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Abstract: We report a novel technique to model abundance patterns of wintering
seaducks in relation to the construction of an offshore wind farm (OWF) based on seven
years of aerial survey transect data. Distance sampling was used to estimate seaduck
densities adjusted for covariates affecting detection probabilities. A generalized
additive model (GAM) generated seaduck densities in sampling units in relation to
spatially explicit covariates, using bootstrapping to account for uncertainties in both
processes. Generalized estimating equations generated precision measures for the
GAM robust to spatial and temporal autocorrelation. Comparison of pre- and post-
construction model generated surfaces showed significant reductions in long-tailed duck
numbers only within the OWF (despite the fact that the model was uninformed about
the OWF location), although the absolute numbers involved were trivial in a flyway
population context. This method provides quantification of distributional effects on
organisms over a gradient in space and time that offers an alternative to Before-
After/Control-Impact designs in environmental impact assessment.
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INTRODUCTION

Methods for detecting distributional effects on wildlife populations associated with
major construction projects have traditionally been based on “quasi-experiments” that
track animal distribution and abundance through time in relation to anthropogenic
factors. For example, BACI (before/after control/impact)-type designs (Green 1979,
McDonald et al. 2000, Smith 2002) compare numbers in modified/impacted areas with
those in a control area before and after the impact. Heterogeneous landscapes
constrain options for defining control areas that sufficiently resemble the impact area,
compounded by lack of adequate control/impact replication (Underwood 1991). Ideally,
we wish to compare changes in animal abundance (compiled at fine spatial resolutions)
along a gradient to the center of an alleged impact zone to define spatial responses
(Guillemette and Larsen 2002). Line transect surveys present a rich source of animal
location information that can be used to derive animal abundance estimates which can
be analyzed using distance sampling (Buckland et al. 2004) and spatial modeling tools
(Hedley and Buckland 2004) to quantify how abundance patterns change with time and
space in relation to an alleged impact at fine spatial resolution. In this paper, we couple
distance sampling methodology with novel modeling tools to derive spatially explicit
estimates of long-tailed duck abundance in relation to the Nysted Offshore Wind Farm
(OWF) in southern Denmark. Specifically, we compare temporally averaged duck
abundance before and after installation of the turbines and its spatial pattern in relation
to the OWF (see Fig. 2 in Fox et al. 2006 for conceptual framework).

METHODS
Study Area

Nysted OWF lies 10 km southwest of Gedser in Femern Belt (Fig. 1), c.4 km south of the
Redsand sandbar which runs c.25 km from Hyllekrog to Gedser. Water depth in the wind
farm varies between 6 m and 9.5 m over glacial sand/silt sediments with aggregations of
pebbles, gravel and shells. The water is brackish and the lunar tide is weak (less than 0.5
m, water level variation is mainly determined by wind). A busy shipping lane lies just
south of the OWF, fishery and recreational boats of all sizes use the area outside the
OWEF in summer. The current Nysted OWF consists of 72 2.3 MW wind turbines,
arranged in a trapezoid of 8 rows of 9 covering an area of 24 km? (Fig. 1). Turbine
nacelles are situated 69 meters above mean sea level and rotor blades are 41 meters
long, giving a total height of 110 meters. Almost all turbines were erected in
summer/autumn 2002, so throughout, “pre-construction” refers to January-April 2000-
2002 inclusive and “post construction” 2003-2007.

Survey Area and Data Collection

The 1,350 km? surveyed study area was defined to cover the Nysted OWF site and a
large reference area around, representing a bio-geographical unit for wintering long-
tailed ducks (Fig. 1, Petersen et al. 2006). Within each winter season (January to early
April) from 2000 to 2007 (excepting 2006) three or four surveys were conducted from a

CREEM Tech report 2011-1 Petersen et al. 2



high winged, twin-engined Partenavia P-68 Observer reconnaissance aircraft at 76 m
above sea level (measured by onboard radar altimeter) at 185 km/h (100 knots) along
26 pre-defined north-south transects at 2 km intervals (total track length 579 km, Fig. 1).
Two trained observers (familiar with species identification) scrutinized each side of the
aircraft instantaneously recording all observations of all avian species, number,
behavior, perpendicular distance from track line and time onto a Dictaphone. Behaviors
were recorded as sitting (on water), diving, flushing or flying. Observations were binned
into three transect bands defined by perpendicular distance from the survey track line,
each determined using an inclinometer (predetermined angles of 42, 102 and 252 below
the horizontal measured abeam). A band 44 m out on each side of the flight track
directly below the aircraft was not visible to observers. The inner, middle and outer
transect bands were 119 m, 269 m and 568 m wide respectively. Only long-tailed duck
observations are considered here.

Survey flight tracks were logged by computer from a differential GPS at five second
intervals, recording longitude/latitude (to c.2 m accuracy) and time. On the extremely
rare occasions of GPS failure, bird observation positions were calculated from the
known time of passage at the navigation way points and interpolated from the aircraft
cruising speed, inevitably compromising observational spatial accuracy. The majority of
observations were considered to be accurate to within four seconds, which with a flight
speed of 185 km/h gives a positional accuracy to within 206 m, at high bird densities,
positional accuracy may rarely have fallen to 515 m (10 seconds observational delay).

Surveys were never carried out when wind speed exceeded 6 m sec’, when
detectability of birds was severely reduced. In severe glare, observations from one side
of the aircraft were temporarily discontinued. A surface covering GIS bathymetry layer
was established from point-based high resolution multi-beam data made available from
the Danish Maritime Safety Administration.

Total study area abundance estimates over time

The total numbers of long-tailed ducks found in the study area was estimated for each
of the surveys using conventional distance sampling to correct for detectability, not
subject to spatial modeling of covariates. Model selection and the results from this
estimation exercise are presented in Appendices A & B.

Fine scale abundance estimates over time

The primary goal was to model fine-scale abundance patterns of long-tailed ducks over
time in relation to the construction of the wind farm in a manner that reflected
environmental heterogeneity in the study area, accounting for important sources of
uncertainty. To achieve this we combined methods for fitting detection functions with
a spatially-adaptive generalized additive model (GAM) and generalized estimating
equations (GEEs) (Hardin and Hilbe 2003). Distance sampling was used to estimate long-
tailed duck density from transect data, using detection functions to adjust these
estimates in relation to factors influencing the ability of observers to detect them (e.g.
distance from observer, sea state, group size etc, Buckland et al. 2004). The detection
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function portion of this analysis was used to estimate long-tailed duck densities in fine
scale sampling units (i.e. 500 m segments) as a function of covariates expected to affect
an observer’s ability to detect ducks. The spatially-adaptive GAM model related these
abundance estimates in sampling units to spatially-explicit covariates. Bootstrapping
allowed us to account for the various uncertainties arising from selecting the detection
function, and fitting of the spatially-adaptive GAM. The GEEs produced measures of
precision for the GAM which are robust to spatial correlation (Hardin and Hilbe 2003)
inherent in line transect data and were used to ensure parameter uncertainty in the face
of autocorrelation was realistic.

Estimating abundance along the transect lines (0.5 km segments)

Using all the survey data, we fitted a suite of plausible detection functions supported by
Petersen et al. (2006) that included various combinations of relevant covariates, and
identified the most parsimonious among these using AIC. Hazard function and half
normal key functions were considered, as were the most plausible combinations of the
covariates observer, bird behavior, sea state, flock size, survey (surrogate for date) and
pre-construction/post-construction phase of the study (see Appendix A). Each survey
transect was divided into segments 0.5 km in length, with a width equal to twice the
truncation distance. We then used the most parsimonious detection function among
these to estimate the number of seaducks in each segment using the count method of
Hedley and Buckland (2004). This method uses the Horvitz-Thompson estimator to
calculate counts per segment as the sum of the inverse of the probability of detection
for all observations in each segment.

Modeling the spatial distribution of long-tailed ducks pre- and post wind farm
construction: spatially-adaptive generalized additive model

The abundance estimates obtained using distance sampling were modeled using a
spatially-adaptive quasi-Poisson errors based, generalized additive model (GAM, Hastie
and Tibshirani 1990) with an offset. The model included a one-dimensional smooth term
for depth and a spatially-adaptive two dimensional smooth term for the X/Y coordinate
based spatial surface. These smooth relationships were permitted to differ before and
after construction in both shape and magnitude using construction-based interaction
terms. The linear predictor for the general model can be written as:

n. = P, + S, (Depth,) + s, (X,Y,) + construction, + s,(Depth, )construction, +
s, (X,,Y;; Jeconstruction, +log(area,)

where 7, represents the linear predictor for segment j at time t, j,is the intercept
parameter, S and S, are one-dimensional smooth terms representing the depth
relationship before and after construction respectively, while construction refers to the
“before” and “after” time periods 2000-2002 and 2003-2007. s, and s, are spatially-

adaptive two-dimensional smooth terms representing the spatial distribution of long-
tailed ducks before and after construction respectively. Differences in the distribution
before and after construction are of particular interest because any wind farm related
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effects might be reasonably expected to decline with the distance from the wind farm.
Area is an offset measuring the effective size of the segment of sea sampled.

The smooth functions for depth were specified to be cubic B-splines while the two-
dimensional smooth functions are represented by radial basis functions with a fixed
number of ‘space-filled’ knots. The space-filling approach uses an efficient design which
maximizes the distance between knots to obtain good coverage across the modeling
surface (Johnson et al. 1990). These radial basis functions were specified to
accommodate local surface features by determining a radius (r) for each knot that
contains a fixed proportion of the survey data. This spatially-adaptive approach
permitted the radii to vary locally across the surface so that data-sparse areas exhibit
larger radii and approximate relatively global changes in the surface while data-rich
areas exhibit smaller radii and can approximate local surface features. The k™ column of
the radial basis matrix can be written as:

* 2
g, - exp( (I xkrzxt. ) j

k

where d,;, represents the Euclidean distance between the spatial coordinates for the
observed data (X, ) and the x,y coordinate (xf< ) for knot location k. The radius

denominator r,f represents the square of the radius (r) allocated to knot location k.

These distances are used to make the two-dimensional smooth functions and feature in
the linear predictor in the following way:

P K Q K
M = Po+ Zﬁp (Depth) + Zﬁ(mk)dkn + BipiwsnCi + Zﬁ(P+K+1+q) (Depth,)x G, + Zﬁ(P+K+1+Q+k)dkit xC, +log(areg,)
p=L k=L -1 k=1

where the p=1,...,P and g=1,...,Q coefficients represent the cubic B-splines for depth
before (2000-2002) and after (2003-2007) construction (represented by the binary
variable C, ) respectively, the k=1,...,K coefficients represent the spatial surface with

locally varying r, before and after construction (one coefficient per knot location k).

Modeling the spatial distribution of long-tailed ducks pre- and post wind farm
construction: generalized estimating equations

The data comprise repeat visits to transects over time, and so residual independence
within transects was unlikely. For this reason, generalized estimating equations (GEEs;
Hardin and Hilbe 2003) were used to generate more realistic model standard errors and
95% confidence intervals for model-based differences before and after construction.

The ‘panels’ (or ‘subjects’) for the GEEs were chosen to be transect-days by inspection of
autocorrelation functions using Pearson residuals; i.e. residuals within transects on a
given day were permitted to be correlated, but independence was assumed between
transects on a given day. Additionally, residuals for transects in the same spatial location
visited on different days were assumed independent. The validity of these assumptions
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will be examined in light of model results. Empirical standard errors were used to
generate model standard errors (Halekoh et al, 2006), to help ensure robust estimates
of precision.

Model Selection

The number of knots used for the two-dimensional surface and the proportion of the

data (p) used to determine the radius of each knot was chosen using a cross-validation
exercise. The cross-validation exercise involved randomly omitting 30% of the transect-
days using a range of p (0.01-0.3 in 0.01 increments) to determine r, across a range of

space-filled knot schemes (10-40 knots). The sum of the squared errors when comparing
the predictions under each model to the out-of-set data and the observed out-of-set
data was then calculated for each knot scheme and p to give a cross-validation score.
The knot number was then chosen using the lowest average CV score across the knot
sets. The ranges trialed for p and the number of knots were chosen using a pilot cross-
validation scheme prior to the cross-validation analysis.

The number of internal knots used for the smooth depth relationship was also chosen
using a CV analysis (similar to that described above) following the CV-based specification
of the spatial smoother. This CV analysis trialed between 1 and 10 internal knots as a
part of the CV process and the number of internal knots with the lowest average CV
score was chosen.

Combining uncertainties

The uncertainty in the detection process and parameter uncertainty in the GAM-GEE
model was combined using a two-step bootstrap approach. Five hundred non-
parametric bootstrap realizations were used to summarize uncertainty from the
detection process and the GAM-GEE model was refitted to each realization. The GAM-
GEE based estimates and corresponding standard errors from this stage were then used
to generate 1000 parametric bootstrap realizations for each of the resulting realizations.
This lead to 500,000 predictions for each cell across a prediction grid comprised of cells
of 0,966 km?. For each set of predictions, the differences between estimated long-tailed
duck numbers pre-construction and post-construction across the prediction grid were
found and 95% confidence intervals (based on percentiles) for these differences were
harvested (see Appendix C).

RESULTS
Detection function modeling and broad scale abundance estimates

Appendix A shows the model selection results for fitting detection functions to the aerial
survey data in the fine-scale analysis. The close contest between the top two candidate
models shows there to be considerable uncertainty about the detection function most
appropriate for these data, however most of the covariates offered for inclusion in the
models appeared in the preferred model. The most parsimonious detection function
across surveys included the following covariates: sea state, scaled flock size, behavior,
and observer. When this detection function was fitted to each survey across the entire
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study area, more long-tailed ducks were estimated in the April 2002 survey than in any
other (Appendix B).

Modeling spatial distribution of long-tailed ducks before and after wind farm
construction

Under the cross-validation scheme, 38 knots were chosen with radii which captured 4%
(p=0.04) of the survey data nearest to each knot location. The CV analysis also selected a
smooth term for ‘Depth’ with 2 internal knots. The model-based results were used to
generate an after-before surface which indicates an estimated drop in long-tailed duck
numbers around the wind farm with an apparent displacement into neighboring waters
further from the wind farm. The magnitude of the changes were small on average; the
largest negative estimated difference was -3.00 individuals per segment and the largest
estimated positive difference was 9.54 individuals per segment across the prediction
grid (Fig. 1). Despite the uncertainty about model predictions after considering both the
detection and modeling processes, there was evidence for significant decreases in long-
tailed duck numbers only in survey grid cells between the turbines and significant
increases in waters further away (Fig. 1).

The extent of the within transect-day correlation was estimated to be small (for
example, the estimated correlation coefficient under an AR(1) process=0.1536), but the
practical consequences of incorporating the non-independence within transect-days
were marked. The GEE-based standard errors were between 4.5 and 17.0 times the size
of the standard errors obtained under independence (similar to the findings of Lapena
et al. (2010)). The residual autocorrelation was estimated to decay very quickly along
transect segments (on a particular day) and residuals just three units (500 m) apart are
effectively independent under the model; the correlation coefficient under an AR(1)
model for residuals three units apart was estimated to be 0.003624). In light of this, the
assumption that transects 2 km apart are independent is reasonable. Additionally,
inspection of Pearson’s residuals revealed negligible correlation for revisits to the same
transects on different days.

DISCUSSION

A long established challenge to ecologists is to find reliable and cost-effective means for
measuring distributional effects of geographically discrete human development projects
on natural populations. Traditional BACI-type studies, such as those associated with a
single development (e.g. wind farms), inevitably compare “impacts” between un-
replicated impact and control sites (Stewart-Oaten et al. 1986, Underwood 1991).
Changes in distribution and abundance of study organisms at such sites may differ
through time by chance and finding ecologically identical areas differing only in
exposure to human impact at appropriate scales and degree of separation is impossible,
leaving this approach vulnerable to criticism. Designed experiments offer a credible
means to test the potential impact of human disturbance on animal populations, but
count-based changes in abundance or density are insufficient for defensible impact
assessment. The uncertainty associated with estimating animal abundance when

CREEM Tech report 2011-1 Petersen et al. 7



detection is imperfect presents challenges in impact assessment, but these can be
overcome using methods presented here. We demonstrate that propagating the
uncertainty associated both with modeling of the detection process, as well as modeling
of the impact can be done using bootstrap methods to resample the data and subject
bootstrap samples to both modeling steps. In this case we have modelled the impact
using a ‘change surface’, with other covariates (such as bathymetry) that potentially
influence the distribution of seaducks, which is a seamless way to examine the strength
of the impact, in the presence of other biologically relevant factors.

In this study, long-tailed duck density estimates could be predicted by the depth
relationship and a spatial surface before and after construction, which permitted any
changes before and after impact to differ with direction from the wind farm.

For analyses like these, the recognition of non-independence in model residuals is
crucial to ensure sampling variability based fluctuations in abundance are not mistaken
for genuine impact effects (Lapena et al, 2010). In this case the GEE-based standard
errors were many times higher than the independence-based standard errors which
would likely have led us to conclude that many more cells on the prediction grid
exhibited significantly different abundances post-impact.

Density estimates were only statistically significantly higher pre-construction within the
confines of the OWF compared to post construction, despite the fact that the model was
totally uninformed about the OWF location (Fig.1). Although long-tailed ducks occurred
between the turbines, the model estimated they did so at lower densities. This evidence
suggests that there has been some displacement of long-tailed ducks after construction
of the wind farm, despite the fact that the number of birds did not appear to have
changed in the general area post-construction (Appendix B). It is not yet possible to
attribute the redistribution of long-tailed ducks at Nysted to (i) avoidance of turbines, (ii)
disturbance from increased maintenance traffic, (iii) changes in food supply or (iv)
predators, or a combination of these and other causes. Further investigations should be
carried out to see if other biotic covariates (such as benthic sediment type and prey
availability) could better resolve patterns of abundance in long-tailed duck relative to
the OWF.

Part of our inference about the effect of the wind farm is derived from our spatially-
explicit estimates of predicted density within 0.5 km transect segments, and we found
that the uncertainties associated with these predicted densities varied considerably with
distance from the wind farm both pre- and post-construction.

The number of long-tailed ducks directly impacted by this development was trivial (4-5
long-tailed ducks per survey segment) relative to the total flyway population size (4.6
million individuals, Delany and Scott 2006). Although we know little about the potential
impacts of such displacement (in terms of the interference or depletion competition
effects experienced by birds displaced from the vicinity of the wind farm to forage
elsewhere), it seems unlikely that the construction of this wind farm will have any
detectable effect at the population level.
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FIGURE LEGENDS

FiG. 1. Map of the Nysted Offshore Wind Farm study area, showing its position within
Denmark (inset). The map shows changes in predicted differences in long-tailed duck
numbers across the study area under the spatially-adaptive generalized additive model
before and after construction using long-tailed duck abundances adjusted for
detectability. Negative differences indicate fewer individuals after construction than
before, positive differences indicate more individuals after construction than before.
The black ‘+’ and the black open circles represent significant increases or decreases in
long-tailed duck numbers under the model. The contour lines represent depth in
meters. The position of the wind farm is indicated with a hatched polygon and transect
waypoints are indicated with “T”.
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APPENDICES

APPENDIX A. Detection function model fitting diagnostics, showing the six detection functions fitted to the original long-tailed duck
dataset from Nysted OWF. Perpendicular distance was also included. Survey (index of the 24 surveys conducted during the study),
behavior (flocks sitting, swimming, flying, flushing), Beaufort sea state, estimated flock size, observer, and phase of the study were
potential covariates in the candidate models. AIC and delta AIC were used as model selection criteria. From the bootstrapping
exercise, the proportion of bootstrap replicates in which a given model was selected is also shown.

Proportion selected in

Key function  Covariates AIC AAIC bootstrap
Hazard rate Survey, Sea state, Behavior, Group size, Observer 7293.8 0.0 0.56
Half-normal Survey, Sea state, Behavior, Group size, Observer, Construction 72946 0.8 0.37
Half-normal Survey, Behavior, Group size, Observer 72985 4.7 0.07
Hazard rate Survey, Sea state, Behavior, Observer 7322.4 28.6 0.00
Half-normal Survey, Sea state, Behavior, Observer, Construction 7324.1 30.3 0.00
Half-normal Survey, Sea state, Observer, Group size, Construction 7358.5 64.7 0.00
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APPENDIX B. Comparisons of pre versus post construction abundance model-based
estimates of long-tailed ducks in the Nysted study area, based on observations from
aerial surveys. Values show model estimates + confidence intervals.
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APPENDIX C. The 95% confidence intervals for differences in long-tailed duck numbers
across the study area under the spatially-adaptive generalized additive model before
and after construction. Two maps showing the lower 95% confidence intervals and the
upper 95% confidence intervals respectively for differences in long-tailed duck numbers
across the study area under the spatially-adaptive generalized additive model before
and after construction using long-tailed duck abundances adjusted for detectability. The
black ‘+’ and the black open circles represent significant increases or decreases in long-
tailed duck numbers under the model. The contour lines represent depth in meters. The
position of the wind farm is indicated with a hatched polygon and transect waypoints
are indicated with “T”.
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Upper 95% confidence intervals for the differences between estimated abundances before and after wind farm construction
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