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1. Introduction 
The impacts of wind power development on bat and bird populations are commonly assessed by 
estimating the number of fatalities at wind power facilities through post-construction monitoring (PCM) 
studies. Standard methodology involves periodic carcass searches on plots beneath turbines (Strickland 
et al. 2011, US Fish and Wildlife Service 2012). The resulting counts are adjusted to compensate for bias 
due to imperfect carcass detection by searchers, removal of carcasses by scavengers or other processes 
(Korner-Nievergelt et al. 2011), and carcasses that may have fallen outside of searched areas. To account 
for the bias in counts due to imperfect detection and carcass removal, investigators typically conduct 
bias trial experiments to inform models of carcass detection probability. Many different estimators have 
been proposed that combine information about the bias trial experiments to estimate a detection 
probability for carcasses (g) and ultimately obtain an estimate of total mortality (M). The two estimators 
that have seen the most widespread use in North America recently are the Huso (Huso 2011, Huso et al. 
2012) and Shoenfeld (Shoenfeld 2004; also called the Erickson estimator) estimators. GenEst (Dalthorp 
et al. 2018a, 2018b, 2018c) is the newest statistical estimator to become available and was designed to 
improve upon the Huso and Shoenfeld estimators by generalizing the key assumptions in both, and to 
improve comparability among new PCM studies. In addition to relaxing some of the assumptions inherent 
in the Huso and Shoenfeld estimators, GenEst uses a novel approach to variance estimation through a 
parametric bootstrap (Madsen et al. 2019). 

The current study was undertaken to document the performance of GenEst relative to the Huso and 
Shoenfeld estimators. We took a simulation approach to the study because simulation data provides the 
basis to compare mortality estimators under conditions where the “truth” is known. The estimators were 
compared on three metrics: 1) bias—the tendency of an estimator to over- or under-estimate mortality, 2) 
precision—the ability of an estimator to constrain an estimate to a narrow range (measured here as the 
width of a 90% confidence interval [CI] around the point estimate divided by the true, known mortality 
rate), and 3) CI coverage—the probability a CI with a specified level of confidence actually includes the 
true level of mortality.  

Although our simulations were conceived and designed—and are discussed—with respect to wind farms, 
it is important to note that the estimators and results discussed here are relevant to any post-
construction mortality monitoring study that may occur (such as at solar facilities) where detection is 
imperfect. Although our study treats the problem of mortality estimation when detection is imperfect, it is 
also important to note that all of the estimators considered here are Horvitz-Thompson-style estimators 
(Horvitz and Thompson 1952), that is, none are designed to estimate the mortality of rare species as 
might be necessary under an Incidental Take Permit. The Evidence of Absence estimator (Dalthorp et al. 
2017) is still the most appropriate statistical tool for rare event estimation.  

The simulations cover a broad range of conditions that may occur in field studies and complete results 
are presented without commentary in the appendix. The main body of this report does not provide a 
comprehensive treatment of our results; rather, we try to identify some of the more important differences 
among the estimators and some conditions under which reliable mortality estimates are especially 
challenging.  
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2. Methods 
2.1 Mortality Estimation Components 

All of the estimators treated here address four or five of the same components of carcass detection 
probability to arrive at an estimate of total mortality and differ primarily in the assumptions associated 
with the components of detection probability. We begin with a brief review of these components.  

The carcass persistence (CP) probability addresses the potential bias in carcass counts due to the fact 
that a carcass may be removed by a scavenger (or another process) before a searcher completes a 
monitoring survey. The GenEst and Huso estimators both use survival-modeling techniques to estimate a 
distribution of carcass persistence times, from which the average persistence probability can be 
calculated. These estimators provide the user with tools to help choose among different distributions for 
carcass persistence times, which makes them flexible with respect to the carcass persistence dynamics. 
The Shoenfeld estimator implicitly assumes carcass persistence times follow an exponential distribution. 
When persistence times do not meet this assumption, the Shoenfeld estimator can be biased. 

Searcher efficiency (SE) addresses the bias that arises from imperfect detection of carcasses by 
searchers. All of the estimators tested here take an initial searcher efficiency parameter (p), which may 
differ from season to season or between substrate strata at a wind farm. Searcher efficiency also 
depends on carcass age, as carcasses tend to become more difficult to discover as they age, and k 
describes how searcher efficiency changes as carcasses age. Carcasses newly arrived at a facility may 
be detected with probability p (above) or may be missed. Those carcasses that are missed may begin to 
disintegrate and become harder to detect, or may have been well concealed in the first place, so it is 
reasonable to expect that a carcass that has been missed once will have a lower detection probability 
than a fresh carcass. The k parameter describes how searcher efficiency changes through multiple 
searches. 

Shoenfeld assumes searcher efficiency does not depend on carcass age (𝑘𝑘 = 1). Huso assumes 
carcasses that are not discovered in the first search after arrival cannot be discovered in later searches, 
i.e., searcher efficiency goes to zero for carcasses missed in the first search (𝑘𝑘 = 0). Among the 
estimators tested here, only GenEst treats k explicitly. GenEst uses a maximum likelihood procedure to 
estimate p simultaneously with k, if there are multiple search data available (as in our GenEst-est k 
estimations below). If there are only single-search data available, the GenEst estimation routine to 
estimate p reduces to a logistic regression and the user must specify a value (between zero and one) for 
k (as in our GenEst-fixed k simulations below, which used a fixed value of 0.7 for k). Choosing fixed k = 1 
is equivalent to the Shoenfeld approach to modeling searcher efficiency and choosing fixed k = 0 is 
equivalent to the Huso approach. The Huso estimator uses logistic regression to estimate p, and 
although there is no canonical approach to estimating p for the Shoenfeld estimator, logistic regression is 
a reasonable choice and was used here.  

The estimators behave differently when presented with a data set for which either all or none of the 
searcher efficiency trial carcasses are detected. When no searcher efficiency trial carcasses are detected 
by searchers, the Shoenfeld and Huso estimators are unable to produce a mortality estimate because 
with p = 0, estimated mortality would be infinite, which is nonsensical. In contrast, the GenEst estimator 
(version 1.3.1 and later) uses an estimate of 1 / (2 * n) when no searcher efficiency trial carcasses are 
detected (e.g., if all of 10 carcasses are missed, GenEst will use an assumed value of 1/20 for p). 
Although this assumption introduces an unknown bias to the estimator, it allows GenEst to produce 
mortality estimates where other estimators fail. When all searcher efficiency trial carcasses are detected 
by searchers, the Shoenfeld and Huso estimators proceed with a searcher efficiency estimate of 1.0, 
which is also implausible and introduces an unknown bias, but perhaps not an unreasonable 
approximation of reality if the number of trial carcasses is large. Analogous to the zero-found case, the 
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GenEst estimator (as of version 1.3.1) assumes searcher efficiency is 1 - 1 / (2 * n) when all carcasses 
are found (e.g., if all of 10 trial carcasses are detected, GenEst will use an assumed value of 19/20 for p). 
This assumption introduces an unknown bias to the estimator, but in most cases will be less biased than 
simply assuming p = 1 and gives a more realistic assessment of the uncertainty in the estimate of p (and 
total mortality) when all searcher efficiency carcasses are detected. 

A final important difference between the estimators is the treatment of uncertainty. Shoenfeld (2003) did 
not address uncertainty in the estimator. The Huso estimator uses a non-parametric bootstrap (i.e., a 
data-resampling procedure) to capture uncertainty in the detection probability and carcass counts, and 
we use the same approach for the Shoenfeld estimator. The GenEst estimator uses a parametric 
bootstrap procedure to capture uncertainty in the detection probability and carcass counts. For detection 
probability, this means parameter estimates are resampled based on the estimated uncertainty in the 
model; for carcass counts, the parametric bootstrap represents a completely novel approach developed 
specifically for the GenEst model (though it potentially has much wider application; Madsen et al. 2019). 
A consequence of the parametric bootstrap used by GenEst is that, rather than the turbine being a 
statistical sample unit (as in the Huso and Shoenfeld estimators), the carcass is the sample unit, which 
frees GenEst from the assumption that mortality rates are constant among turbines and makes it 
applicable across a broader range of conditions. 

Differences in the way carcass persistence, searcher efficiency, k, and uncertainty are treated mark the 
most fundamental differences between the estimators tested here. However, two other components of 
mortality estimation are also important and were included in our simulation. Sampling fraction refers to 
the fraction of wind turbines at a farm actually subject to search and is an important indicator of the 
actual sampling effort. The sampling effort also depends on plot configurations. Large, cleared plots may 
be expected to capture most carcasses that arrive at a wind farm, whereas road and pad searches that 
are restricted to the graveled surfaces around wind turbines may capture a small fraction of the total 
carcasses that arrive. The fraction of carcasses expected to occur within searched areas is called the 
density-weighted proportion of area searched, or DWP.  

The estimated detection probabilities for all of the estimators treated here are adjusted after the fact to 
account for sampling fraction and DWP. Post hoc adjustment for sampling fraction and DWP means their 
effects on the point estimates of mortality scale linearly with sampling fraction and DWP, but because the 
different estimators handle uncertainty associated with carcass counts differently, these factors can 
impact precision and CI coverage differently for the different estimators. 

2.2 Estimator Variants 

The study tested estimator performance of five estimator variants (italicized below) under a variety of 
simulated conditions (Table 1). Three estimators were tested: the GenEst estimator (as in version 1.4.2 of 
the software), the Huso estimator, and the Shoenfeld estimator. GenEst has the capacity to estimate the 
proportional change in searcher efficiency with each successive search (k) or to treat it as fixed and 
known. For the GenEst-est k case, we estimated k from simulated bias trial data. For the GenEst-fixed k 
case, we assumed k was equal to 0.7, regardless of its actual value. The Huso estimator includes the 
implicit assumption that k is zero, which is to say it assumes that if a carcass is missed once it will never 
be detected. Carcass search data can be prepared to approximate this assumption by restricting the 
carcass counts to only those carcasses that are ‘fresh,’ i.e., occurred since the last search. The notion 
that carcasses can be censored to satisfy the assumptions of the Huso estimator is simple in principle, 
but it bears emphasizing that in the field, the task of censoring carcasses is influenced by a great deal of 
subjective judgment, and accuracy in the censoring process remains untested. Huso-censored estimates 
were calculated using carcass counts identified as fresh (with perfect accuracy), and Huso-not censored 
estimates used all carcasses in the estimates. Neither of our Huso variants is likely to be the case in the 
field, but they represent a range of potential outcomes. The Shoenfeld estimator makes the implicit 
assumption that k is 1.0, which means the detection probability for a carcass never changes, regardless 



Performance of the GenEst Statistical Mortality Estimator 

March 10, 2021   8 

of how many times it has been missed. Unlike the Huso estimator, there is no way to prepare the data so 
that it matches the implicit assumptions of the Shoenfeld estimator. Thus, the three basic estimators 
resulted in five types of mortality estimates: GenEst-est k, GenEst-fixed k, Huso-censored, Huso-not 
censored, and Shoenfeld.  

2.3 Simulation Conditions 

Several factors affect the performance of these estimators. The factors that we consider are total 
mortality at a site, whether the mortality is evenly distributed among turbines or varies among turbines, 
the number of turbines at a site, the sampling fraction, the DWP (which depends on plot configuration), 
the carcass persistence distribution, the length of the search interval relative to the average carcass 
persistence time, the searcher efficiency, the value of k, and, finally, the number of trial carcasses used to 
estimate p, k, and carcass persistence.  

Each estimator was tested in the context of simulated mortality monitoring studies at a wind facility. The 
simulated studies covered 26 weeks with the search interval fixed at seven days. All simulated fatalities 
were assumed to be from the same class of animal in terms of detection and persistence probability (i.e., 
all bats or all similarly sized birds). The total number of fatalities arriving at the wind facility, carcass 
persistence distribution, mean persistence time, searcher efficiency, number of bias trial carcasses, 
distribution of fatalities across the wind facility, and k were varied systematically across the simulations—
see Table 1 for a description of all conditions tested during simulations. All combinations of conditions in 
Table 1 were simulated for each estimator, except for the combination of a uniform distribution of total 
mortality 𝑀𝑀= 10 at a site with 100 turbines, because it is impossible to uniformly distribute 10 whole 
carcasses across 100 turbines. There were 4,752 simulation scenarios to which each of the five 
estimators was applied. A carcass count and bias trial data were generated 1000 times for each of the 
4,752 scenarios. For each carcass count, each estimator gave a point estimate of mortality (𝑀𝑀�) and a 90% 
CI around 𝑀𝑀� .  

Table 1. Factors, their values used in the simulations, and their descriptions. 

Factor Levels Description 

Total mortality 
(M) at a site 

M = 1000 
M = 100 
M = 10 

Total number of carcasses distributed at simulated wind 
facilities. 

Spatial 
distribution of 
mortality 

Uniform M 
 
 

Variable M 

Uniform M distribution indicates the case where the mortality 
rates are identical for all turbines at a facility. 
 

Variable M distribution indicates the case where the mortality 
rates at turbines within a wind facility included a five-fold 
variation from the least lethal turbine to the most lethal 
turbine. 

Number of 
turbines 

100 turbines 

10 turbines 
Number of turbines over which to distribute total fatalities. 

Sampling fraction 
(f) 

f = 1.0 

f = 0.3 
Proportion of total turbines at a facility that were searched. 
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Plot 
configurations 

Plot type = Cleared 

Plot type = Cleared + RP 
Plot configuration for searches involved either cleared plots 
at all searched turbines (assumed large enough to capture all 
carcasses) or a mixture of 30% cleared plots and 70% of 
turbines searched on road and pads (large enough to capture 
15% of carcasses). 

Carcass 
persistence time 
distribution1 

Exponential 

Weibull 
Carcass persistence times followed either an exponential 
distribution or a Weibull distribution with a shape parameter 
equal to 0.6.  

Ratio of average 
persistence time 
to search interval 

Mean CP:SI = 1/3  
Mean CP:SI = 1 

Mean CP:SI = 3 

Ratio of average carcass persistence time: length of search 
interval; these resulted in the probability of persisting through 
the search interval (r) being 21%, 33% and 27% higher for the 
exponential than Weibull, respectively. 

Searcher 
efficiency for a 
fresh carcass 

p = 0.8 

p = 0.2 
Probability a fresh carcass will be detected on a search, 
assuming it has not been removed. 

Detection 
reduction factor 
(k) 

k = 0 
k = 0.7 

k = 1.0 

Fraction by which searcher efficiency for an aging carcass 
decreases with each successive search. 

Number (N) of 
bias trial 
carcasses 

N bias trials = Infinite 
N bias trials = 50 

N bias trials = 10 

Mortality estimators are informed by bias trials to estimate 
searcher efficiency, carcass persistence (and for GenEst, k). 
We simulated 10 or 50 bias trials, and the ideal case where 
components of bias were known with certainty  
(N bias trials = infinite). 

Estimator GenEst-est k 
GenEst-fixed k 
Huso-censored 
Huso-not censored 

Shoenfeld 

See text above. 

 

2.4 Estimator Implementation 

Estimates and CIs (parametric) for GenEst-est k and GenEst-fixed k were generated using version 1.4.2 of 
the GenEst R package. For the Huso-censored and Huso-not censored, estimates and CIs were generated 
using R code adapted from US Geological Survey Data Series 729 (Huso et al. 2012), and, thus, replicate 
the expected behavior of the Huso estimator as implemented in Data Series 729. There is no R package 
or publicly available software for implementing the Shoenfeld estimator, and critical details of the 
implementation of the estimator can vary considerably from project to project. The estimates for 
Shoenfeld were generated using R code developed by WEST based on Shoenfeld (2004). CIs for the Huso 
and Shoenfeld estimators were generated using a non-parametric bootstrap approach similar to that 
used in Data Series 729. For the Huso and Shoenfeld estimator variants, no estimate was produced for a 
simulation iteration when zero searcher efficiency carcasses were found on the first search of the 
associated simulated bias trials, although in DS 729 a minimum SE of 1/20 is assumed in such cases. 
GenEst version 1.3.1 and later assumes p = 1 / (2 * n) in these cases. 
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2.5 Estimator Assessment 

Estimator performance was assessed based on three metrics: CI coverage, relative bias, and precision. CI 
coverage is calculated as the proportion of the 1000 simulated 90% CIs around the estimated mortality, 
𝑀𝑀� , that contain the true mortality, 𝑀𝑀. That the 90% CI actually achieve nominal coverage, i.e., that it 
includes 𝑀𝑀 90% of the time, is important for correct interpretation of results. A 90% CI that contains the 
true 𝑀𝑀 100% of the time would be easy to construct, e.g., 𝑀𝑀 is between what was found and some very 
large number, 1,000,000 say, but would be of little practical value. Conversely, a very narrow CI might look 
appealing from a precision perspective, but, again, would be of little value if it never included the true 
value of M. The relative bias is calculated as the estimated mortality (𝑀𝑀�) divided by the true mortality (𝑀𝑀). 
The ratio equals 1.0 when the estimate is identical to the true mortality, is greater than 1.0 for estimates 
above the true 𝑀𝑀, and less than 1.0 for estimates below the true 𝑀𝑀. Relative bias of ½ is equivalent to bias 
of 2 in terms of how far the estimator misses the mark. Precision is calculated as the width of the 90% CI 
around the estimate of 𝑀𝑀 divided by the true mortality, 𝑀𝑀. We chose to standardize this metric, 
analogously to a coefficient of variation, to facilitate comparison of precision across different levels of 
true mortality. 

None of the three metrics can be interpreted well by itself. For example, an estimator may be unbiased, 
i.e., its average value over the 1000 iterations is exactly the true mortality, but it may also be very 
imprecise with 90% CIs so large that they cover the true mortality 100% of the time. An estimator with this 
characteristic is unlikely to be of practical use. An estimator may, on the other hand, be extremely precise, 
but the 90% CIs are so narrow that they rarely include the true mortality. The best estimator will be one 
that is consistently accurate (relative bias = 1), precise, and achieves nominal coverage. To present the 
results in a manageable way, we begin with a discussion of the inherent biases of the estimators, 
followed by a high-level overview of CI coverage, and finally a series of results for which we discuss 
precision and coverage simultaneously.  

3. Results 
3.1 Bias 

The Huso, GenEst, and Shoenfeld estimators differ most profoundly in the parameters used in estimating 
overall detection probability, and the assumptions on which those detection probability models are based. 
We begin by analyzing the 36 core scenarios that include all combinations of the searcher efficiency, k, 
and carcass persistence parameters that we investigated. For this analysis, we ignore the factors that 
primarily affect the assessments of uncertainty (total mortality, the spatial dispersion of carcasses 
among turbines, the number of turbines, and the number of field trial carcasses) and the extrapolation 
factors (DWP and sampling fraction), which the three estimators handle in similar ways.  

Table 2 gives the modeled probability of detection (𝑔𝑔) for each of the five estimators, assuming the 
sampling fraction and density-weighted proportion of carcasses are both 1.0 under the 36 core scenarios. 
The 36 unique simulation scenarios derive from two levels of searcher efficiency (0.2 and 0.8), three 
levels of k (0, 0.7 and 1.0), two carcass persistence distributions (exponential and Weibull), and three 
mean carcass persistence times relative to the search interval (1/3, 1, 3). The modeled detection 
probabilities for GenEst with known k and for Huso with perfect carcass censoring are exactly correct, but 
they differ from one another when k is not zero because they assume different data collection procedures 
in the field. The Huso estimator is unbiased when k = 0 or when carcasses are accurately censored, but 
biased by a factor of 𝑔𝑔𝐺𝐺𝐺𝐺𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸

𝑔𝑔𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
 when k is greater than zero and carcasses are not censored.  
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Table 2. Parameter values and modeled detection probabilities for the five estimators, where p refers to initial searcher efficiency and k to the 
detection reduction factor. Persistence distributions are parameterized as in the base R software. Mean CP:SI is the mean carcass persistence time 
(itself a function of the persistence distribution) divided by the search interval (seven days in all cases). Mean CP:SI less than 1.0 implies the search 
interval is longer than the mean persistence time, while a mean CP:SI greater than 1.0 implies the search interval is shorter than the mean 
persistence time. 

Estimator parameters Modeled detection probabilities 

p k Persistence distribution (parameters) Mean CP:SI 

GenEst-k known 

GenEst-k 
assumed to be 

0.7 
Huso (both 
variants) Shoenfeld 

0.8 1.0 exponential (rate = 0.0476) 3.00 0.789 0.766 0.680 0.794 

0.8 1.0 exponential (rate = 0.1429) 1.00 0.544 0.534 0.506 0.546 

0.8 1.0 exponential (rate = 0.4286) 0.33 0.256 0.255 0.253 0.256 

0.8 1.0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.615 0.599 0.537 0.794 

0.8 1.0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.415 0.406 0.380 0.546 

0.8 1.0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.217 0.215 0.210 0.256 

0.8 0.7 exponential (rate = 0.0476) 3.00 0.766 0.766 0.68 0.794 

0.8 0.7 exponential (rate = 0.1429) 1.00 0.534 0.534 0.506 0.546 

0.8 0.7 exponential (rate = 0.4286) 0.33 0.255 0.255 0.253 0.256 

0.8 0.7 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.599 0.599 0.537 0.794 

0.8 0.7 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.406 0.406 0.380 0.546 

0.8 0.7 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.215 0.215 0.210 0.256 

0.8 0 exponential (rate = 0.0476) 3.00 0.680 0.766 0.680 0.794 
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Estimator parameters Modeled detection probabilities 

p k Persistence distribution (parameters) Mean CP:SI 

GenEst-k known 

GenEst-k 
assumed to be 

0.7 
Huso (both 
variants) Shoenfeld 

0.8 0 exponential (rate = 0.1429) 1.00 0.506 0.534 0.506 0.546 

0.8 0 exponential (rate = 0.4286) 0.33 0.253 0.255 0.253 0.256 

0.8 0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.537 0.599 0.537 0.794 

0.8 0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.380 0.406 0.380 0.546 

0.8 0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.210 0.215 0.210 0.256 

0.2 1.0 exponential (rate = 0.0476) 3.00 0.378 0.284 0.170 0.399 

0.2 1.0 exponential (rate = 0.1429) 1.00 0.176 0.158 0.126 0.179 

0.2 1.0 exponential (rate = 0.4286) 0.33 0.066 0.065 0.063 0.066 

0.2 1.0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.298 0.220 0.134 0.399 

0.2 1.0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.151 0.128 0.095 0.179 

0.2 1.0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.062 0.059 0.052 0.066 

0.2 0.7 exponential (rate = 0.0476) 3.00 0.284 0.284 0.170 0.399 

0.2 0.7 exponential (rate = 0.1429) 1.00 0.158 0.158 0.126 0.179 

0.2 0.7 exponential (rate = 0.4286) 0.33 0.065 0.065 0.063 0.066 

0.2 0.7 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.220 0.220 0.134 0.399 

0.2 0.7 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.128 0.128 0.095 0.179 
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Estimator parameters Modeled detection probabilities 

p k Persistence distribution (parameters) Mean CP:SI 

GenEst-k known 

GenEst-k 
assumed to be 

0.7 
Huso (both 
variants) Shoenfeld 

0.2 0.7 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.059 0.059 0.052 0.066 

0.2 0 exponential (rate = 0.0476) 3.00 0.170 0.284 0.170 0.399 

0.2 0 exponential (rate = 0.1429) 1.00 0.126 0.158 0.126 0.179 

0.2 0 exponential (rate = 0.4286) 0.33 0.063 0.065 0.063 0.066 

0.2 0 Weibull (shape = 0.6; scale = 13.9574) 3.00 0.134 0.220 0.134 0.399 

0.2 0 Weibull (shape = 0.6; scale = 4.6525) 1.00 0.095 0.128 0.095 0.179 

0.2 0 Weibull (shape = 0.6; scale = 1.5287) 0.33 0.052 0.059 0.052 0.066 
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Figure 1 shows that the GenEst-est k and the Huso-censored estimators are unbiased under all 
36 combinations. GenEst-fixed k becomes biased when k is misspecified: when k is assumed higher than 
the real value, GenEst-fixed k becomes biased low, and when it is assumed lower than the real value, 
GenEst-fixed k becomes biased high. Low values of p and long carcass persistence times relative to the 
search interval cause the greatest degree of bias in GenEst-fixed k with misspecified values of k. The 
Huso-not censored estimator is unbiased only in the unlikely event that the true value of k is zero (i.e., 
there really is only one chance to detect a carcass in the field). When k is greater than zero, the Huso-not 
censored estimator is biased high. Higher values of k, lower values of p, and long persistence times 
relative to the search interval cause the greatest degree of bias in the Huso-not censored estimator. In 
most cases, (and all cases tested here), the Shoenfeld estimator is biased low because it implicitly 
assumes 1) k is 1.0, 2) carcass persistence times are exponentially distributed, and 3) each carcass is 
subject to an infinite number of searches. Thus, even in the unlikely situation where k is 1.0 (i.e., 
carcasses are equally detectable after any number of searches), the Shoenfeld estimator slightly 
underestimates fatalities. Underestimates are more pronounced with smaller values of k, with lower 
values of p, and with shorter persistence times relative to the searcher interval. For the carcass 
persistence distributions tested here, the underestimates by the Shoenfeld estimator are more 
pronounced with Weibull-distributed carcass persistence times than with exponentially-distributed 
carcass persistence times. This outcome is because the Weibull shape parameter we used (0.6) implies 
more rapid removal of fresh carcasses compared to exponentially distributed persistence times, but this 
result is not necessarily true for all possible Weibull-distributed carcass persistence dynamics.  

3.2 Confidence Interval Coverage 

CI coverage refers to the probability a CI will include the true value of a parameter that is being estimated. 
Ideally, an estimator should produce CIs with nominal coverage—i.e., ideally a 90% CI should include the 
truth with 90% probability. CI coverage greater than nominal suggests CIs are too wide. CI coverage less 
than nominal can be due to estimators that are “missing” variance (CIs too narrow), or to bias (systematic 
over- or under-estimation) in the estimators.  

There are some easily identified conditions under which no Horvitz-Thompson estimators consistently 
achieve nominal coverage. Figure 2 illustrates these. The figure is organized into three columns 
according to the precision with which detection probability is estimated. In the left column (infinite bias 
trials), the detection probability is known exactly and without error, the center column presents results 
from simulations in which 50 bias trial carcasses were used to estimate carcass persistence and 
searcher efficiency models, and the right column presents results from simulations using 10 bias trial 
carcasses. In all panels, the actual CI coverage associated with simulation conditions was sorted from 
low-to-high for each estimator and plotted as a line. An ideal estimator would be represented by a 
horizontal line on top of the reference line at 90% CI coverage. The longer an estimator’s line is within the 
shaded area (representing 80% - 95% coverage), the better its coverage property. The three rows in Figure 
2 represent successive elimination of conditions under which no Horvitz-Thompson estimator can 
achieve good coverage. 
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Figure 1. Relative bias of the five estimators under the 36 core scenarios that result in different detection 
probabilities. Within each panel, the x-axis repeats the k values twice. The y-axis has been log-transformed 
so that an underestimate by a factor of 2 is visually similar to an overestimate by a factor of 2. The 
reference line at 1.0 indicates an unbiased estimator, points above the line suggest estimators that are 
biased high, and points below the line suggest estimators that are biased low. Dotted reference lines 
indicate estimates that are 0.8 and 1.2 times the unbiased value. 
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Figure 2. Confidence interval (CI) coverage of the five estimators under different bias trial sample sizes (in 
columns). Within each panel, the realized coverage is plotted from low to high across all simulations 
conducted. Nominal coverage is indicated with a brown line at 0.9 and the shaded region includes coverage 
from 0.8 to 0.95. The top row of panels includes all simulations, the second row excludes simulations for 
which the expected carcass count was less than 2.3 per stratum (road and pad or cleared plots), and the 
third row additionally excludes simulations with sampling inadequate to capture the variability in mortality 
rates across the facility (see text).  
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The five estimator variants in Figure 2 are easier to distinguish from one another under the theoretical-
ideal case when detection probability is known (i.e., in the left-hand panels), compared to when detection 
parameters are estimated because there is less “noise.” A second pattern is that as the bias trials use 
fewer carcasses, the coverages for Shoenfeld, Huso, and GenEst with fixed k tend to increase because 
the uncertainties involved in estimating the SE and CP parameters when few trial carcasses are used 
partially mask the problem of inherent estimator biases.  

The top row of Figure 2 includes all simulation conditions, and shows that for 30–40% of the simulated 
conditions none of the estimators achieved even 80% actual CI coverage with a nominal 90% CI. The 
GenEst-est k estimator and Huso-censored estimators always outperformed the others, followed by the 
GenEst-fixed k, Huso-not censored, and Shoenfeld estimators. It is important to note that the simulation 
conditions are not necessarily a representative sample of field conditions, and some were included 
precisely because they were expected to cause the estimators to fail. The second and third row of panels 
in Figure 2 sequentially remove some of the most troublesome simulation conditions to illustrate their 
impact on CI coverage. 

All Horvitz-Thompson estimators fail under conditions of very few fatalities or very low detection 
probability (Korner-Nievergelt et al. 2011) because they all produce estimates of zero mortality with no 
variance when no carcasses are found. If true mortality is not zero, then these estimates will fail to cover 
the true mortality, and there is an upper bound on the achievable confidence level. Considering a 90% CI: 
if there is more than a 100% - 90% = 10% chance that zero carcasses will be detected, it will be impossible 
to achieve 90% CI coverage with a 90% CI because at least 10% of the time the estimate is zero. It 
happens that any conditions where the expected average carcass count is less than 2.31 are statistically 
bound to under-cover a nominally 90% CI, and greater confidence levels require greater average carcass 
counts (a 95% CI requires an expected count of at least 2.99). Further, for data with multiple types of 
search plots (i.e., groups of plots with different detection probabilities, as occurs in data with some plots 
searched as road and pads and others with cleared plots), it is necessary that the expected carcass count 
be at least 2.3 in each type of search plots. Adequate expected carcass counts in all types of search plots 
are necessary to ensure that the data are balanced in a way that accurately reflects the overall detection 
probability for the whole study. 

The second row of panels in Figure 2 is plotted after excluding all simulation cases for which the 
expected carcass count is less than 2.3 in any type of search plots. For the ideal case, where bias 
parameters are known (left hand panel), the coverage for GenEst-est k, Huso-censored, and GenEst-fixed k 
estimators all improve markedly, Huso-not censored improves moderately, and coverage of Shoenfeld 
estimates is nearly unchanged. As bias trial sample size decreases (moving right across the panels), the 
coverage of the worst-performing estimators increases due to widening CI’s and the five estimators 
behave more similarly to one another, though the rank-order performance (GenEst-est k>Huso-
censored>GenEst-fixed k>Huso-not censored>Shoenfeld) is maintained. 

Another PCM design condition that can cause problems for estimators is a sampling strategy that is 
inadequate to capture the variability in mortality from turbine to turbine across the facility. In the 
simulations presented here, these conditions are present in cases where there were 1) just 10 turbines at 
the wind facility, 2) a gradient of mortality among the turbines (see Spatial Distribution of Mortality in 
Table 1), and 3) a sampling fraction of 30% of the turbines (i.e., just 3 turbines). In those cases, the 
probability of a sample that is not representative of average conditions at the site is high. 

 

1 The probability that a carcass count, x, is zero, assuming x is Poisson-distributed with mean 2.3 is 0.10 
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The third row of panels in Figure 2 is plotted after excluding cases where the expected carcass count in 
any stratum was less than 2.3 and excluding cases where there were just 10 turbines at a wind facility 
with a gradient of mortality among turbines and a 30% sample of searched turbines. In this case, the 
GenEst-est k estimator almost never achieves less than 80% coverage for a nominal 90% CI. To the extent 
that the Huso-censored estimator underperforms GenEst-est k, it is due to differences in the way 
uncertainty in counts is estimated (nonparametric bootstrap versus parametric bootstrap). To the extent 
that the GenEst-fixed k estimator underperforms GenEst-est k, it is due to violations of the assumption 
about the value of k. For Huso-not censored and Shoenfeld estimators, both treatment of uncertainty and 
violated assumptions contribute to under-coverage. 

After eliminating conditions under which no Horvitz-Thompson estimator can achieve good coverage and 
where only 10 trial carcasses are used to estimate detection parameters, all the estimators achieve 
coverage close to 90% in > 80% of the remaining cases, but, as discussed below, this is at a cost of 
precision, i.e., wide confidence intervals. 

3.3 Precision and Confidence Interval Coverage 

Precision refers to the dispersion of an estimate around its point value and, in this document, is assessed 
as the width of the 90% CI divided by the true mortality—a standardization that facilitates comparisons 
across scenarios with greatly varying 𝑀𝑀. In general, precision is useless if coverage is poor because an 
estimate that is tightly constrained around the wrong answer can only mislead. Consequently, precision 
and coverage are both shown on each figure in this section, and for results with poor coverage, we do not 
dwell on precision. 

Figures 3 through 7 are all formatted similarly. Each figure has five rows of panels with the response of 
one of the estimators on each row. Each figure has two or three columns of panels that include 
simulations with one level of a factor, and the x-axis of each panel includes the levels of one or two 
factors from the simulation. Each panel has two y-axes; the axis on the left indicates relative width of the 
90% CI (i.e., 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑀𝑀
), and the figures use boxplots to demonstrate the distribution of 

relative CI widths obtained in the simulations. The right y-axis indicates CI coverage for the simulations 
with a reference line at the nominal, 90% coverage and asterisks to indicate the coverage obtained in our 
simulations. The right axis and plotting are in blue to help distinguish them from the relative CI width 
information. 

Precision and coverage were both strongly affected by the level of total mortality at a facility (Figure 3). 
All five estimators had coverage far below the nominal 90% when total mortality was 10. As discussed in 
the CI section above, these estimators are not designed to handle rare-event estimation and are known to 
break down when there are few detections. Consequently, M = 10 cases are not discussed further in this 
document. Of the five estimators, only the Shoenfeld estimator failed to achieve nominal coverage with M 
= 100 or 1,000 carcasses, because the simulated carcass removal conditions (Weibull-distributed 
removal times) do not match the assumption inherent in the Shoenfeld estimator (exponentially-
distributed removal times). For all five estimators, relative precision increased with the total mortality and 
as the number of bias trial carcasses increased. Higher total mortality reduces the sampling error in the 
search process, and larger sample sizes for bias trials increases the precision in the bias correction 
factors, both of which lead to greater precision in the mortality estimates. The increase in precision 
associated with larger bias trial sample sizes was greater as the effort increased from 10 to 50 carcasses 
than as the effort increased from 50 carcasses to an infinite number (which implies bias correction 
factors are known without error), suggesting diminishing returns as the number of bias trials increases 
beyond 50.  

Among the five estimators, only the Shoenfeld estimates had coverage that was strongly affected by the 
carcass persistence time distribution (Figure 4). Most Shoenfeld estimates had coverage that was less 
than nominal when carcass persistence times followed a Weibull distribution because the Weibull-
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distributed persistence times violate one of the core assumptions of that estimator. Coverage of Huso-
not censored, Shoenfeld, and, to a lesser extent, GenEst-fixed k estimates was less than nominal when the 
true value of k violated the estimators’ assumptions (i.e., k = 0, k = 1.0, or k = 0.7, respectively). Except for 
the Shoenfeld estimates when carcass persistence time was Weibull-distributed, the effect was reduced 
when p = 0.8 because the influence of k on detection probability is reduced as p increases. Coverage of 
GenEst-est k estimates and Huso-censored estimates was close to nominal for all combinations of 
persistence time distribution, p and k, because the data that informs those estimates (as gathered for 
GenEst or censored for Huso) does not violate any of their core assumptions. All of the estimates 
summarized in Figure 4 had less precision with lower p because there is more uncertainty in the final 
estimate when the detection probability is lower. Additionally, most of the estimates summarized in 
Figure 4 had less precision with Weibull-distributed carcass persistence times, probably because the 
particular Weibull distribution we used has more rapid removal of fresh carcasses compared to an 
exponential distribution with the same mean persistence time, so that the overall detection probability is 
lower with the Weibull distribution. For estimators with bias that is sensitive to the true value of k, 
precision also increased as the true value of k increased because the precision in an estimate tends to 
scale with the estimated value of M rather than the true value of M (data not shown). 
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Figure 3. Precision and confidence interval (CI) coverage of mortality estimates in response to total 
mortality and sample size for bias trials. Boxplots show the median (horizontal bar), 25th and 75th 
quantiles (lower and upper bounds of the boxes) and 5th and 95th quantiles (whiskers) of the widths of 
90% CI for mortality estimates. CI coverage is indicated in blue on the right axis and with asterisks, with a 
reference line indicating 90% coverage. The figure includes simulations for which there was a gradient of 
mortality across the 100-turbine wind facility. Sampling fraction was 100%, with 30% of turbines searched 
as cleared plots and 70% as road and pads, p = 0.8, k = 0.7, and carcass persistence was Weibull 
distributed with the mean persistence time equal to the search interval. 
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Figure 4. Precision and coverage of mortality estimates due to the carcass persistence time distribution, k 
and p. Boxplot interpretation as in Figure 3. The figure includes simulations for which total fatality was 
1,000 individuals with a gradient of mortality across the 100-turbine wind facility. Sampling fraction was 
100%, with 30% of turbines searched as cleared plots and 70% as road and pads. Mean carcass 
persistence time was equal to the search interval. There were 50 bias trial carcasses available to estimate 
model parameters. 
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Figure 5. Precision and coverage of mortality estimates due to the length of the mean carcass persistence 
time relative to the search interval, k and p. Boxplot interpretation as in Figure 3. The figure includes 
simulations for which total fatality was 1,000 individuals with a gradient of mortality across the 100-turbine 
wind facility. Sampling fraction was 100%, with 30% of turbines searched as cleared plots and 70% as road 
and pads; carcass persistence was Weibull distributed. There were 50 bias trial carcasses available to 
estimate model parameters. 
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CI coverage was insensitive to the mean carcass persistence time: search interval ratio for all cases 
where the value of k and the removal-time distribution matched the assumptions of the estimator. These 
cases include GenEst-est k (all conditions), GenEst-fixed k (when k = 0.7), Huso-not censored (when k = 0), 
Huso-censored (all conditions because censored data match the assumption), but not Shoenfeld (due to 
the mismatch between the Weibull removal time distribution and the Shoenfeld assumption of an 
exponential removal time distribution; Figure 5). Coverage was also relatively insensitive to k for all 
estimators when the mean carcass persistence time was short relative to the search interval (i.e., 1/3) 
because the influence of k on detection probability is low under conditions when carcasses are likely to 
be removed before a second search can occur. For the same reason, the influence of k on coverage for 
GenEst-fixed k, Huso-not censored, and Shoenfeld was greatest when carcass persistence time was long 
(i.e., 3) relative to the search interval.  

Variable mortality rates between turbines resulted in coverages that deviated from nominal coverage 
compared to cases where the mortality rate was uniform among turbines (Figure 6). In most cases 
(Shoenfeld excepted; see above), variable mortality rates resulted in modest differences between actual 
and nominal coverage, except where the monitoring included a 30% sample of 10 turbines (i.e., a sample 
of just three turbines). In these cases, the coverage was slightly higher for estimators using a non-
parametric bootstrap (the two Huso estimators and the Shoenfeld estimator) compared to the GenEst 
estimators, because the non-parametric bootstrap rolls up some of the turbine-to-turbine count variation 
in the variability around the M estimate, whereas the GenEst parametric bootstrap does not. Small 
differences notwithstanding, the coverage with a 3-turbine sample was poor because it is easy with such 
a small sample to obtain a monitoring data set that is not representative of the overall facility. The risks 
associated with small sample sizes have long been recognized, which is why the Comprehensive Guide to 
Studying Wind Energy/Wildlife Interactions (Strickland et al. 2011) recommends a sample of at least 
10 turbines for PCM studies. The two Huso estimators had a slight tendency to over-cover when 100% of 
turbines were surveyed and variation in the mortality rate between turbines was observed, again, because 
the non-parametric bootstrap tends to include turbine-to-turbine variability in the variation associated with 
estimated mortality and, so, over-estimates variability when the turbine sample represents a complete 
census. When all turbines are sampled, including turbine-to-turbine variability in the mortality estimate is 
inappropriate. Coverage for the GenEst and Huso estimators was usually close to nominal when mortality 
rates were uniform among turbines. The Huso and Shoenfeld estimators had less precision when 
mortality was not uniform among turbines, and all estimators had less precision with a 30% sample than 
when 100% of turbines were included in the surveys. Although searching every turbine is a failsafe option, 
it is not always feasible. When sampling is necessary, these results emphasize the importance of using a 
sample of turbines that is a good representation of the entire facility.  
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Figure 6. Precision and coverage of mortality estimates due to spatial distribution of fatalities, sampling 
fraction, and total number of turbines at the facility. Boxplot interpretation as in Figure 3. The figure 
includes simulations for which total fatality was 1,000 individuals. Thirty percent of searched turbines were 
searched as cleared plots and 70% as road and pads, p = 0.8, k = 0.7, and carcass persistence was Weibull-
distributed with mean persistence time equal to the search interval. There were 50 bias trial carcasses 
available to estimate model parameters. 
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Figure 7. Precision and coverage of mortality estimates due to the plot configuration, sampling fraction, and 
total number of turbines at the facility. Boxplot interpretation as in Figure 3. The figure includes simulations 
for which total fatality was 1,000 individuals with a gradient of mortality across the wind facility, p = 0.8, k = 
0.7, and carcass persistence was Weibull-distributed with the mean persistence time equal to the search 
interval. There were 50 bias trial carcasses available to estimate model parameters. 
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Plot configurations had little effect on coverage or precision of estimates from any estimator, aside from 
those already noted to result from lower detection probabilities or low numbers of turbines included in the 
sample (Figure 7). However, our simulation results should not be taken as an indication that plot 
configurations are unimportant. We note that in our simulations the area correction associated with road 
and pads was assumed known without error or uncertainty, but, in practice, area corrections are difficult 
to estimate and can introduce considerable uncertainty into mortality estimates (though they would do so 
equally across all of the estimators considered here). The degradation of precision associated with road 
and pad sampling in Figure 7 is likely understated relative to the results that would be realized if the DWP 
had to be estimated from data. 

4. Implications for the Analysis and Design of Post-
construction Monitoring Studies 
Key implications for the design and analysis of post-construction monitoring studies 

• GenEst is currently the best available statistical mortality estimator 
• Study-specific estimates of k are ideal 
• Maintaining high levels of initial searcher efficiency will mitigate cases when k cannot be 

estimated, because mortality estimates are less sensitive to k when initial searcher efficiency is 
high 

• It is essential for study designs to capture a representative sample of the wind facility-no 
estimator performs well with a poor sample 

• Higher sampling fractions may be warranted when the total number of turbines at a facility is low 
or when there may be a gradient in mortality across the facility 

• Mortality estimates and their confidence intervals are unreliable when carcass counts are low 
(less than three per stratum) 

• Low detection probabilities lead to poor precision 
• Precision increased notably as bias trial sample size increased from 10 per stratum to 50 per 

stratum, but there were diminishing benefits beyond 50 

GenEst-est k and Huso-censored are both unbiased estimators across all simulation conditions tested 
here (Figure 1). GenEst-est k outperforms all other estimators in terms of CI coverage across all 
simulation conditions tested here (Figure 2). Considering just comparisons between estimators that are 
achieving nominal coverage or close to it, GenEst-est k is as precise, or more so, than any of the other 
estimators (Figures 3–7). By these criteria, GenEst-est k should be the clear choice of estimator for the 
analysis of PCM studies.  

By contrast, although the Shoenfeld estimator was state-of-the-art when it was first introduced in 2004, it 
includes strong assumptions, and our simulations show that it is biased under a variety of conditions 
(Figure 1) and does not achieve nominal CI coverage under a variety of conditions (Figure 2). For these 
reasons, the Shoenfeld estimator will not be considered further. Similarly, Huso-not censored is 
sometimes biased (Figure 1) and is much more prone to under-coverage than Huso-censored (Figure 2), 
so it will also not be considered further. 

Although the purely statistical criteria above point unambiguously to GenEst-est k, cost is also a factor in 
PCM study design. Estimating k can be expensive, and under some conditions (see below), mortality 
estimates are relatively insensitive to k. Further, even when PCM data are planned to estimate k, k is a 
difficult parameter to estimate, and the fitting routine sometimes fails. For example, the GenEst-est k 
estimator failed to estimate the k parameter 39% of the time with 10 bias trials and 11% of the time with 
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50 bias trail carcasses. In these cases, or when data are not available to estimate the k parameter, a user 
has to choose an alternative estimator.  

For two reasons, the GenEst-fixed k estimator is a better choice than the Huso-censored estimator. First, 
GenEst-fixed k can take any value for an assumed k, and, so, can use the same k = 0 modelling approach 
as the Huso-censored estimator, if desired. Second, our results for the Huso-censored estimator are 
optimistic because we were able to guarantee that the censoring process was perfect. In other words, our 
virtual searchers were able to discern perfectly whether a carcass was fresh since the prior search or was 
old and had been missed on a prior search. In the field, the potential for systematic errors in the 
censoring process is much higher. Practitioners should weigh the potential for censoring errors against 
the impact of mis-specifying an assumed value of k for GenEst-fixed k. The sensitivity of estimates to k is 
beyond the scope of these simulations but interested parties can investigate the effect of the value of k 
on mortality estimates at https://west-inc.shinyapps.io/GenEstSens/. Under a wide range of conditions, 
and particularly when k is difficult to estimate (i.e., fast carcass removal or high initial searcher 
efficiency), mortality estimates are relatively insensitive to k. 

An important outcome from these simulations is the finding that the Huso-censored estimator and 
GenEst-est k are both unbiased (assuming perfect censoring for the former). The practical implication for 
wind power plant operators is that mortality estimates produced by GenEst should be comparable in 
magnitude to estimates produced by Huso-censored. Practitioners transitioning from Shoenfeld to 
GenEst (or from Shoenfeld to Huso) should expect to see mortality estimates increase moderately, due to 
the bias inherent in the Shoenfeld estimator. 

In practice, we do not know the true mortality in the field, nor any of the true parameter values for our 
search process. This simple fact emphasizes the value of an estimator—such as GenEst—that performs 
well under a wide variety of conditions. In addition, practitioners should be aware of PCM designs that will 
cause all estimators to fail. Chief among these is the case where carcass detection is a rare event. In our 
simulations, a threshold of 2.3 expected carcasses per stratum vastly improved the CI coverage of all 
estimators. A detailed analysis of threshold counts for reliable estimates from GenEst is not yet available, 
but as an initial heuristic, practitioners should treat estimates based on data with fewer than three 
carcasses per stratum with caution. Finally, PCM designs need to be adequate to fully represent the 
variability at the facilities where they are implemented. For facilities with small numbers of turbines, this 
may mean including a larger fraction of the wind turbines in the sample. 
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