this (Figure 5). Although it is 

possible that the transect did not fully cross the tidal mixing front 
and this could affect the predictive ability of the model, T1 also 
shows strong evidence of an upwelling–downwelling dipole (Floeter 
et al., 2022), with the upwelling pole aligned closely with the surface 
temperature minimum.

As can be seen in Figure 4, the boundaries of global macro- 
habitats tend to fit the observed parameter isolines very well. It is 
noticeable that different parameters contribute to the respective 
isolines, in T1 there is even an MH that is most closely related to the 
increased abundance of pluteus larvae.

3.5  |  Plankton–habitat associations

The plankton–habitat associations for all groups and habitats are pre-
sented in Table S1. The group “appendicularia” had no general posi-
tive or negative association with any of the MHs that occurred in four 
or more transects. There was a negative association for the groups 
“pluteus” and “copepods” with MH6 and MH7, which represent the 
stratified waters of the deeper North Sea below the thermocline. The 
analysis indicated a generally positive association with the surface 
mixed layer and the fully mixed coastal area for both groups as well.

Parameter ranges of MHs with a positive association with any 
specific group of organisms did not indicate a distinct physical niche 
(Figure 6). An exception was the positive association of copepods with 
MHs of higher temperatures and a negative association with MHs of 
lower temperatures. Furthermore, the analysis indicated an affinity of 
appendicularia toward the areas of lower oxygen concentrations.

4  |  DISCUSSION

4.1  |  Model inputs

The model had difficulty interpreting plankton abundance, most 
likely due to the skewness of the data. The patchiness of plankton 
produces many zeros and only relatively few high abundances. Using 
the Euclidean distance had two main advantages. First, the distance 
was no longer biased toward zero. Secondly, the Euclidea distance 
combined the data on the resident plankton communities, using 
chlorophyll a as a proxy for phytoplankton abundance, into one vari-
able. In theory, the model can be trained with any number of species, 
groups, or even functional groups, if applied to data that allows such 
distinctions.

Dimension/variable Temperature Oxygen Salinity Euclidean

D1 0.462 0.007 0.359 0.171

D2 0.234 0.091 0.225 0.449

D3 0.194 0.288 0.291 0.228

D4 0.273 0.197 0.386 0.144

Note: Output variables (dimensions) in rows and input variables in columns.

TA B L E  1 Influence	of	each	input	
variable upon an output variable.
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Furthermore, the feature vectors we use describe the Eltonian 
niche space (Dehling & Stouffer, 2018) at a specific location and the 
final macro- habitat is therefore basically a cluster of locations with 
very similar niche spaces. This makes our method uniquely qualified 

to study species- habitat interactions and ecological niches, which 
is of utmost importance considering the ongoing climatic changes 
(Benedetti et al., 2021; Busseni et al., 2020; Cael et al., 2021). This 
would require a more detailed dataset than the one used in the cur-
rent investigation, but there are advantages in using a less detailed 
dataset as applied in this study. The fully automated data pipeline 
makes it possible to get an initial near real- time assessment of the 
pelagic habitats and associated species communities currently pres-
ent in the study area and therefore helps monitor ongoing changes.

4.2  |  Biophysical characteristics of macro- habitats

Transects T1 to T6 of HE466 (Figures S1–S6) were not only in the 
immediate vicinity of an offshore wind farm (OWF) but partly also 
crossed a tidal mixing front (Hill et al., 1993). While in T1–T3 all MHs 
had mean salinities >34 psu,	there	was	a	decreasing	trend	in	salinity	
in the transects T4–T6, indicating a shift from North Sea to coastal 
water (Lee, 1980). Only T5 had an MH that spanned the entire water 
column with a mean salinity <34 psu,	indicating	a	fully	mixed	habitat	

F I G U R E  3 Count	of	Sobol	sensitivity	rankings	for	all	transects	
by dimension. Fixing the dimension with the highest rank (1) would 
result in the greatest average reduction in output variability.

F I G U R E  4 Habitat	maps	for	T1	
and T5 of haul 5 from HE466. Dotted: 
Temperature isolines [°C], dashed: Salinity 
isolines [psu], dot- dashed: Oxygen isolines 
[μmol L−1], solid: Pluteus larvae abundance 
[ind/micro- habitat]. Each global macro- 
habitat is represented by a different color. 
Brown areas denote the transition areas 
(originally	labeled	−1).

F I G U R E  5 Map	of	temperature	for	
HE466 haul 5 T1. The black line is the 
14.5°C temperature isoline.
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with characteristics of coastal water. T4 and T6 did not extend into 
the mixed coastal water.

In general, the model produced a vertical segregation along the ther-
mocline. That is already an important feature since the mixed- layer depth 
is a good indicator of the productivity and biodiversity of plankton com-
munities (Barton et al., 2013; Brun et al., 2015). Especially the distinct 
upwelling- downwelling pattern of the dipole in T1 of HE466 shows the 
ability of our model to accurately track the surface mixed layer.

The horizontal segregations are probably related to changing veloc-
ities. Those also induce some small changes in the physical characteris-
tics, which is what our model was able to detect. The velocity patterns of 
dipoles (Broström, 2008) and fronts (Hill et al., 1993) are well described 
in the literature and closely match the habitat maps we generated.

4.3  |  Plankton niches

On a global scale machine learning has successfully been applied 
to reevaluate existing datasets and link plankton communities to 
distinct physical habitats (Busseni et al., 2020; Drago et al., 2022; 

Panaïotis et al., 2023; Sonnewald et al., 2020), thereby defining 
what has been called ecological provinces (Sonnewald et al., 2020). 
Especially the data from the CPR survey has frequently been used to 
additionally show the changing distribution patterns of a variety of 
planktic species in response to climate change (Barton et al., 2013; 
Beaugrand et al., 2009; Benedetti et al., 2021). The data used in 
this study covers the much smaller sub- mesoscale, where imaging 
and machine learning can help to improve spatial resolution (Irisson 
et al., 2022). Our analysis did not indicate niche segregation between 
the three studied plankton groups, since multiple groups were regu-
larly found within the same MH. Furthermore, the MHs positively as-
sociated with specific groups showed no distinctly different physical 
properties from other areas. There are several potential reasons for 
the lack of readily observable niches. The lack of taxonomic details 
could mask the segregation of morphologically similar species of any 
of the groups into distinct niches. For example, the calanoid cope-
pods Calanus finmarchicus Gunnerus, 1770 and Calanus helgolandi-
cus Claus, 1863 both contributed significantly to copepod biomass 
during summer (Jónasdóttir & Koski, 2011). However, the cold- 
boreal C. finmarchicus (Planque & Fromentin, 1996) was restricted 

F I G U R E  6 Overview	for	temperature	[°C],	salinity	[psu],	oxygen	[mol/L],	and	chlorophyll	a	[rfu]	in	areas	with	a	positive,	negative,	or	not	
significant (n.s.) association with Appendicularia, Copepods, or Pluteus larvae. Positive associations indicate an increased abundance of the 
respective group in the underlying area and therefore the parameter ranges indicate the optimal niche space for that plankton group.
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to the cooler bottom waters while C. helgolandicus generally prefers 
warmer waters (Planque & Fromentin, 1996) and occupied the upper 
surface- mixed layer. The preferred temperatures for C. finmar-
chicus of <9°C (Jónasdóttir & Koski, 2011) were clearly exceeded 
in the present sampling area (>12°C) and considering the general 
northward drift of plankton distributions (Barton et al., 2013; Cael 
et al., 2021; Martin et al., 2021), and of C. finmarchicus specifically 
(Wilson et al., 2016), it is unlikely that this particular example caused 
the negative findings in this study. In general, we think it reasonable 
that despite the great biodiversity of the North Sea, it is possible 
to investigate spatial niches using VPR images since, as we argued 
in our introduction, the different taxa and communities are usually 
dominated by specific species.

Prey selection is another possible mechanism for niche diversity 
(Cleary et al., 2016; Fransz et al., 1991), which is not revealed using 
VPR images or images at all. This however would also require differ-
ent species to be very abundant to mask any possible findings on the 
sub- mesoscale. Of course, there is the possibility that niche segre-
gation does occur for the less common species, but those processes 
probably act on even smaller scales (Basterretxea et al., 2020; 
Mitchell et al., 2008) and are not in the scope of this investigation.

Next to temperature, which is frequently identified as a major 
force behind plankton distribution patterns (Busseni et al., 2020; 
Lindegren et al., 2020; Wilson et al., 2016; e.g. Benedetti et al., 2021; 
Drago et al., 2022; Houliez et al., 2021), the local hydrography is a 
primary driver of plankton distributions and biodiversity (Beaugrand 
et al., 2001; Beaugrand & Ibañez, 2002; Sonnewald et al., 2020; 
Swalethorp et al., 2015). Since plankton is, per definition, sub-
jected to the currents that shape the pelagic environment, the 
strong velocities associated with upwelling- downwelling dipoles 
(Broström, 2008) and frontal jets (Hill et al., 1993) have the potential 
to superimpose behavioral niche segregation (Hidalgo et al., 2012). 
We believe that this is the most likely explanation for the lack of 
physically distinct niches in our relatively short transects. A similar 
result was observed with an Underwater Vision Profiler 6 (Panaïotis 
et al., 2024) and by examining a picophytoplankton dataset using 
machine learning (Chen et al., 2020).

In areas less dominated by strong currents like the vast, oligo-
trophic parts of the Atlantic and Pacific Ocean, machine learning 
approaches as presented in this study can improve our understand-
ing of how physical gradients shape plankton communities (Chen 
et al., 2020; Greer et al., 2023). And optical datasets are especially 
useful in investigating the understudied gelatinous grazers (Greer 
et al., 2023), which will likely become more important under increas-
ing temperatures (Winder et al., 2017). Thus, optical sampling meth-
ods and machine learning will be important tools to investigate the 
changes in our oceans.
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