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The increasing environmental challenges and global warming concerns have driven a shift towards 
renewable energy-based power generation, particularly in microgrids. However, marine microgrids 
face challenges in load-frequency regulation due to renewable energy intermittency, unpredictable 
load variations, and nonlinear system dynamics. Conventional control strategies often struggle with 
poor convergence, limited adaptability, and suboptimal frequency stabilization. Addressing these 
challenges requires an advanced control optimization technique for robust frequency regulation and 
system stability in dynamic marine environments. This study proposes a Chaotic Chimp-Mountain 
Gazelle Optimizer (CCMGO) for optimizing fractional-order proportional-integral-derivative (FOPID) 
controllers, enhancing load-frequency regulation in a multi-source marine microgrid. The system 
integrates wave energy, wind turbines, solar towers, and photovoltaic energy, along with controlled 
biogas turbines, micro hydro turbines, and bio-diesel engine generation. To improve frequency 
stability and grid flexibility, battery energy storage systems, ultra-capacitors, and electric vehicles are 
incorporated for dynamic compensation. The CCMGO algorithm combines the exploration strength 
of the mountain gazelle optimizer with solution diversity enhancements from chaotic mapping and 
chimp optimization algorithm, preventing premature convergence and improving control efficiency. 
The performance of CCMGO-optimized controllers (PID, PD–PID, FOPI–FOPID, and FOPID) is evaluated 
under various load conditions, including impulse, ramp, and stochastic disturbances, to test robustness 
and adaptability. Simulation results demonstrate that CCMGO-based FOPID controllers outperform 
conventional strategies, achieving lower frequency deviations, faster settling times, and enhanced 
transient response. These findings establish CCMGO–FOPID as a powerful tool for optimizing control 
performance in marine microgrids, ensuring greater resilience, stability, and energy efficiency.
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Abbreviations
CCMGO	� Chaotic chimp-mountain gazelle optimizer
COA 	� Chimp optimization algorithm
PSO	� Particle swarm optimization
MPC	� Model predictive control
QSHO	� Quasi-opposition selfish-herd optimization
DGTC	� Dynamic gain tuning control
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ChOA	� Chimp optimization algorithm
PTC	� Parabolic trough collector
AGC 	� Automatic generation control
AWS	� Archimedes wave swings
WEC	� Wave energy conversion
BESS	� Battery energy storage systems
ST	� Solar tower
BDEG	� Biodiesel engine generator
MHTG	� Micro hydro turbine generator
ESS	� Energy storage systems
ACE	� Area control error
IAE	� Integral of absolute error
ITAE	� Integral of time-weighted absolute error
PID	� Proportional plus integral and derivative
FOPI–FOPID	� Fractional-order proportional plus integral and fractional-order proportional plus 

integral and derivative
SCA	� Sine cosine algorithm
∆f  	� Frequency deviation
TSM	� Territorial solitary males
BHM	� Bachelor male herds
I	� Moment of inertia of the rim
DR	� Demand response
N	� Wave forces
βG, βω	� Damping constant of generator and AWEC
GCSC	� Gate-controlled series capacitor
PIFOD	� Proportional integral and Fractional-order derivative
MH	� Maternity herds
Fo	� Fluid velocity
I	� Incident solar radiation
ηrank	� Rankine efficiency
ηW	� Weighting parameter
K	� Constant parameter
γ	� Heat loss co-efficient
Tav	� Average fluid temperature
λ	� Tip speed ratio
MGO	� Mountain gazelle optimizer
GA	� Genetic algorithms
YSGA	� Yin-yang selfish genetic algorithm
BOA	� Biogeography-based optimization
GOA	� Grasshopper optimization
WCA	� Water cycle algorithm
LFR	� Linear fresnel reflector
CCGT	� Combined cycle gas turbine
LFC	� Load frequency control
AWEC	� Archimedes wave energy conversion
WTG	� Wind turbine generator
RESs	� Renewable energy sources
PV	� Photo-voltaic
BGTG	� Biogas turbine generator unit
UC	� Ultra capacitor
EV	� Electric vehicle
ISE	� Integral of square error
ITSE	� Integral of time-weighted square error
MPPT	� Maximum power point tracking
FOPID	� Fractional-order proportional plus integral and derivative
PD–PID	� Cascaded Proportional derivative–proportional plus integral derivative
Kp, Ki, Kd, λ, and µ 	� Parameter of various controllers
TF 	� Transfer function
MH	� Maternity herds
MSF	� Migration to search for food
F, ωAW 	� Amplitude and angular frequency of wave forces
DDG 	� Biodiesel engine driven generator
ICμG	� Interconnected micro grid
VW, FAW	�  Floater and generator translator velocity, in order (m/s)
MPPT	� Maximum power point tracking
TSM 	� Territorial solitary males
BMH	� Bachelor male herds
A	� Total heliostats area
ηH	� Constant parameter
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TC	� Condenser temperature
Pth	� Input thermal power
C	� Fluid heat capacity
Ta	� Ambient temperature
β	� Blade pitch angle
Cp	� Power coefficient

Symbol Nomenclature Value

KAWEC.TAWEC AWEC gain and time constant 1,0.3 s

KWT, TWT Gain and time constant of WTG unit 1,1.5 s

ρ, Ar, λ, β, CP, VW, Rb 
and Wb

Air density, blade-swept area, tip-speed ratio and blade pitch angle, power coefficient, speed 
of the wind, radius of blades, and turbine nominal speed of WTG

1.25 kg/m3,1735m2, 
− 23.5 and 3.14

KPV, TPV Gain and time constant of PV system 1, 1.8 s

KRF, KRV, KG, KT gain values of refocus, receiver, governor, and turbine of ST 1, 1, 1, 1

TRF, TRV, TG, TT time constant of refocus, receiver, governor, and turbine of ST 1.33, 4, 0.08, 1 s

KMH Participation factor of MHTG unit 0.5

TMG, TRS, TRH, THT Governor gain, delay, reset, transient droop and delay of MHTG unit, respectively 0.2 s, 5 s, 28.75 s, 
1.0 s

KBD Participation factor of BDEG unit 0.5

KVA, TVA, KBE, TBE Valve gain, valve actuator delay, engine gain and time constant of BDEG unit respectively 1, 0.05 s,1.0.0.5 s

KBG Participation factor of BGTG 0.5

R1, R2, R3 Droop characteristics 2.0

TCR, TBG, XC, YC, 
bB, TBT

Combustion reaction delay, biogas delay, lead time, lag time, valve actuator and discharge 
delay of BGTG unit, respectively

0.01 s, 0.23 s, 
0.6,1.0 s, 0.05, 0.2 s

KBESS, TBESS Gain and time constant of BESS system 0.03,0.1 s

KEV, TEV Gain and time constant of EV 1,1 s

KUC, TUC Gain and time constant of UC 0.7,0.9 s
 

Basics: problem under study case
The global shift towards sustainable energy systems has placed microgrids at the forefront of modern power 
systems, particularly in specialized environments like marine settings. Marine microgrids, which incorporate 
renewable energy sources, energy storage systems, and advanced control mechanisms, are considered the 
future of marine power systems due to their efficiency, reliability, and reduced environmental impact. A marine 
microgrid consists of distributed energy resources such as AWES, WTG, PV, ST, BGTG, BDEG, MHTG and EV 
along with energy storage systems like BESS and UC all are integrated. These systems operate in a controlled, 
islanded mode to power marine vessels, offshore platforms, and remote coastal facilities. Marine microgrids, 
due to their independence and adaptability, are ideal for scenarios where grid connection is not possible or 
feasible. Microgrids are becoming more popular due to the growing demand for resilient and sustainable energy 
systems, especially in critical infrastructure such as marine areas. Microgrids generate power locally and can 
operate independently from the main grid, making them a reliable option during outages and grid instability. 
However, isolated microgrids can struggle to maintain a constant power frequency, especially when a large 
number of different generation sources are involved. Propulsion systems, auxiliary equipment, and weather 
conditions subject marines to significant load fluctuations, necessitating the use of LFC to ensure the stability 
and operational efficiency of marine microgrids. Dynamic load changes are common on marines, so LFC is 
required to regulate frequency stability and prevent potential equipment damage. Effective LFC prevents sudden 
load changes from affecting the overall system frequency, ensuring smooth operation. Moreover, the marine 
microgrid is increasingly integrating intermittent renewable energy sources like wind, solar, and wave energy into 
controlled generations such as BGTG, biodiesel, MHTG and EV as well as energy storage devices like BESS and 
UC. Complex Control Strategies Maintaining system stability and managing frequency under such fluctuating 
conditions requires optimization techniques, such as hybrid optimization techniques. Hybrid optimization 
strategies combine the benefits of multiple optimization techniques to fine-tune control parameters for frequency 
regulation. This method allows for more accurate frequency control of the system, reducing fluctuations and 
improving the overall performance of the microgrid. Integrating energy storage devices into this optimized 
control technique can solve the problem of isolated microgrids powered by heterogeneous generation in a more 
robust and adaptive manner. ESS are crucial as they improve LFC performance by providing power during 
times of high demand or absorbing excess energy. Furthermore, the distributed control and communication 
framework of marine microgrids mitigates the possibility of frequency instability due to communication delays, 
enabling localized and real-time LFC. Even under challenging marine conditions, these microgrids can maintain 
stability due to their inherent resilience.

Literature survey
The LFC field has grown significantly in recent years due to the increasing complexity of microgrid systems and 
the demand for improved stability and performance of hybrid power systems integrated with renewable energy 
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sources. This has created a need for robust and efficient LFC systems. To address the dynamic challenges posed 
by renewable energy sources, time delays, and communication issues, many studies have investigated different 
optimization approaches, controller designs, and hybrid system architectures. Fundamentals of Microgrid 
Development and Installation was presented by Roosa1. The architecture, control, and protection techniques 
developed by Tabatabaei et al.2 were examined.

As microgrids become increasingly complex and dependent on renewable energy sources, there is a growing 
demand for advanced and efficient optimization techniques. This recent work focuses on bio-inspired algorithmic 
control mechanisms and has made significant progress towards ensuring the stability and reliability of microgrid 
systems under a variety of operating conditions. El-Fergany and El-Hameed3 study improving frequency 
controllers in dual-area hybrid microgrids using social spider optimization techniques. Their work shows how 
adaptive and resilient control strategies can effectively improve system performance and stability in isolated 
microgrids. Rajaguru and Annapoorani4 propose a virtual synchronous generator with superconducting 
magnetic energy storage using African Vulture optimization techniques. Their work shows improved 
performance under various load conditions and addresses the critical problem of frequency regulation in 
microgrids with a high share of renewable energy sources. Sobhy et al. focus on LFC to improve control of 
systems with various energy sources. Sobhy et al.5 apply the Manta foraging optimization algorithm to modern 
hybrid power systems. A one-hour optimization method for shared energy storage in renewable energy plants 
was presented by Ma et al.6. The approach improves frequency regulation by maximizing the use of energy 
storage and addresses the intermittency issue in renewable energy production. Barik and Das7 study demand 
response in a hybrid microgrid supported by bio-renewable cogeneration and optimized using a quasi-
adversarial selfish herding algorithm. Their work highlights the importance of incorporating demand 
management into LFC planning to improve performance. The use of Grasshopper optimization techniques for 
reliable LFC in shipboard microgrids has been presented by Choudhary et al.8. Their work shows how well bio-
inspired optimization techniques can handle frequency regulation in complex systems such as marine microgrids. 
Guha et al. 9 use chaotic crowd search method to compare several controllers for hybrid power systems. Their 
study shows that the chaotic concept based approach improves stability and accuracy and significantly improves 
the performance of the controller in frequency regulation. Quasi-adversarial harmonic search algorithm is used 
by Shankar and Mukherjee10 for an autonomous hybrid power system with emphasis on LFC. Their study shows 
how the harmonic search algorithm can maximize the system performance in various stressful scenarios. A 
multi-objective coordination formula for LFC in low inertia microgrids incorporating renewable energy sources 
such as solar PV, wind, fuel cells, and BESS was developed by Khalil et al.11. Their work highlights the need for 
advanced coordination techniques to maintain the stability of microgrids powered primarily by renewable 
energy sources. A multi-agent soft actor-critic algorithm for LFC in isolated multi-microgrid systems was 
proposed by Xie et al.12. Her work shows how distributed control and reinforcement learning can be used for 
frequency regulation in networked microgrids. Latif et al.13 addressed the control approach and presented a 
WCA-optimized fractional controller for a dual-area isolated microgrid using EVs in combination with wind 
and PV power generation systems, demonstrating improved system stability. A BOA-optimized PFOID 
controller for a three-area microgrid with different energy storage technologies is developed by Latif et al.14 in a 
related work. By using DC connection, we were able to demonstrate improved frequency management. In a 
system with a lagging EV aggregator, Babaei et al.15 optimized a fractional order PID controller for LFC using 
the Salp swarm algorithm and suggested that a fractional order controller can improve dynamic response during 
delays. Aftab et al.16 successfully reduced the impact of communication delays on frequency regulation by 
presenting an optimized cascade controller for microgrids integrated with energy storage. Shaker et al.17 
emphasized adaptive nonlinear controllers for frequency regulation in multi-island microgrids, demonstrating 
improved stability and dynamic performance in complex grid architectures. Latif et al.18 also tackled load 
frequency stabilization using double-stage controllers in hybrid maritime microgrids, incorporating wind and 
ocean wave energy systems for enhanced performance. Further, research by Latif et al.19 introduced a time-delay 
and GCSC coordination strategy for dual-area interlinked microgrids, optimizing frequency stabilization 
through non-integer controller optimization. Latif et al.20 also proposed a demand response-supported system 
with a dual-stage PIFOD controller, focusing on wind, tidal, and biodiesel-based two-area microgrids, showing 
that incorporating demand response improves system coordination. Pan and Das21 contributed by applying 
chaotic multi-objective optimization to fractional-order LFC in interconnected power systems, achieving better 
control under varying system dynamics. Khooban et al.22 studied a stochastic fractional controller for microgrids 
that enables robust frequency control, especially in uncertain environments. Recent work by Latif et al.23 studied 
a modified slope integral controller for active interference suppression in marine microgrids that incorporates 
inertial emulation via DC connection to further improve frequency stability in dynamic marine environments. 
Khalil et al.24 developed a unique cascade controller for islanded microgrids using the Dandelion optimizer, 
which improved the system stability and control accuracy. Overall, these studies demonstrate advances in LFC 
strategies in terms of optimization techniques, fractional order controllers, and hybrid systems, especially 
addressing communication limitations, time delays, and renewable energy integration issues. Khokar et al.25 
used a chaotic sine–cosine algorithm for microgrid LFC based on a 2D sine logistic map, which improved the 
system’s resistance to shocks and dynamic responses. Yıldız et al. use a fuel cell-based system to mitigate cyber-
attacks, combining fractional control with cybersecurity measures. Yıldız26 LFC in microgrids for renewable 
energy. Redox flow batteries have been developed by Elkasem et al.27 and have been proposed as a means of 
frequency control in hybrid renewable energy grids, successfully stabilizing the system under fluctuating 
conditions. khooban et al.28 introduced an innovative approach to LFC in shipboard microgrids, focusing on 
hybrid power sources and autonomous systems. Vafamand et al. further investigated this technique and 
addressed the issue of time delays in stabilizing LFC using an additional control loop29. Khooban et al. conducted 
additional research to demonstrate the reliability of frequency control in mobile microgrids using a hardware-
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in-the-loop (HIL) implementation. This means that the system responds faster and is more adaptive30. Mutarraf 
et al. demonstrated the potential of hybrid marine microgrids by focusing on the control of a hybrid diesel/PV/
battery/ultracapacitor system31. To build a more effective shipboard power system, Wang et al.32 proposed a new 
marine hybrid power generation system with a high-voltage direct current connection. Bahrampour et al.33 They 
recently made progress in optimizing LFC in shipboard microgrids by designing a fractional order controller 
with a direct search method. The Grasshopper optimization technique was developed by Choudhary et al.8 with 
the aim of improving the control efficiency under dynamic marine conditions by ensuring resilience and 
frequency control in shipboard microgrids. Abdollazadeh et al.34 demonstrated the effectiveness of this approach 
in various engineering applications by introducing it to tackle challenging global optimization problems. Apart 
from this, Recent studies focus on microgrid optimization, energy management, and control strategies. 
Pushkarna et al.35 and Pushkarna et al.36 optimized DG placement and power loss minimization. Kumar et al.37 
enhanced power quality using DSTATCOM, while Khan et al.35 reviewed microgrid energy strategies with AI 
and EVs. Ahmed et al.38 developed a sliding mode controller for frequency regulation, and Gbadega and Sun39 
applied enhanced-WOA-tuned PID for load frequency control. Gbadega et al.40 and Gbadega and Saha41 focused 
on optimal power management and adaptive model predictive control. Gbadega and Balogun42,43 introduced 
transactive energy management for renewable microgrids, contributing to stability and efficiency improvements.

Analysis: literature work study
A literature review on Load Frequency Control (LFC) for microgrid systems highlights recent advances in the 
areas of optimization techniques, controller design, and command with a focus on the integration of renewable 
energy sources. Optimization techniques are becoming increasingly popular. These include biologically 
inspired algorithms such as African vulture optimization and social spider optimization, as well as more 
sophisticated approaches such as harmony search and quasi-adversarial selfish swarm algorithms. Controller 
designs include fractional order PID and FOPI–FOPID controllers, adaptive and robust control approaches, 
and cascaded controllers for complex architectures. The integration of renewable energy sources such as wind, 
solar photovoltaics, ST, and ocean wave energy has been a key focus, with strategies to address the challenges of 
intermittency through virtual synchronous generators and energy storage systems. Emphasis is placed on hybrid 
system architectures, especially in multi-area interconnected microgrids, and specialized applications such as 
shipboard and marine microgrids. Challenges such as time delays, communication issues, and demand response 
integration are addressed with a focus on cybersecurity in renewable energy microgrids. New technologies such 
as hardware-in-the-loop implementation, high-voltage DC interconnects, and battery energy storage systems 
for frequency regulation are also gaining attention. Advanced control strategies such as reinforcement learning, 
distributed control, and adaptive nonlinear controllers are investigated for multi-island microgrids, along with 
inertial emulation techniques to improve stability. To address the increasing complexity of microgrids with high 
renewable energy penetration and optimize system stability and performance, the study highlights the trend 
towards intelligent, adaptive, and resilient control systems. The analysis of literature review has been discussed 
in Table 1.

Problem identification, motivation and the proposed approach
Problem identification
Ensuring stable frequency in isolated marine microgrids, especially those integrating multiple renewable 
energy sources such as wind, solar, and wave energy, presents significant obstacles. The inclusion of multiple 
renewable energy sources introduces inherent intermittency, complicating the task of load frequency control. 
Unpredictability of load demand caused by dynamic operating conditions such as ship propulsion systems 
and auxiliary equipment further exacerbates frequency regulation. Existing control algorithms often fail to 
effectively optimize system performance due to their inability to adapt to fluctuations and handle varying energy 
inputs, especially in real-time scenarios. Furthermore, standard controllers such as PID are unable to control the 
nonlinearities and time delays inherent in complex systems, resulting in poor stability and performance.

Motivation
Especially in the maritime sector, the transition towards greener and more sustainable energy systems is driving 
the demand for advanced control solutions that ensure operational efficiency and reliability. This research 
is motivated by the growing demand for energy-efficient and reliable offshore microgrids that can operate 
autonomously. The stability of such systems is crucial, especially in remote and harsh marine areas where grid 
connection is not practical. Furthermore, the increasing integration of renewable energy sources necessitates the 
development of control algorithms that can dynamically adapt to fluctuating demand conditions and mitigate 
the effects of energy interruptions. The ability to exploit the flexibility of modern controls combined with 
robust optimization techniques motivates us to develop and test new solutions that can improve the dynamic 
performance of marine microgrids.

Proposed approach
This study presents a hybrid CCMGO algorithm to work out the frequency deviation problem in marine 
microgrid systems. The proposed control method uses robust control techniques to enhance system stability 
under varying load conditions. The hybrid CCMGO algorithm method uses the chaos map and exploration 
capabilities of MGO and integrates the adaptation technique of ChOA. Unlike PSO and GA, which often suffer 
from premature convergence and slow adaptation in nonlinear systems, CCMGO integrates chaotic mapping, 
enhancing solution diversity and global search capability.
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Key contribution
Rigorous simulation studies are conducted to test LFC under different operating scenarios, helping to optimize 
control parameters and design robust systems. Through these strategies, marine microgrids achieve high 
reliability and resilience, even amidst the complexities of renewable energy integration and fluctuating load 
demands. Therefore, the key contributions are as follows:

	a.	 A new marine microgrid is modelled, designed, optimized and analyzed with the inclusion of diverse gen-
erations like AWEC, WTG, PV, ST, BTGU, MTGU, BDGU, EV, BESS and UC to enhance the microgrid’s 
flexibility and ability to balance generation and load.

	b.	 The study applied CCMGO algorithm in advancement of primary frequency regulation in marine microgrid 
involving the concept of chaotic and CHOA algorithm for better exploration and exploitation capacity.

	c.	 The research study evaluates the superiority of CCMGO algorithm with the design FOPID controller sub-
jected to PID, cascaded PD–PID and FOPI–FOPID controllers for LFC analysis in marine microgrid.

	d.	 Conducted extensive simulations to test effectiveness of the implemented control strategies under various 
load conditions, including step-ramp changes, positive and negative impulses, and random load variations.

The paper systematically explores power system modelling and control. Section “Test system modelled and 
investigated” details the test system components, Section “Modelling of controller: controller design and 
methodology” covers controller design and methodology, and Section “Problem formulation: defining LFC 
objective function” formulates an optimization problem to improve LFC. Section “Implemented algorithm 
details” introduces the chaotic chimp mountain gazelle optimization algorithm, with Section “Simulation results 
and analysis” presenting simulation results demonstrating its effectiveness. Sections “Limitations and constraints 
of this study” and “Conclusions and scopes of future work” acknowledge limitations and propose future research 
directions to enhance the algorithm’s application in micro-grid control.

Test system modelled and investigated
Basic description of the model
This study explores LFC performance in a marine power system model, incorporating various energy generation 
and storage components. The key elements include BDEG, which uses biodiesel as fuel, and BGTG and MHTG.
WTG converts wind energy to electricity, governed by control equations with specific time constants. AWEG 
harnesses ocean wave energy, while PV converts solar radiation to electricity. Energy storage includes UC for 
quick discharge, BESS for medium to long-term use, and also uses the EV. A central controller manages inputs 

References Controller stagey used Case study

Penetration of new RESs

Controlled 
generations Algorithms used

Energy 
storage 
systems

Ev 
controls

Solar 
power

Wind 
energy

Wave 
energy

3 PID Two area ✓ ✓ × ✓ Social-spider Optimizer Yes No
5 PID Three area ✓ ✓ × × Manta ray foraging optimization Yes No

7 PID Two area ✓ ✓ × ✓ quasi-oppositional selfish-herd 
optimisation Yes Yes

8 PIDF Single area ✓ ✓ × ✓ Grasshopper optimisation Yes No
9 2DOF-PID Single area × ✓ × ✓ Chaotic crow search Yes No
10 PID Single area ✓ ✓ × ✓ Quasi-oppositional harmony search Yes No
12 PID Two area × ✓ × × Multi-agent soft actor-critic Yes No
13 FOPID Two area × ✓ × ✓ Water cycle Yes Yes
14 PFOID Two area × ✓ ✓ ✓ Butterfly optimisation Yes No
17 FOPI Single area ✓ ✓ × ✓ Coronavirus herd immunity optimizer Yes No
18 PI-(1 + PD) Single area × ✓ ✓ ✓ Grasshopper Yes No
19 PFIFD Two area ✓ ✓ × ✓ Yellow saddle goatfish Yes Yes
20 PIFOD-(1 + PI) Two area × ✓ × ✓ Yellow saddle goatfish Yes No
21 FOPID Two area × × × × Chaotic multi-objective optimization No No
23 TI-ADRC Two area × ✓ ✓ ✓ Marine predator technique Yes No
24 FPDN-FPTID Single area ✓ ✓ × ✓ Dandelion Yes No
25 FOPID Two area ✓ ✓ × ✓ Sine cosine algorithm Yes No
27 Fuzzy-PID + (FOTID) Two area ✓ ✓ × ✓ Crayfish optimization Yes No
28 PD + I(FOFPD + I) Single area ✓ ✓ ✓ ✓ Modified black hole algorithm Yes Yes
29 – Single area ✓ × ✓ ✓ – Yes No
30 MFNSMC Single area ✓ ✓ ✓ ✓ Sine–cosine algorithm Yes No
31 HBFOC Single area ✓ ✓ ✓ ✓ Direct search Yes No
8 Fuzzy PIDF Single area ✓ ✓ ✓ ✓ Grasshopper Yes No

Proposed FOPID Single area ✓ ✓ ✓ ✓ CCMGO Yes Yes

Table 1.  Analysis of state-of-the -art literature.

 

Scientific Reports |        (2025) 15:13794 6| https://doi.org/10.1038/s41598-025-97592-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


from these sources and storage devices to balance output. The proposed marine microgrid power system using 
a bio-renewable energy cycle is illustrated in Fig. 1. A simplified dynamic model of marine network including 
RESs is shown in Fig.  2. The interconnection of marine micro grid with renewable cogeneration with AGC 
implementation is depicted in Fig. 3. The test system is represented by a transfer function model in Fig. 4. The 
network model and its implementation to the marine microgrid power system are detailed in Fig. 5.

 Basic description of the model: autonomous generation
AWEC: independent power generation
A completely submerged wave energy converters, or WECS, corresponds to AWS. It generates usable electrical 
power using the floater’s vertical motion caused by the waves in the ocean. To convert mechanical wave energy 
into electrical energy, AWS is connected to a permanent magnet synchronous generator. It is possible to install 
this WECS at depths greater than 25 m. The AWEC’s dynamic velocity and force can be expressed as follow14.

	
VW = dx

dt
� (1)

	
FAW = mft

dVW

dt
+ βGVW + βW VW + KCx� (2)

The irregular sinusoidal wave force of AWEC is expressed as

	
FAW = F sin (ωAW t) + F

2 sin (2ωAW t) + F

3 sin (3ωAW t)� (3)

The simple linear first-order transfer function of AWEC (neglecting all nonlinearities) can express as14

	
T FAW EC (s) = KAW EC

1 + sTAW EC
� (4)

WTG: independent power generation
One of the most developed and proven RESs with the greatest potential is wind power. A wind turbine generator 
is the device that converts wind energy into electrical power. The extractable output power of the wind turbine 
generator is expressed as7

Fig. 1.  Perception model of the marine network with bio-renewable energy cycle.
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	 PW = 0.5ρCP ArV 3
W � (5)

The power coefficient (Cp) of the WTG is7

	
Cp = (0.44 − 0.0167β) sin

(
(λ − 3) π

15 − 0.3β

)
− 0.0184 (λ − 3) β� (6)

where λ = RbWb
VW

.
After simplifying, the transfer function of WTG is7

	
GW T G (s) = KW T

1 + sTW T
� (7)

PV: independent power generation
Solar panels convert sunlight directly into electricity by exciting electrons in a semiconductor material. The 
amount of electricity generated depends on temperature and sunlight levels. To track the more power from solar 
panels, photovoltaic systems often use MPPT systems. The transfer function of a PV model is25.

	
T FP V (s) = KP V

1 + sTP V
� (8)

ST: Independent power generation
The solar tower, also known as the central receiver system, is surrounded by a large number of slightly curved 
dual-axis (horizontal and vertical) tracked heliostats. A central receiver positioned at top the tower receives solar 
radiation reflected by the field of heliostats, with a concentration ratio reaching up to 500–1000. At 500–850 °C, 
the receiver fluid—typically a stream, hot air, or molten salt—carries the heat to the stream generator, creating a 
superheated stream that powers the turbine–generator, which is programmed to generate electricity with a 28% 
efficiency. According to NREL, there are about 35 solar thermal plants in the world, with three of them having 

Fig. 2.  Simplified dynamic model of marine network including RESs.
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capacities greater than 20 megawatts (such as the world’s largest solar thermal plant, ISEGS, with a capacity of 
377 megawatts)14.

	 Pi = ηHIA� (9)

The net electrical power from ST is described by

	 Pelect = PthηrankηW � (10)

The state equation of the outlet temperature of the receiver tube can be expressed as14

	
(ρcV ) dT0

dt
= αR − F0

(
T0 − Tin

L

)
− γ

(
T0 − Tin

L
− Ta

)
� (11)

The fluid velocity (Fo) of the receiver tube can be expressed as

	
F0 = (((ηHAα) /Arec) I − γ (Tav − Ta))

2Tav
· L� (12)

Finally, the state equation of ST receiver can be represented as

	
dT0

dt
= ((ηHAα) /Arec)

C
J − F0

LC
(T0 − Tin) − γ

C
(Tav − Ta)� (13)

By linearising above we could estimate the TF model of ST considering a thermal generator14.

Fig. 3.  Interconnection of marine renewable cogeneration with AGC implementation.
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Fig. 4.  Transfer function based modelled diagram of the test system under study.
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T FST (s) =

(
KRF

1 + sTRF

) (
KRV

1 + sTRV

) (
KG

1 + sTG

) (
KT

1 + sTT

)
� (14)

Basic description of the model: controlled generation
BDEG units: controlled generation
In BDEG units, biodiesel derived from the transesterification of leftover edible oils or appropriate energy crops 
with qualities similar to those of diesel may be utilized in blended or pure (B100) form. Taking into account the 
engine and inlet valve actions, the linearized model of BDEG is estimated as follows7.

	
GBDEG (s) = KBD

(
KV A

1 + sTV A

) (
KBE

1 + sTBE

)
� (15)

MTPG: controlled generation
A micro-turbine power generator is a compact, high-speed turbine that produces 25–200 kW of power. It’s quiet, 
has low emissions, and can use different fuels, making it ideal for homes and businesses. The power it generates 
is given by a specific formula:

	 PMT P G = PT − PCP � (16)

The linearised transfer function of MTPG is expressed as7

	
T FMT P G(s) =

(
KV P

1 + sTV P

) (
KF A

1 + sTF A

)
� (17)

BTGU: controlled generation
Biogas produced from biodegradable wastes and animal droppings of the community could be stored and 
resourcefully recycled in BGTG units for power generation. Considering the actions of biogas inlet-valve, 
governor, combustor, and turbine, the linearised model of BTGU is estimated as (8)7.

Fig. 5.  Network model and its implementation to the marine network.
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GBGT G (s) =

(
1 + sXc

(1 + sYc) (1 + sbB)

) ( 1 + sTCR

1 + sTBG

) (
KBG

1 + sTBT

)
� (18)

EV: controlled generation
The EV performance helps to mitigates any fluctuations in the system because they can function as a load when 
the system is in the charging mode and as a supply when it is in the discharging mode.the first order transfer 
function models the EVs system as7

	
T FEV (s) = KEV

1 + sTEV
� (19)

UC: back-up device
Ultracapacitors store and release energy very quickly. They’re reliable, long-lasting, and work well in cold 
weather. The linear transfer function model of ultra capacitors is7

	
T FUC (s) = KUC

1 + sTUC
� (20)

BESS: back-up device
The Battery Energy Storage System (BESS) helps keep the system’s frequency stable by either storing energy or 
supplying power as needed. The BEES first-order transfer function is9

	
T FBESS (s) = KBESS

1 + sTBESS
� (21)

Modelling of controller: controller design and methodology
PID controller: external controller
The three controllers that are present in it are derivative, integral, and proportional. ACE is the input of the 
controller. It generates the necessary control signal Y(s) for the power generating system for frequency regulation 
based on the error signal. In order to achieve a healthier controller response during sudden load demand, a 
controller design with appropriate gain values is therefore essential22–29. Equation presents the transfer function 
of the PID controller (refer Fig. 6a)8.

	
G (s) = Kp + Ki

s
+ Kds� (22)

PD–PID controllers: external controller
The cascaded PD–PID control strategy is an advanced and efficient approach for controlling complex dynamic 
systems that require accurate and stable control over many time scales. The system has two control loops: an inner 
PD controller and an outer PID controller. The central PD controller manages the fast dynamics of the system, 
enabling quick response and improving stability by reducing oscillations. The outer PID controller controls 
the slower dynamics, improving long-term performance by reducing steady-state errors and improving overall 
accuracy. The PD–PID structure allows for independent fine-tuning of fast and slow dynamics, thus increasing 
flexibility and easing optimization. This hierarchical control technique is especially beneficial in applications 
where fast response and sustained accuracy are essential, such as engine control, temperature control, and 
aviation systems. Cascaded PD–PID controllers’ ability to combine fast response with high stability makes them 
the recommended option in scenarios where single-loop controllers are insufficient, improving performance 
when managing complex multivariable processes. (refer Fig. 6b)18.

	
G (s) = (Kp1 + Kd1s)

(
Kp2 + Ki2

s
+ Kd2s

)
� (23)

Fractional order concept
The concept of fractional order calculus emerged from the theory of generalising integral order calculus to 
fractional order calculus. The most commonly utilised fractional order integrodifferential definitions are 
derived from Riemann–Liouville (RL), Grunwald–Letnikov, and Caputo formulations. The RL fractional order 
integration and differentiation, frequently employed by researchers, are delineated in (24)–(25)13,14.

	

aDα
t f (t) = 1

Γ (n − α)
dn

dtn

t∫

a

(t − τ)n−α−1 f (τ) dτ � (24)

	

aD−α
t f (t) = 1

Γ (α)
dn

dtn

t∫

0

(t − τ)α−1 f (τ) dτ � (25)
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Fig. 6.  Implemented controller structures: (a) PID, (b) cascaded PD–PID, (c) FOPID and (d) FOPI–FOPID.
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where aDα
t  is the fractional driver. With an integer n and Euler’s gamma function Γ(.), the value of α will be in 

between (n − 1) and n.
Traditional PID controllers eliminate steady-state error through continuous integration of past errors, but 

this can cause overshooting and instability. The FOPID controller, a generalization of the PID, is noted for its 
enhanced robustness. Its fractional integral and derivative terms improve adaptability to parameter changes, 
uncertainties, and external disturbances, which is beneficial for systems with time delays and high nonlinearity. 
This results in better stability and transient response. The fractional-order integral term in FOPI and FOPID 
controllers offers more precise control over system memory, reducing steady-state errors and preventing 
excessive overshoot.

FOPID controller: external controller
The primary difference between a PID and FOPID controller is that the FOPID controller’s order is not an integer. 
This feature allows for additional control over the controller gain values, and when compared to traditional PID 
controllers, it performs better. Over the past few years, there has been a lot of discussion about the advantages 
of the FOPID controller over the conventional PID controller, as mentioned above. The following is FOPID 
controller transfer function (refer Fig. 6c).

	
G (s) = Kp + Ki

sλ
+ Kdsµ� (26)

FOPI–FOPID controller: external controller
FOPI and FOPID controllers extend traditional PI and PID controllers using fractional calculus principles. 
Unlike traditional controllers that use integer derivatives and integrals, FOPI and FOPID controllers use 
fractional order dynamics, which allows for greater tuning flexibility and improved control performance. The 
use of fractional calculus allows for non-integer ordering of integral and derivative operations, making these 
controllers particularly suitable for complex systems with long memory effects, such as those featuring time 
delays and fractional dynamics.

FOPI controllers improve upon traditional PI controllers by incorporating fractional order integral 
components, allowing for more precise tuning and better resilience to shocks and uncertainties. Fractional order 
controllers improve the capabilities of PID controllers by integrating fractional orders of integral and derivative 
components, resulting in more dynamic system control, improved stability margins, and better frequency 
response performance. These controllers are particularly beneficial in areas such as process control, robotics, 
and power systems where traditional controllers suffer from nonlinearities and time delays. The large number of 
parameters in FOPID controllers makes them more difficult to fine-tune compared to standard PID controllers, 
resulting in tuning and computational challenges when implementing fractional order controllers.

Techniques such as frequency response analysis and optimisation methods, including genetic algorithms 
and particle swarm optimisation, tackle these difficulties. FOPID controllers exhibit enhanced performance, 
especially in systems with intricate dynamics; yet, their implementation is computationally intensive due to 
fractional-order operations, complicating practical use. Nonetheless, the adaptability and superior control 
features of FOPI and FOPID controllers are vital for contemporary control applications, providing considerable 
benefits compared to conventional systems (refer Fig. 6d).

	
G (s) =

(
Kp1 + Ki1

sλ1

) (
Kp2 + Ki2

sλ2
+ Kd2sµ2

)
� (27)

Problem formulation: defining LFC objective function
Objective: defining optimization goals and objective function
The ITAE is vital in AGC, as it heavily penalizes long-term errors, encouraging quick convergence to set 
points, smooth responses, and grid stability. It aids in designing and fine-tuning controllers, evaluating control 
strategies, and guiding optimization algorithms, thus advancing AGC strategies and enhancing power system 
resilience and reliability. The ITAE objective function is expressed mathematically as8,30–33.

	

F OD = IT AE = J =

ts∫

0

{|∆fi| + |∆Ptieij |}tdt� (28)

Constrained optimization: defining the boundaries of constrained

	(a)	 The PID controller gains function as restrictions for the model’s optimisation work, with their parameters 
limited as outlined in (29).

	

Kmin
P ≤ Kp ≤ Kmax

p

Kmin
i ≤ Ki ≤ Kmax

i

Kmin
d ≤ Kd ≤ Kmax

d

� (29)

	(b)	 The limitations for the FOPID controller gains in the modelling optimisation process are delineated by the 
bounds stated in (30).
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Kmin
P ≤ Kp ≤ Kmax

p

Kmin
i ≤ Ki ≤ Kmax

i

Kmin
d ≤ Kd ≤ Kmax

d

λmin ≤ λ ≤ λmax

µmin ≤ µ ≤ µmax

� (30)

	(c)	  The PD–PID controller gains serve as constraints for the model’s optimization task, with parameter bounds 
defined in (31).

	

Kmin
P 1 ≤ Kp1 ≤ Kmax

p1
Kmin

d1 ≤ Kd1 ≤ Kmax
d1

Kmin
p2 ≤ Kp2 ≤ Kmax

p2
Kmin

i2 ≤ Ki2 ≤ Kmax
i2

Kmin
d2 ≤ Kd2 ≤ Kmax

d2

� (31)

	(d)	  The FOPI–FOPID controller gains serve as constraints in the model’s optimization task, with parameter 
boundaries provided in Eq. (32).

	

Kmin
P 1 ≤ Kp1 ≤ Kmax

p1
Kmin

i1 ≤ Ki1 ≤ Kmax
i1

λmin
1 ≤ λ1 ≤ λmax

1
Kmin

P 2 ≤ Kp2 ≤ Kmax
p2

Kmin
i2 ≤ Ki2 ≤ Kmax

i2
Kmin

d2 ≤ Kd2 ≤ Kmax
d2

λmin
2 ≤ λ2 ≤ λmax

2
µmin

2 ≤ µ2 ≤ µmax
2

� (32)

Measure of performance: defining performance indices
Integrating varied performance indices into AGC optimization guarantees grid stability and effective control 
amidst RESs unpredictability. This paper performs a comprehensive comparative analysis of IAE, ITSE, ISE, 
and ITAE to determine optimal control strategies that reconcile swift disturbance response, long-term error 
reduction, and overall system efficacy. Choosing the correct performance index is essential for optimising 
Automatic Generation Control in renewable energy source-dominant power systems. IAE assesses overall 
control accuracy, ITSE focuses on speedy stabilization, and ISE stresses reducing big deviations. Collectively, 
these indices enable a thorough optimisation strategy, directing AGC solutions that improve grid reliability 
and performance amidst RES unpredictability. In the analysed models, ITAE IAE, ITSE, and ISE values serve as 
performance indices, with their mathematical formulas defined in (33)–(36).

	

IT AE =

ts∫

0

(|∆fi| + |∆Ptieij |) t dt� (33)

	

IAE =

ts∫

0

(|∆fi| + |∆Ptieij |) dt� (34)

	

IT SE =

ts∫

0

(
(∆fi)2 + (∆Ptieij)2)

t dt� (35)

	

ISE =

ts∫

0

(
(∆fi)2 + (∆Ptieij)2)

dt� (36)

Implemented algorithm details
MGO algorithm: basic details
The MGO, a sophisticated optimisation algorithm released in 2022, draws inspiration from the social systems of 
mountain gazelles, encompassing maternity herds, bachelor male herds, and lone territorial males34. Researchers 
utilised these natural behaviours to develop a mathematical model that improves optimisation. The MGO 
algorithm integrates gazelle traits like as territoriality, social hierarchy, migration, and swift movement. The 
algorithm adeptly investigates and engages within the solution space by modelling interactions among bachelor 
male herds, maternity herds, and the foraging movements of territorial males. This method allows MGO to 
effectively explore and optimise intricate issues by utilising dynamic and adaptive techniques derived from 
gazelle behaviour. The algorithm guarantees comprehensive investigation and utilisation of the search space, 
becoming it an essential instrument in optimisation.
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Concept of algorithm: inspiration
The mountain gazelle is a species of gazelle that inhabits the Arabian Peninsula and adjacent areas, with a low 
population density despite its vast territory. Their habitat is strongly associated with the Robinia pseudoacacia 
tree species. During the Late Holocene, rising temperatures caused their distribution to decline, leading to 
their replacement by Gazella bennettii, which is adapted to a warmer climate. Mountain gazelles exhibit strong 
territorial behavior, keeping considerable distances between individual territories and organizing themselves 
into three groups: mother-calf herds, herds of young males, and solitary males. Adult males often engage in 
territorial disputes that are less violent than those over females, but young males use their horns more vigorously 
than older males. These migratory gazelles travel around 200 kms in search of food and can sprint hundreds of 
metres at speeds of up to 80 kms per hour.

Mathematical formulation

	(a)	��  Territorial Solitary Males (TSM):

	� Upon reaching adulthood, male gazelles establish and defend solitary territories. The optimal global posi-
tion (the adult male) is updated via a mathematical model incorporating random factors and the positions 
of other males in bachelor herds34.

	 T SM = malegazelle − |(ri1 × BH − ri2 × X (t)) × F | × Cofr � (37)

	(b)	  Maternity Herds (MH):

	 Maternity herds are essential for birthing strong male gazelles, a behavior modelled to generate robust solu-
tions by simulating herd interactions and the impact of dominant males34.

	 MH = (BH + Cof1,r) + (ri3 × malegazelle − ri4 × Xrand) × Cof1,r � (38)

	 here Xrand represents a vector position of a gazelle randomly selected from the population.
	 ‘ri3’ and ‘ri4’ integers randomly selected position.

	(c)	  Bachelor Male Herds (BMH):

	 As young males mature, they attempt to establish their territories, leading to conflicts with established 
males. This is modelled to represent the competition among solutions to improve their positions34.

	 BMH = (X (t) − D) + (ri5 × malegazelle − ri6 × BH) × Cofr � (39)

	 where ‘D’ is calculated using the current positions and ‘malegazelle’ is the best solution.

	(d)	  Migration to Search for Food (MSF):

	 Gazelles constantly migrate in search of food, covering large distances. This behavior is modelled to en-
hance exploration capabilities, allowing the algorithm to search diverse areas of the solution space.

	 MSF = (ub − lb) × r7 + lb� (40)

	 where ‘ub’ and ‘lb’ are the upper and lower bounds of the problem, and ‘r7’ is a random number.

CHOA algorithm
Chimpanzees, highly social great apes closely related to humans, live in dynamic fission–fusion societies where 
group size and composition fluctuate. This social structure is mirrored in the CHOA, where independent groups 
explore the search space using diverse strategies, leveraging individual strengths to solve complex problems44. 
Hunting occurs during exploration and exploitation. Calculate driving and pursuing prey. For driving and 
following prey, (41) and (42) are mathematical models.

	 d = |c.xprey (t) − m.xchimp (t)|� (41)

	 xchimp (t + 1) = xprey (t) − a.d� (42)

The vectors a and c are examined in accordance with Eqs. (43) and (44), respectively44.

	 a = 2.f.r1 − f � (43)
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	 c = 2.r2� (44)

Driver, barrier, and chaser chimpanzees sometimes hunt, but attackers usually do. The best prey location is 
unknown in a search space. It is hypothesized that the first attacker, the most ideal solution, and the driver, barrier, 
and chaser chimpanzees have a better understanding of the possible prey’s location to mathematically describe 
their behaviour. Thus, the other chimpanzees’ locations are adjusted to match those of these better chimps, 
helping them to improve their search techniques. The relationship mentioned is represented by Eqs. (45)–(47)44.

	

dAttac ker = |c1xAttac ker − m1x|
dBarrier = |c2xBarrier − m2x|
dChaser = |c3xChaser − m3x|
dDriver = |c4xDriver − m4x|

� (45)

	

x1 = xAttac ker − a1 (dAttac ker)
x2 = xBarrier − a2 (dBarrier)
x3 = xChaser − a3 (dChaser)
x4 = xDriver − a4 (dDriver)

� (46)

	
x (t + 1) = x1 + x2 + x3 + x4

4
� (47)

In the final stage, chimps abandon their roles and become chaotic. This is modelled by a 50% chance of using 
chaotic movement instead of the normal updating process. This helps the algorithm escape local optima and 
explore new solutions. The search process involves chimps in different roles, adjusting their positions based on 
the estimated prey location. Parameters are adaptively tuned for faster convergence. The ‘f ’ value decreases over 
time, encouraging exploration initially and exploitation later. The mathematical model is expressed by Eq. (48)44.

	
xchimp(t + 1) =

{
xprey(t)−a.d . . . if µ < 0.5
chaotic_value . . . if µ > 0.5 � (48)

Briefly, ChOA searches begin with chimpanzees, possible solutions. These chimpanzees are randomly assigned 
to attackers, barricades, chasers, and drivers. Group-based “f ” coefficient updates are used by each chimp. Each 
iteration, the attacker, barrier, chaser, and driver chimpanzees assess their prey’s position. Each potential solution 
modifies its prey distance based on this estimate. The “c” and “m” vectors are adaptively modified to accelerate 
convergence and prevent local optima. To improve exploitation and prey capture, “f ” is progressively lowered 
from 2.5 to zero. Candidate solutions will split and explore various search space areas if |a|> 1. If the inequality is 
not fulfilled, potential solutions will converge on the prey.

Chaotic concept
Using a chaotic map instead of a random process has become increasingly popular in optimization. Random-
based optimization approach uses disorderly motion instead of stochastic motion for unpredictability45. Chaotic 
mapping enhances the optimizer’s performance by introducing a deterministic yet unpredictable search pattern, 
which improves exploration and prevents premature convergence to local optima. Unlike purely stochastic 
approaches, chaotic sequences maintain ergodicity, ensuring a more uniform search across the solution space. 
Random-based algorithms enable unpleasant situations or solutions with a predetermined probability. A chaos-
based optimization strategy seeks order in a chaotic system to escape a local optimum. Due to its sensitivity to 
the initial condition and quasi-stochasticity, chaos is valuable in optimization. If the correct beginning point is 
picked and the search is done inside a finite sphere around it, all potential outcomes may be found. The equation 
for the same is shown in (49).

	 xi+1 = αxi (1 − xi)� (49)

The value of α is taken as 4. The flowchart of the (refer Fig. 7).

Proposed algorithm: CCMGO
The proposed CCMGO is an advanced hybrid algorithm combining the strengths of MGO and CHOA, further 
enhanced by chaotic maps. CCMGO uses MGO’s simulation of mountain gazelles’ social behaviours, such as 
territoriality, hierarchy, and migration, to effectively explore and exploit the search space. It also employs CHOA’s 
hunting roles and adaptive strategies to enhance the search process and improve convergence. The integration of 
chaotic maps adds unpredictability, helping the algorithm escape local optima and promoting exploration and 
diversity. This combination aims to achieve superior performance in solving complex optimization problems, 
surpassing traditional algorithms in accuracy, efficiency, and robustness.

Simulation results and analysis
A marine system with renewable cogeneration is evaluated through a comparative analysis of control strategies, 
including PID, cascaded PD–PID, FOPID, and FOPI–FOPID controllers, designed using the CCMGO algorithm 
with ITAE as the performance index. These controllers are assessed based on dynamic performance, effectiveness 
in managing transient responses and energy storage devices, and their impact on overall performance and 
frequency stability across varied operational scenarios. The optimization is programmed in MATLAB/Simulink 
2024a, and the system is modelled in Simulink using the FOMCON toolbox. Frequency stability is assessed 
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under various operational conditions. and the system configuration is Intel core i5 10th generation Microsoft 
office. Initially, the proposed CCMGO algorithm is investigated with GA and PSO by optimizing the FOPID 
controller for LFC. The results now included in Table 2 of the revised manuscript demonstrate the lower ITAE 
and other performance values showing better frequency regulation and reduced overshoot, ensuring smoother 
microgrid operation. The following scenario has been considered into the study after the validation of CCMGO 
algorithm.

Fig. 7.  Flowchart of the proposed CCMGO algorithm.
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Scenario A: Analysing test system performance under positive impulse and negative impulse load disturbance

Scenario B: Assess test system functioning under positive impulse load disturbance

Scenario C: Examine the test system functioning under step ramp combination-based load disturbance

Scenario D: Evaluate test system functioning under stochastic random load perturbation
 

Scenario A: Analysing test system performance under Stepwise increasing and decreasing 
load disturbance
The valuation arrangement reviewed here is illustrated above (see Figs. 1, 2, 3, 4, and 5). This scheme evaluates 
PID/cascaded PD–PID/FOPID/FOPI–FOPID controllers individually as subordinate controllers on separate 
bases, with the load profile shown in Fig. 6. Optimal controller attributes are determined via CCMGO using 
ITAE, with the best values presented in Table  3 and significant results shown in Figs.  8, 9, 10, 11, and 12. 
Figure 8 depicts inputs to independent power generation like wave, wind, solar radiation and PV radiation. 
Figure  9 shows independent power generation outputs like AWEC, WTG, ST and PV. Figure  10 details the 
LFC response in terms of frequency deviation, load demand, controller output, and generation load demand 
response. Figure 11 profiles energy storage systems like EV, BESS and UC, while Fig. 12 shows controlled power 
generation DEG, BTGU and MTPG. BESS provide medium- to long-term energy buffering with a relatively 
slower response (around 0.1 s), making them ideal for sustained energy compensation during prolonged load 
imbalances to maintain frequency stability. In contrast, UC, with their extremely fast response (approximately 
0.9 s) and high power density, act like a first-aid measure by quickly counteracting sudden, transient frequency 
deviations. Additionally, EV offer flexible, dynamic storage; they can operate as either loads or energy sources 
with a response time of about 1 s, effectively bridging the gap between the immediate action of ultra-capacitors 
and the longer-term support provided by BESS, thereby creating a robust and integrated approach to frequency 
regulation in the microgrid.

Tables 4, 5 compare the performance of four control strategies optimized by CCMGO: CCMGO PD–PID, 
CCMGO PID, CCMGO FOPI–FOPID and the proposed CCMGO FOPID under Scenario 1 of a test system. 
Performance is assessed using indices ITAE, IAE, ITSE, and ISE, where lower values signify better control system 
performance. Computational time for each algorithm is also evaluated. Results show the proposed CCMGO 
FOPID algorithm outperforms others, achieving ITAE of 13.385, IAE of 0.003, ITSE of 0.142, and ISE of 
0.293, significantly lower than other algorithms. This indicates superior performance in minimizing error and 
achieving faster settling times. The CCMGO FOPI- FOPID algorithm also performs competitively, particularly 
in ITAE 19.452 and IAE 0.017, demonstrating its effectiveness in error reduction.

The proposed CCMGO FOPID algorithm proves to be the most effective optimization technique for the test 
system under Scenario A, excelling in error minimization and faster settling times. In terms of computational 
efficiency, CCMGO FOPID requires a computational time of 1752s, CCMGO FOPI–FOPID requires a 
computational time of 1764s, CCMGO PID requires a computational time of 1776s, and CCMGO PD–PID 
requires a computational time of 1788s.

Table 6 represents the Eigen value analysis for the CCMGO FOPID for Scenario 1, Scenario 2, Scenario 3 and 
Scenario 4. The eigenvalues confirm that all system poles lie in the left half of the complex plane, ensuring system 
stability under different load conditions.

In the additional discussion, CCMGO algorithm in terms of execution time, memory usage, and convergence 
rate is further evaluated. It is noted that the execution time of CCMGO—defined as the total time required for 
initialization, objective function evaluation, and iterative position updates—is comparable per iteration to that 
of traditional methods; however, CCMGO typically converges faster due to its hybrid structure and chaotic 
mapping mechanism. In terms of memory usage, while CCMGO incurs a modest increase by maintaining 
additional data structures (e.g., chaotic sequences) to preserve solution diversity, this overhead remains within 

Techniques Kp1 Ki1 Kd1 λ1 Kp2 Ki2 Kd2 λ2 µ2

CCMGO PD–PID [Studied] 0.001 – 0.001 – 0.001 0.001 0.499 – –

CCMGO PID [Studied] 1.000 1.000 0.444 – – – – – –

CCMGO FOPI–FOPID [Studied] 0.010 0.010 – 0.093 1.000 0.032 0.010 1.000 0.128

CCMGO FOPID [Proposed] – – – – 2.000 2.000 1.428 0.900 0.543

Table 3.  Optimized controller gains for the test system Scenario A.

 

Algorithm ITAE (lower is better) IAE ITSE ISE Undershoot (%)

CCMGO (Proposed) 13.385 0.003 0.142 0.293 0.022

PSO 13.9083 0.1622 0.2943 0.0035 0.038

GA 30.6077 0.4153 0.6108 0.0088 0.039

Table 2.  Comparative analysis with GA and PSO.
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acceptable limits for real-time microgrid applications. Finally, the convergence rate, which measures the speed at 
which the algorithm reduces the objective function error over iterations, is significantly enhanced in CCMGO.

Scenario B: Assess test system functioning under positive impulse load disturbance
The prior sub-section specifies that the FOPID controller is the highest-performing controller. However, in this 
sub-section, the PD–PID controller is optimized again using CCMGO. The optimal values of the controller’s 
parameters obtained through algorithms are listed in Table 7. Figure 13 depicts the system’s dynamic behavior in 
response to load demand changes, illustrating frequency deviation, load demand fluctuations, controller output 
and the generation load demand response, providing insights into control actions taken to regulate the system. 
Figure 14 highlights the energy storage system, showing profiles of both the EV, BESS and UC, likely revealing 
their charge/discharge patterns and their role in supporting the LFC system with ancillary services. Figure 15 
visualizes controlled power generation from various sources, including DEG, BTGU, and MTPG. demonstrating 
how power output is adjusted in response to load changes and frequency deviations to maintain system stability. 
The effective outcomes are shown in Figs. 13, 14, and 15. Detailed examination of these figures indicates that the 
CCMGO-augmented subordinate controller provides improved dynamics with reduced oscillations.

Tables 8, 9 compares the performance of three control strategies optimized by CCMGO: CCMGO F0PID, 
CCMGO PID, CCMGO FOPI–FOPID and the proposed CCMGO PD–PID under Scenario B. The evaluation 
covers performance indices (ITAE, IAE, ITSE, ISE) and computational time. Results show CCMGO PD–PID 
excels in ITAE 2.910 and IAE 0.003, indicating lower overall error and faster response, albeit with computational 
time 1376 s. The choice between CCMGO FOPI–FOPIDD and CCMGO PD–PID depends on specific application 
needs and the trade-off between performance and computational efficiency. CCMGO PD–PID is ideal for faster 
response and lower error.

Fig. 8.  Inputs to the independent power generation (refer Scenario A): (a) Wave Condition, (b) Wind 
Condition, (c) Solar radiation, (d) PV radiation.
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In terms of computational efficiency, CCMGO FOPID requires a computational time of 1389 s, which is 
slightly higher than that of CCMGO PD–PID 1376 s, CCMGO PID 1396 s and CCMGO FOPI–FOPID 1398 s 
which is less and giving the faster response compared to CCMGO PID and CCMGO FOPI–FOPID. And in this 
Scenario CCMGO PD–PID is giving the better results as compared to our proposed CCMGO FOPID.

Scenario C: Examine the test system functioning under step ramp combination-based load 
disturbance
The prior sub-section specifies that the PD–PID controller is the highest-performing controller. However, in 
this sub-section, the FOPID controller is optimized again using CCMGO. The optimal values of the controller’s 
parameters obtained through algorithms are listed in Table 10. Figure 16 depicts the system’s dynamic behavior 
in response to load demand changes, illustrating frequency deviation, load demand fluctuations, controller 
output and the generation load demand response, providing insights into control actions taken to regulate the 
system. Figure 17 highlights the energy storage system, showing profiles of both the EV, BESS and UC, likely 
revealing their charge/discharge patterns and their role in supporting the LFC system with ancillary services. 
Figure 18 visualizes controlled power generation from various sources, including bio-deg, BTGU, and MTPG. 
demonstrating how power output is adjusted in response to load changes and frequency deviations to maintain 
system stability. The effective outcomes are shown in Figs. 16, 17, and 18. Detailed examination of these figures 
indicates that the CCMGO-augmented subordinate controller provides improved dynamics with reduced 
oscillations.

Fig. 9.  Independent power generation (refer Scenario A): (a) AWEC, (b) WTG Condition, (c) ST, and (d) PV.
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Tables  11, 12 compares the performance of three control strategies optimized by CCMGO: CCMGO 
PID, CCMGO PD–PID, CCMGO FOPI–FOPID and the proposed CCMGO FOPID under Scenario C. The 
evaluation covers performance indices (ITAE, IAE, ITSE, ISE) and computational time. Results show CCMGO 
FOPID excels in ITAE 9.099 and IAE 1.388, indicating lower overall error and faster response, in terms of 
computational efficiency, CCMGO FOPID requires a computational time of 1479 s, CCMGO PD–PID requires 
a computational time of 1484 s, CCMGO PID requires a computational time of 1488 s, and CCMGO FOPI–
FOPID requires a computational time of 1496 s.

Scenario D: Evaluate test system functioning under stochastic random load perturbation
However, in this sub-section, our proposed controller FOPID controller is optimized again using CCMGO. 
The optimal values of the controller’s parameters obtained through algorithms are listed in Table 13. Figure 19 
depicts the system’s dynamic behavior in response to load demand changes, illustrating frequency deviation, 

Fig. 11.  Profile of the energy storage system (refer Scenario A): (a) EV, (b) BESS and (c) UC.

 

Fig. 10.  LFC response profile (Refer Scenario A) (a) Frequency deviation, (b) Load demand, (c) Controller 
output and (d) Generation load demand.
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load demand fluctuations, controller output and the generation load demand response, providing insights into 
control actions taken to regulate the system. Figure 20 highlights the energy storage system, showing profiles of 
both the EV, BESS and UC, likely revealing their charge/discharge patterns and their role in supporting the LFC 
system with ancillary services. Figure 21 visualizes controlled power generation from various sources, including 
bio-deg, BTGU, and MTPG. demonstrating how power output is adjusted in response to load changes and 
frequency deviations to maintain system stability. The effective outcomes are shown in Figs.  19, 20, and 21. 
Detailed examination of these figures indicates that the CCMGO-augmented subordinate controller provides 
improved dynamics with reduced oscillations.

The proposed CCMGO FOPID under Scenario D. The Tables 14, 15 evaluation covers performance indices 
(ITAE, IAE, ITSE, ISE) and computational time. Results show CCMGO FOPID excels in ITAE (61.701) and 
IAE (0.002), indicating lower overall error and faster response, albeit with higher computational time (5458 s). 
CCMGO FOPID is ideal for faster response and lower error.

Limitations and constraints of this study
This study is based on simplified power system models under idealized conditions, with limited experimental 
validation and a primary focus on marine microgrids. While the proposed algorithm demonstrates strong 
performance in simulations, its efficacy under various system configurations, diverse operating conditions, and 
different optimization problems requires further exploration. Additionally, a more comprehensive comparison 
with other state-of-the-art optimization algorithms is needed to fully delineate its strengths and weaknesses.

Algorithms Computational time (s)

CCMGO PD–PID [Studied] 1788

CCMGO PID [Studied] 1776

CCMGO FOPI–FOPID [Studied] 1764

CCMGO FOPID [Proposed] 1752

Table 5.  Study of computational time for test system Scenario A.

 

Algorithms

FOD
Performance 
indices

ITAE IAE ITSE ISE

CCMGO PD–PID [Studied] 904.298 0.166 0.015 1.011

CCMGO PID [Studied] 27.501 0.032 1.634 1.126

CCMGO FOPI–FOPID [Studied] 19.452 0.017 0.926 1.209

CCMGO FOPID [Proposed] 13.385 0.003 0.142 0.293

Table 4.  Comparative measure of performance indices for test system Scenario A.

 

Fig. 12.  Controlled power generation (refer Scenario A): (a) DEG, (b) BTGU, and (c) MTPG.
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Techniques Kp1 Ki1 Kd1 λ1 Kp2 Ki2 Kd2 λ2 µ2

CCMGO FOPID [Studied] – – – – 1.000 1.000 1.000 0.900 0.310

CCMGO PID [Studied] 1.000 1.000 0.995 – – – – – –

CCMGO FOPI–FOPID [Studied] 0.010 0.010 – 0.900 0.900 0.900 0.010 0.900 0.010

CCMGO PD–PID [Proposed] 0.001 – 0.001 – 0.999 0.998 0.508 – –

Table 7.  Optimized controller gains for the test system Scenario B.

 

Scenario A Scenario B Scenario C Scenario C

1.0e + 03 * 1.0e + 03 * 1.0e + 03 * 1.0e + 03*

− 1.4071 + 0.0000i −  1.0230 + 0.0000i − 1.4637 + 0.0000i − 1.1608 + 0.0000i

− 1.0000 + 0.0000i − 1.0000 + 0.0000i − 1.0000 + 0.0000i − 1.0000 + 0.0000i

− 0.1054 + 0.4647i − 0.6031 + 0.0000i − 0.0930 + 0.5310i − 0.5370 + 0.0000i

− 0.1054 − 0.4647i − 0.3033 + 0.0000i − 0.0930 − 0.5310i − 0.0293 + 0.3026i

− 0.3947 + 0.0000i − 0.1622 + 0.0000i − 0.3772 + 0.0000i − 0.0293 − 0.3026i

− 0.3033 + 0.0000i − 0.0109 + 0.1172i − 0.3033 + 0.0000i − 0.3033 + 0.0000i

− 0.1037 + 0.0000i − 0.0109 − 0.1172i − 0.1023 + 0.0000i − 0.1357 + 0.0000i

− 0.0864 + 0.0000i − 0.0864 + 0.0000i − 0.0864 + 0.0000i − 0.0864 + 0.0000i

− 0.0294 + 0.0000i − 0.0424 + 0.0000i − 0.0297 + 0.0000i − 0.0378 + 0.0000i

− 0.0246 + 0.0000i − 0.0246 + 0.0000i − 0.0246 + 0.0000i − 0.0246 + 0.0000i

− 0.0200 + 0.0000i − 0.0200 + 0.0000i − 0.0200 + 0.0000i − 0.0200 + 0.0000i

− 0.0125 + 0.0000i − 0.0121 + 0.0000i − 0.0125 + 0.0000i − 0.0125 + 0.0000i

− 0.0100 + 0.0000i − 0.0125 + 0.0000i − 0.0100 + 0.0000i − 0.0111 + 0.0000i

− 0.0088 + 0.0000i − 0.0100 + 0.0000i − 0.0093 + 0.0000i − 0.0100 + 0.0000i

− 0.0071 + 0.0000i − 0.0071 + 0.0000i − 0.0071 + 0.0000i − 0.0071 + 0.0000i

− 0.0050 + 0.0000i − 0.0050 + 0.0000i − 0.0050 + 0.0000i − 0.0050 + 0.0000i

− 0.0043 + 0.0000i − 0.0043 + 0.0000i − 0.0043 + 0.0000i − 0.0043 + 0.0000i

− 0.0033 + 0.0000i − 0.0035 + 0.0000i − 0.0033 + 0.0000i − 0.0032 + 0.0000i

− 0.0027 + 0.0000i − 0.0033 + 0.0000i − 0.0031 + 0.0000i − 0.0033 + 0.0000i

− 0.0025 + 0.0000i − 0.0025 + 0.0000i − 0.0025 + 0.0000i − 0.0025 + 0.0000i

− 0.0021 + 0.0000i − 0.0021 + 0.0000i − 0.0021 + 0.0000i − 0.0021 + 0.0000i

− 0.0008 + 0.0003i − 0.0012 + 0.0000i − 0.0010 + 0.0003i − 0.0012 + 0.0000i

− 0.0008 − 0.0003i − 0.0011 + 0.0000i − 0.0010 − 0.0003i − 0.0008 + 0.0002i

− 0.0012 + 0.0000i − 0.0009 + 0.0000i − 0.0012 + 0.0000i − 0.0008 − 0.0002i

− 0.0011 + 0.0000i − 0.0010 + 0.0000i − 0.0011 + 0.0000i − 0.0011 + 0.0000i

− 0.0010 + 0.0000i − 0.0007 + 0.0000i − 0.0010 + 0.0000i − 0.0010 + 0.0000i

− 0.0004 + 0.0001i − 0.0003 + 0.0001i − 0.0004 + 0.0001i − 0.0004 + 0.0001i

− 0.0004 − 0.0001i − 0.0003 − 0.0001i − 0.0004 − 0.0001i − 0.0004 −  0.0001i

− 0.0001 + 0.0000i − 0.0001 + 0.0000i − 0.0001 + 0.0000i − 0.0001 + 0.0000i

− 0.0001 − 0.0000i − 0.0001 + 0.0000i − 0.0001 + 0.0000i − 0.0001 + 0.0000i

− 0.0010 + 0.0000i − 0.0010 + 0.0000i − 0.0010 + 0.0000i − 0.0010 + 0.0000i

− 0.0125 + 0.0000i − 0.0125 + 0.0000i − 0.0125 + 0.0000i − 0.0125 + 0.0000i

− 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i

− 0.0008 + 0.0000i − 0.0008 + 0.0000i − 0.0008 + 0.0000i − 0.0008 + 0.0000i

− 0.0014 + 0.0000i − 0.0014 + 0.0000i − 0.0014 + 0.0000i − 0.0014 + 0.0000i

− 0.0007 + 0.0000i − 0.0007 + 0.0000i − 0.0007 + 0.0000i − 0.0007 + 0.0000i

− 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i

− 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i − 0.0003 + 0.0000i

− 0.0020 + 0.0000i − 0.0020 + 0.0000i − 0.0020 + 0.0000i − 0.0020 + 0.0000i

− 0.0020 + 0.0000i − 0.0020 + 0.0000i − 0.0020 + 0.0000i − 0.0020 + 0.0000i

Table 6.  Eigen Value analysis.
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Conclusions and scopes of future work
This study presents a novel control methodology that not only addresses the inherent variability of renewable 
energy sources but also enhances the microgrid capacity to maintain stable frequency through the coordinated 
use of energy storage. By leveraging the CMGO algorithm, the study significantly enhances the performance 
of various controllers, including PID, cascaded PD–PID, FOPID, and FOPI–FOPID controllers. Extensive 
simulations under different load conditions, such as step-ramp and random load variations, demonstrate the 
superior performance of CCMGO-optimized controllers, especially in terms of frequency stability and load 
management. The use of fractional-order controllers, particularly the FOPID, offers improved adaptability to 
system dynamics, providing more precise control and better transient responses. This research also highlights 
the importance of integrating energy storage devices, such as EV, BESS and UC to balance load-generation 
mismatches and support the stability of islanded marine microgrid. The results show that the proposed system 
can handle complex load scenarios effectively, outperforming traditional optimization techniques in error 
minimization and system reliability. Future studies will address these limitations by incorporating more complex 
and realistic power system models, extensive experimental validations, broader application scenarios, and 
rigorous comparative analyses with alternative optimization approaches.

Fig. 13.  LFC response profile (Refer Scenario B) (a) Frequency deviation, (b) Load demand, (c) Controller 
output, (d) Generation load demand and (e) Controller output of PD–PID.
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Fig. 15.  Controlled power generation (refer Scenario B): (a) DEG, (b) BTG and (c) MTPG for a duration of 
120 s.

 

Fig. 14.  Profile of the energy storage system (refer Scenario B): (a) EV, (b) BEES and (c) UC for a duration of 
120 s.
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Fig. 16.  LFC response profile (Refer Scenario C) (a) Frequency deviation, (b) Load demand, (c) Controller 
output, and (d) Generation load demand for a duration of 120 s.

 

Techniques Kp1 Ki1 Kd1 λ1 Kp2 Ki2 Kd2 λ2 µ2

CCMGOFOPI-PID [Studied] 0.010 0.010 – 0.900 0.900 0.899 0.875 0.900 0.010

CCMGO PID [Studied] 1.000 1.000 0.016 – – – – – –

CCMGO PD–PID [Studied] 0.001 – 0.634 – 0.001 1.000 0.001 – –

CCMGO FOPID [Proposed] – – – – 1.998 2.000 2.000 0.900 0.010

Table 10.  Optimized controller gains for the test system Scenario C.

 

Algorithms Computational time (s)

CCMGO FOPID [Studied] 1389

CCMGO PID [Studied] 1396

CCMGO FOPI–FOPID [Studied] 1398

CCMGO PD–PID [Proposed] 1376

Table 9.  Study of computational time for test system Scenario B.

 

Algorithms

FOD
Performance 
indices

ITAE IAE ITSE ISE

CCMGO FOPID [Studied] 4.792 0.023 0.235 0.222

CCMGO PID [Studied] 4.531 0.003 0.023 0.256

CCMGO FOPI–FOPID [Studied] 4.123 0.080 3.105 2.281

CCMGO PD–PID [Proposed] 2.910 0.003 0.033 0.142

Table 8.  Comparative measure of performance indices for test system Scenario B.
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Fig. 18.  Controlled power generation (refer Scenario C): (a) DEG, (b) BTG and (c) MTPG for a duration of 
120 s.

 

Fig. 17.  Profile of the energy storage system (refer Scenario C): (a) EV, (b) BEES and (c) UC for a duration of 
120 s.
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Fig. 19.  LFC response profile (Refer Scenario D) (a) Frequency deviation, (b) Load demand, (c) Controller 
output, and (d) Generation load demand.

 

Techniques Kp2 Ki2 Kd2 λ2 µ2

CCMGO FOPID [Proposed] 2.000 2.000 2.000 0.900 0.252

Table 13.  Optimized FOPID controller gains for the test system Scenario D.

 

Algorithms Computational time (s)

CCMGO FOPI–FOPID [Studied] 1496

CCMGO PID [Studied] 1488

CCMGO PD–PID [Studied] 1484

CCMGO FOPID [Proposed] 1479

Table 12.  Study of computational time for test system Scenario C.

 

Algorithms

FOD Performance indices

ITAE IAE ITSE ISE

CCMGO FOPI–FOPID [Studied] 20.091 0.003 0.136 0.508

CCMGO PID [Studied] 13.427 0.015 0.349 0.823

CCMGO PD–PID [Studied] 12.937 0.003 0.057 0.323

CCMGO FOPID [Proposed] 9.099 1.388 87.348 11.491

Table 11.  Comparative measure of performance indices for test system Scenario C.
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Fig. 21.  Controlled power generation (refer Scenario D): (a) DEG, (b) BTG and (c) MTPG.

 

Fig. 20.  Profile of the energy storage system (refer Scenario D): (a) EV, (b) BEES and (c) UC.
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Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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