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The last few decades have seen rapid proliferation of hard artificial structures (e.g., energy infra-
structure, aquaculture, coastal defences) in the marine environment: ocean sprawl. The replace-
ment of natural, often sedimentary, substrata with hard substrata has altered the distribution of 
species, particularly non- indigenous species, and can facilitate the assisted migration of native spe-
cies at risk from climate change. This has been likened to urbanization as a driver of global biotic 
homogenization in the marine environment—the process by which species invasions and extinc-
tions increase the genetic, taxonomic, or functional similarity of communities at local, regional, and 
global scales. Ecological engineering research showed that small- scale engineering interventions 
can have a significant positive effect on the biodiversity associated with artificial structures, promot-
ing more diverse and resilient communities on local scales. This knowledge can be applied to the 
design of multifunctional structures that provide a range of ecosystem services. In coastal regions, 
hybrid designs can work with nature to combine hard and soft approaches to coastal defence in a 
more environmentally sensitive manner. The challenge now is to manage ocean sprawl with the 
dual goal of supporting human populations and activities, simultaneously strengthening ecosystem 
resilience using an ecosystem- based approach.
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Introduction: Context and background
Human population growth is accelerating and is forecast to exceed 9.5 billion by 2050 (Bloom 
2011, Gerland et al. 2014). Increasing demand for natural resources promotes further industrial-
ization (Long et al. 2009) and leads to continued anthropogenic greenhouse gas emissions (Moss 
et al. 2010, van Vuuren & Riahi 2011). Burgeoning human populations drive the exploitation of the 
ocean’s energy and food resources through the construction of oil and gas platforms, marine renew-
able energy installations, and proliferation of aquaculture (Chapman & Underwood 2011, Firth & 
Hawkins 2011). Furthermore, increased use of transport hubs and global shipping is increasing 
the connectivity of coastal cities. The burning of fossil fuels continues to raise greenhouse gas 
levels, driving global climate change and sea- level rise, with the prospect of more extreme climatic 
events, including increased storm intensity and frequency (summarized in Intergovernmental Panel 
on Climate Change [IPCC] 2013, 2014).

Much of the recent human population growth is in vulnerable coastal regions (Small & Nicholls 
2003, Martínez et al. 2007), a trend that is predicted to continue. In conjunction with rising (Nicholls 
& Cazenave 2010) and stormier (Bader et al. 2011) seas, our coastlines have become increasingly 
‘hardened’ (Airoldi et  al. 2005a, Moschella et  al. 2005, Bulleri & Chapman 2010, Chapman & 
Underwood 2011, Firth et al. 2013a) with the proliferation of coastal defences. This is an adaptation 
option (sensu IPCC 2014) that has been adopted worldwide to protect the growing coastal popula-
tion and its property, transport infrastructure, industry and commerce, as well as valuable amenity 
and recreational areas (for review, see chapters in Burcharth et al. 2007, Zanuttigh et al. 2014).

In this review, we discuss current evidence and thinking on biodiversity and ecosystem responses 
to global drivers of change, with a focus on recent rapid climate change and its interaction with 
regional and local impacts due to ‘ocean sprawl’—the proliferation of artificial structures in the 
sea. We consider how efforts to combat climate change, such as mitigation via offshore renewables 
(‘green’ energies to reduce CO2 emissions), and adaptation via coastal defences are leading to a pro-
liferation of artificial structures, resulting in changes in the proportion of hard versus soft coastal 
habitats, the distribution of species, assemblage composition, and community structure. We also 
discuss the role of coastal development, including ports and other transport infrastructure as well as 
offshore structures (e.g., oil and gas platforms), in altering coastal and marine ecosystem structure 
and functioning. Finally, we undertake a critical review of the current ‘state of the art’ in the emerg-
ing field of ‘green engineering’, which combines environmentally conscious attitudes, values, and 
principles with science, technology, and engineering practice, all directed towards improving local 
and global environmental quality.

Our scope is the global coastline extending vertically to the uppermost extent of tidal influence, 
with particular emphasis on open coasts and offshore structures that have seen the most research. 
This is in contrast to the freshwater tidal reaches of estuaries, which have received comparatively 
little attention (but see Francis & Hoggart 2008, 2009, Hoggart et al. 2012). Many of the case studies 
and examples are drawn from temperate systems in developed countries, reflecting the experience 
of the authors and the distribution of published research. Two themes permeate our review: firstly, 
how ecosystem services are at risk from modification of the coast by artificial structures; secondly, 
the interaction between the provision of new ‘hard’ substratum as a societal adaptation response, 
resulting in altered habitat connectivity and changes in the distribution of species and composition 
of assemblages. We conclude by identifying current knowledge gaps and future research needs.

Burgeoning coastal human populations
The diversity of coastal habitats includes rocky shores, sandy and muddy beaches, barriers, spits 
and sand dunes, estuaries and lagoons, deltas, wetlands, and coral reefs. These individually and 
collectively provide a disproportionately greater number of ecosystem services (see Millennium 
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Ecosystem Assessment [MEA] 2005 for a discussion of provisioning, regulating, supporting, and 
cultural services) to human health and well- being per unit area than other systems (Costanza et al. 
1997, Beaumont et al. 2007, Wyles et al. 2014). Globally, coastal systems are undergoing rapid envi-
ronmental change, with developing countries being particularly vulnerable (Figure 1; Crain et al. 
2009, Cinner et al. 2012). The drivers of change are complex, but burgeoning human populations, 
coastal development, and climate change are ultimately responsible (Creel 2003). Consequently, 

(A)

(B)

Coastal urban agglomerations
Population size (2014)

Coastal population Coastline alteration
No coastal population
<30%
30% – 70%
> 70%

Most altered
Altered
Least altered

Large city (>5 million people)

Megacity (>10 million people)

Megacity (>20 million people)

(C)

(D)

(B)
(C)

(D)

(E)

(E)

Figure  1 Large cities (>5 million people) and megacities (>10 million people), coastline alteration, and 
human populations living in coastal zones (within 100 km of coastline). (Coastline alteration redrawn from 
Rekacewicz, P. & Ahlenius, H. 2006. Coastal population and altered land cover in coastal zones (100 km of 
coastline). http://www.grida.no/ graphicslib/ detail/ coastal- population- and- altered- land- cover- in- coastal- zones-
100-km- of- coastline_7706, UNEP/ GRID- Arendal. City population data from United Nations Environment 
Programme, Department of Economic and Social Affairs, Population Division [UNEP DESAP]. 2014. 
World Urbanisation Prospects: The 2014 Revision, Highlights (ST/ ESA/ SER.A/352). New York: United 
Nations, Department of Economic and Social Affairs, Population Division. Maps created by Shaun Lewin, 
Plymouth University.)
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coastal regions are home to some of the most threatened ecosystems in the world (Halpern et al. 
2008, Waycott et al. 2009, Knights et al. 2015).

Nearly 40% of the global population lives within 100  km of the coast (Figure  1; Martínez 
et al. 2007), and population densities in these areas are generally high. In fact, 44 of the 71 cities 
(62%) with over 5 million inhabitants are located on the coast; this is three times the global aver-
age (McGranahan et al. 2007, Seto et al. 2011, Smith 2011, IPCC 2013), and by 2030 it is estimated 
that 50% of the global population will live within 100 km of the coast (Small & Nicholls 2003). 
Consequently, many of the world’s coasts are becoming increasingly urbanized. Asia has shown the 
greatest intensification of population, property, and infrastructure at the coast (Jongman et al. 2012); 
20 of the top 30 (67%) most populated coastal cities are located in Asia, with Tokyo and Shanghai 
alone home to over 60 million people. Furthermore, 9 of 10 coastal cities with the highest propor-
tional population change between 1990 and 2014 are in Asia with seven located in China (Figure 1; 
United Nations Environment Programme, Department of Economic and Social Affairs, Population 
Division [UNEP DESAP] 2014).

Threats to coastal zones: coastal processes and coastal erosion

Sea- level rise and extreme climatic events

Rates of sea- level rise have increased globally since records began (IPCC 2014) and are projected 
to continue to increase throughout the 2100s (Hinkel et al. 2014). Consequently, coastal habitats and 
their characteristic species (including those contributing to biogenic coastal defence) may experi-
ence ‘coastal squeeze’ wherein there is no opportunity for individuals to migrate inland or up- shore 
to escape rising sea levels (e.g., Doody 2004, Wolters et al. 2005, Jackson & McIlvenny 2011).

In 2012, the IPCC released a special report on risk management and extreme climatic events; 
IPCC noted a marked increase in frequency and intensity of tropical cyclones in the North Atlantic 
since the 1970s (IPCC 2012), with coastal regions becoming prone to extreme flooding (Peduzzi 
et al. 2012). Recent history has been punctuated by such events, which have caused catastrophic 
human and economic losses in coastal areas (Brown et al. 2014). For example, the 2005 Atlantic 
hurricane season (the most active on record) included Hurricanes Katrina and Rita, which hit the 
Mississippi Delta, causing approximately 2000 deaths, about $91 billion in damage, and 527 km2 of 
eroded wetlands along the coast of Louisiana (Beven et al. 2008, Howes et al. 2010).

More recently, in the winter of 2013–2014, Western Europe experienced an unprecedented pro-
longed sequence of stormy conditions (Huntingford et al. 2014, Matthews et al. 2014); the south- 
west and north- east of England and the western coast of Wales were particularly adversely affected. 
Collectively, the storms led to 17 deaths and clean- up costs of approximately £1 billion (Dodds 
2014). The United Kingdom, however, was relatively well prepared. Following the 1953 storms 
and flooding in the North Sea when over 300 people died and 40,000 were left homeless, the UK 
government invested heavily in coastal defence infrastructure. The comparatively lower cost of 
human life and livelihood of 2013–2014 has been attributed to this improvement in coastal defence 
infrastructure (Sayers et al. 2015).

Coastal erosion

The combination of climate change, sea- level rise, and increasing storm frequency will lead to more 
severe coastal erosion and flooding over the next few decades (Hulme et al. 2002, Thompson et al. 
2002, Hirabayashi et al. 2013, IPCC 2014). To assess the threat, two comprehensive assessments 
have been undertaken in Europe (Eurosion 2004) and the United States (National Oceanic and 
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Atmospheric Administration [NOAA] 2012) to evaluate the state of the coasts and risk of erosion. 
Based on data collected from 22 coastal countries, Eurosion (2004) concluded that 15% of the coast-
line of Europe was actively eroding (Figure 2A) and that 6.4% was artificially stabilized (Figure 2B). 
Given recent investment, the latter figure is likely to be much higher now. More recently, the NOAA 
State of the Coast project (NOAA 2012) collected data from 28 coastal states and found that 36% 
of the coastline of the United States was highly vulnerable to erosion, and that 9% was protected 
using hard armouring with an estimated 350,000 structures located within 150 m of the shoreline.

In the United Kingdom, the south- eastern coast of England is characterized by soft sedimen-
tary geology that is vulnerable to erosion. The village of Happisburgh, Norfolk, is often used as a 
case study to illustrate the dramatic impacts of coastal erosion on coastal communities. Although 
now a coastal village, Happisburgh was once some distance from the sea. Historic records indicate 
that over 250 m of land were lost between 1600 and 1850, prompting the use of coastal defences 
(groynes) to protect the shoreline. Removal of the groynes in 1991 led to the erosion of about 
36,000 t of sediment, a landward retreat of about 100 m, and the creation of an obvious embayment 
(Figure 3; Poulton et al. 2006, Brown et al. 2014).

Coastal habitats: natural coastal defence
Coastal habitats are an important interface between the land and the sea. All coastal habitats are ulti-
mately geological in origin (geogenic) but can be reshaped by biological processes (biogenic). Biogenic 
habitats can be defined as vegetated (e.g., kelp forests, seagrass beds, mangroves, and salt marshes) or 
as ‘biogenic reefs’—habitats formed by animals such as corals, bivalves (e.g., oysters and mussels), and 
annelids (e.g., honeycomb worms). Geogenic and biogenic habitats provide a key ecosystem service 
to coastal communities of protection against wave damage and erosion caused by storms (Badola & 
Hussain 2005, Koch et al. 2009, Barbier et al. 2011); hurricanes/ typhoons (Day et al. 2007, Costanza 
et al. 2008); and tsunamis (Dahdouh- Guebas et al. 2005, Alongi 2008, Marois & Mitsch 2015).

A B

150010005000

< 15%
Aggradation
Erosion
Stable
No data
Outside
data coverage

Percentage of artificial
coastline length by
NUTS3 regions (2004)

Coastal erosion
patterns:

% of artificial coastline

15–45%
> 45%
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Outside data
coverage

Figure 2 (A) The distribution of accreting, eroding, and stable coastlines of Europe (data from Eurosion. 
2004. Living with coastal erosion in Europe: sediment and space for susceptibility. Part IV—A guide to coastal 
management practices in Europe: lessons learnt. http://www.eurosion.org/ reports- online/ part4.pdf, accessed 
11 May 2015). (B) The percentage of artificial coastline. (Maps courtesy of the European Environment Agency 
[EEA], http://www.eea.europa.eu/ legal/ copyright.)
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Geogenic habitats

Rocky coasts form about 80% of the world’s coastline (Emery & Kuhn 1982). By their very nature, 
rocky coastlines offer significant coastal protection, forming a physical barrier between the land and 
the sea. Coastlines characterized by softer lithology are more susceptible to both physical (Naylor 
et al. 2010, Brooks & Spencer 2012) and biological erosion (see Naylor et al. 2012, Coombes 2014 
for reviews), making them more susceptible to flooding and damage to infrastructure and assets. 
Soft chalk and calcareous coastlines are particularly vulnerable to erosion by bivalves (e.g., pid-
docks; Pinn et al. 2005a, 2008). Interestingly, piddocks can expedite the erosion of breakwaters 
constructed of soft limestone boulder (e.g., Lithophaga lithophaga, Devescovi & Iveša 2008).

Sandy habitats (sand bars, beaches, and dunes) have been shown to play an important role in the 
prevention of coastal erosion (Doody 2012, Hanley et al. 2014). These geogenic habitats are more 
dynamic than rocky coasts and have an important coastal protection function in many parts of the 
world (e.g., the North Sea coasts of Germany, Netherlands, and Belgium, see Hanson et al. 2002, 
Stive et al. 2013, van der Meulen et al. 2014; south- eastern Australia, see Short & Hesp 1982; the 
western United States, see Wiedemann & Pickart 1996). Their function as coastal defence is greatly 
enhanced by the associated vegetation (e.g., Feagin et al. 2005), such as seagrass at the seaward 
boundary and salt marsh and mangroves at the land- sea interface. Vegetation is not always advanta-
geous. For example, since the introduction of the European marram grass Ammophila arenaria to 
the western coast of North America in 1868 to stabilize dunes in the San Francisco area, it has since 
spread along the entire western coast of North America, displacing native plant species and altering 
sediment dynamics (Wiedemann & Pickart 1996).

Biogenic habitats

Biogenic habitats are ubiquitous in coastal marine and estuarine systems worldwide but vary in 
extent and species composition across biogeographic regions (Figure  4). For example, at lower 
latitudes mangroves occupy the niche exploited by salt marshes at higher latitudes; warm- water 
coral reefs only occur in the shallow tropics and subtropics, whereas kelp forests and large fucoid 
beds are only present in shallow waters at higher latitudes or in upwelling regions (e.g., in Oman, 
Sheppard & Salm 1988). Biogenic habitats have the potential to provide the ‘front line’ of natural 
coastal protection and have been referred to as “biogenic coastal defences” (Mork 1996, Koch et al. 

1996 2006 2012

Figure 3 The eroding coastline at Happisburgh, Norfolk, United Kingdom. The removal of the groynes in 
1991 led to severe coastal erosion and a landward retreat of about 100 m. (Photos copyright Mike Page.)
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A

B

Salt marshes
Mangroves
Seagrass
Kelp forests

Worm reefs (e.g. Sabellaria)
Oysters
Mussels
Coral reefs

Figure 4 Global distribution of (A) vegetated coastal habitats (kelp, seagrass, mangroves) and (B) coastal 
biogenic reefs (coral, mussels, oysters, worms). (Data extracted from the Global Biodiversity Information 
Facility, http://www.gbif.org/, and United Nations Environment Programme Ocean Viewer, http://data.unep- 
wcmc.org/ datasets/6. Maps created by Shaun Lewin, Plymouth University.)
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2009, Arkema et al. 2013, Bouma et al. 2014). Here, we focus on their roles in wave attenuation and 
coastal protection.

The value of biogenic coastal defences is dependent on the timing of natural processes such as 
storms, hurricanes and typhoons, and tsunamis (Koch et al. 2009). Protection will be diminished 
if storms occur when biomass or density of the biogenic structure is low. This may be of particular 
importance in temperate regions, where seasonal patterns of peak biomass (usually late summer) 
may be mismatched with the seasonal occurrence of storms in autumn and winter (Koch et al. 
2009). In contrast, the biomass of biotic structures in tropical areas tends to be less variable over 
time (Tam et al. 1995), and the coastal protection service they provide may be more predictable 
throughout the year.

Kelp forests and large fucoid beds

Kelps (e.g., Macrocystis, Nereocystis, Laminaria spp.) and fucoids (e.g., Fucus, Durvillaea, 
Ascophyllum spp.) are large, brown seaweeds that typically grow on subtidal and intertidal rocky 
reefs in temperate and polar waters (Figure 4A; Steneck et al. 2002). In comparison to other bio-
genic coastal defences, little is known about the role of kelps in coastal protection (Smale et al. 
2013). They protect rocky coastlines and adjacent sedimentary habitats by attenuating wave energy, 
buffering against storm surges, and preventing the movement of sediments from adjacent beaches 
(Mork 1996, Rosman et al. 2007). The degree of wave attenuation is strongly influenced by the 
architecture of the dominant kelp species (i.e., prostate, stipitate, canopy) and the community struc-
ture of the understorey canopy (Eckman et al. 1989, Türker et al. 2006, Gaylord et al. 2007) and, as 
such, will vary between biogeographic regions (Smale et al. 2013). Far less attention has been given 
to the role of fucoids in coastal protection on rocky reefs, although Tyrrell et al. (2015) described 
how fucoid algae in salt marshes can attenuate wave energy and play a significant role in sediment 
deposition and accretion.

Seagrass beds

Seagrasses occur in shallow sedimentary habitats and have a wide geographic distribution (Figure 4A; 
Short et al. 2007). They are often found adjacent to salt marshes in temperate regions (e.g., Irlandi 
& Crawford 1997). Seagrasses can alter the environment by stabilizing sediments, reducing cur-
rent velocity, and dissipating wave energy (Koch 2001, Christianen et al. 2013, Maza et al. 2013). 
Ondiviela et al. (2014) reviewed the role of seagrasses as coastal protection and concluded that the 
larger, longer- living, and slower- growing species (e.g., Thalassia testudinum, Posidonia oceanica, 
Zostera marina) provided the most effective protection, although short- leaved, low- biomass, and 
heavily grazed seagrasses can also significantly reduce coastal erosion (Christianen et al. 2013). 
The relative importance of seagrasses for wave attenuation is strongly related to both physical set-
ting (bathymetry, hydrodynamics, sediment regime) and biological factors such as standing bio-
mass, shoot density, and leaf length (Fonseca & Cahalan 1992, Bouma et al. 2010, Stratigaki et al. 
2011, Paul et al. 2012). Despite seagrasses clearly providing some coastal protection, this service 
is perhaps limited compared to salt marshes (Bouma et al., 2005), on one hand due to their natural 
fragility and flexibility (La Nafie et al. 2012, Paul et al. 2012) and on the other due to their place-
ment, which tends to be in the shallow subtidal zone with therefore less potential to attenuate wave 
energy (Paul et al. 2012).

Mangroves

Mangroves typically occur in tropical regions, but they also occur on the temperate northern coast 
of New Zealand and southern coast of Australia (Figure 4A), where they occupy sedimentary estua-
rine and low- energy marine environments (Spalding 2010). It has long been known that the complex 
architecture provided by mangroves is important for buffering wave energy (Othman 1994, Mazda 
et al. 2006, Aziz et al. 2013). The importance of mangroves as coastal protection received much 



201

OCEAN SPRAWL

attention following the Asian tsunami in 2004 (Dahdouh- Guebas et al. 2005, Danielsen et al. 2005), 
but subsequent studies have argued that their protection against extreme events such as tsunamis 
may in fact be limited (Alongi 2008, Cochard et al. 2008). More research is required on the role of 
mangroves in protection from tsunamis, cyclones, and hurricanes.

Salt marshes

Salt marshes occupy the coastal fringes in temperate regions (Figure 4A; Deegan et al. 2012), where 
they form a natural physical barrier to tidal and storm activity (Koch et  al. 2009, Gedan et  al. 
2011, Temmerman et al. 2013). Bouma et al. (2014) discussed how the degree of wave attenua-
tion varies in relation to a combination of physical (e.g., hydrodynamics and sediment dynamics; 
Möller et al. 2011, Shepard et al. 2011, Ysebaert et al. 2011, Yang et al. 2012) and biological (e.g., 
vegetation biomass and stiffness; Bouma et al. 2005, 2010) factors. Less is known about the role of 
salt marshes in response to extreme weather events and rising sea levels. Recent studies of storm 
surges found that the presence of saltmarsh vegetation was linked to considerably enhanced wave 
attenuation even when water level and wave height were greatest (Möller et al. 2014). Thus, salt 
marshes are a valuable component for sediment stabilization and coastal protection under predicted 
global change scenarios.

The erosion of salt marsh and ‘coastal squeeze’ are common in estuarine regions such as the 
south- eastern coast of England (Cooper et al. 2001, Foster et al. 2013). Here, management practices 
include managed coastal retreat and realignment, by which traditional hard coastal defences are 
moved inland to restore intertidal wetlands and create natural defences in the form of mudflat- 
saltmarsh systems. Restoring salt marshes through coastal realignment (Mossman et al. 2012) in 
Essex, England, not only provided enhanced tidal defences but also protected biodiversity and its 
associated ecosystem services.

Saltmarsh pioneers in the genus Spartina were extensively transplanted in the nineteenth and 
early twentieth century to stabilize coastlines worldwide (Strong & Ayres 2009, Pratolongo 2013). 
This had many unintended consequences, including hybridization with local species to produce 
Spartina anglica (Ainouche et  al. 2004, Salmon et  al. 2005) that outcompeted native species 
(Callaway and Josselyn 1992, Gedan et al. 2009, Silliman et al. 2009). In many places there are now 
major attempts to control proliferation of Spartina due to the loss of mudflats and valuable bird- 
feeding grounds (Wang et al. 2006, An et al. 2007, Patten & O’Casey 2007). Thus care is needed in 
assessing potential trade- offs between ecosystem services and desired end points if salt marshes are 
being deliberately enhanced for coastal defence.

Linkages between habitats and systems

There is increasing recognition of the importance of facilitative interactions and the role of organ-
ismal ecosystem engineering in establishing the structure of communities (e.g., Altieri et al. 2010, 
Passarelli et al. 2014). By combining field measurements of wave attenuation in salt marshes, oyster 
reefs, and mussel beds with modelled data from seagrasses, van Belzen et al. (unpublished) investi-
gated the up- shore facilitation between different coastal habitats under different tidal regimes and 
landscapes. They found that in small tidal ranges, habitats reside within each other’s wake zone, 
creating an up- shore facilitative cascade across the tidal gradient and maximal wave dissipation 
in the most ‘connected’ systems. However, continuity among habitats can diminish at greater tidal 
ranges, jeopardizing ecosystem stability with potential consequences for coastal safety.

Dislodged macroalgae and other plants that have been exported from rocky shores and seagrass 
beds following disturbance are a distinctive feature of many depositing shores, and this export has 
been shown to indirectly contribute to coastal stabilization by providing nutrients to the flora of 
beach and dune systems (Colombini et al. 2003, Orr et al. 2005, Williams & Feagin 2010, Doody 
2013). Similarly, human- mediated removal of macroalgal debris and its use as fertilizer has led to 
soil formation and stabilization of dune systems, creating the characteristic ‘machair’ systems of 
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the western coast of Ireland and the Scottish Outer Hebrides (Owen et al. 2001, Kent et al. 2003, 
Doody 2013). Conversely, there is also some evidence that deposited seaweed can have an impact on 
salt marshes, leading to mortality of some species (Davies et al. 2011, 2012), perhaps compromising 
their role in attenuation of waves and stabilization of sediments.

Biogenic reefs

In comparison to vegetated habitats, far less is known about the role of biogenic reefs in coastal 
protection (Bouma et al. 2014). Biogenic reefs in tropical regions are typically formed by the cal-
cium carbonate secreted by reef- building corals and algae and are found in shallow- water settings 
(Figure 4B; Huang & Roy 2015). Wave attenuation by coral reefs is a function of the water depth 
above the reef, but these relationships are non- linear (Kench & Brander 2006, Barbier et al. 2008). 
In a global meta- analysis, Ferrario et al. (2014) found that coral reefs provide substantial protection 
against natural hazards by reducing wave energy by an average of 97%, and that reef crests alone 
dissipate 86% of this energy.

Biogenic reefs in temperate regions are created by organisms such as oysters, mussels, or honey-
comb worms (e.g., Gunnarea spp., Phragmatopoma spp., Sabellaria spp.) (Figure 4B; Barbier et al. 
2008, Dubois et al. 2009). While it is widely accepted that coral and oyster reefs provide an impor-
tant coastal protection service (Piazza et al. 2005, Beck et al. 2009, Scyphers et al. 2011), far less is 
known about the role of mussel reefs (but see Borsje et al. 2011, Donker et al. 2013). In a study com-
paring the relative importance of the two habitats in the Netherlands, Borsje et al. (2011) concluded 
that oyster beds were more effective in wave attenuation compared to mussel beds. Interestingly, the 
oyster investigated was Crassostrea gigas—a species not native to the region. This is an intrigu-
ing example of an ecosystem service delivered by a non- indigenous species. Honeycomb worms 
can form sizable structures and cover large areas in some parts of their range (e.g., Sabellaria 
alveolata in north- western Europe; Dubois et al. 2002, 2006, Desroy et al. 2011, Firth et al. 2015) 
and may play a significant role in wave attenuation and coastal protection (Naylor & Viles 2000). 
However, no empirical data currently exist on this potentially important ecosystem service (Bouma 
et al. 2014).

Global loss of natural coastal defences

Degradation and loss has been observed for all habitats with the potential to act as biogenic coastal 
defences. For example, 85% of oyster reefs (Beck et al. 2011), 65% of seagrasses (Lotze et al. 2006), 
50% of salt marshes (Gedan et al. 2009), 35% of mangroves (Valiela et al. 2001), and 30% of coral 
reefs (Valiela et al. 2001) have been lost globally or are in a degraded state, and the rate of loss is 
expected to increase in the future (Lotze et al. 2006, Waycott et al. 2009, Barbier et al. 2011). There 
are currently no reports in the literature of global loss or decline for kelp forests, other macroalgal 
beds, mussel beds, or worm reefs, but there is considerable evidence for regional losses. Examples 
include kelp forests in the United States (Byrnes et al. 2011), canopy algae in Australia (Connell 
& Irving 2008, Wernberg et al. 2011) and the Mediterranean (Bulleri et al. 2010, Perkol- Finkel & 
Airoldi 2010), and mussel reefs in Northern Ireland (Strain et al. 2012, Cook et al. 2013). The drivers 
of this change are complex, but burgeoning human populations, coastal development, and climate 
change play a significant role (Creel 2003).

‘Ocean sprawl’: the proliferation of artificial 
structures in offshore and coastal waters

Ocean sprawl implies the proliferation of coastal and offshore artificial structures (Thompson et al. 
2002, Airoldi et al. 2005a, Villareal et al. 2007, Inger et al. 2009, Firth & Hawkins 2011). These 
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structures are built for a variety of functions, including coastal defence, oil and gas extraction, aqua-
culture, and more recently, marine renewable energy (Figure 5; Bacchiocchi & Airoldi 2003, Witt 
et al. 2012). The impacts of these structures on the environment have been the subject of several 
reviews (Airoldi & Beck 2007, Govaerts & Lauwaert 2009, Bulleri & Chapman 2010, Dugan et al. 
2011, Bishop et al. in press, Heery et al. in press), and we do not discuss these impacts here. Instead 
we review the variety and scope of these structures to provide habitat for benthic organisms.

A B

C

E

D

F

Figure 5 Examples of ocean sprawl—the proliferation of artificial structures in the sea. (A) Oil and gas 
platforms: Seaventure, Borneo, Malaysia. (B) Offshore renewable energy installations: Liverpool Bay, United 
Kingdom. (C) Shellfish aquaculture: oyster trestles, Galway Bay, Ireland. (D) Ports, harbours, and marinas: 
Essaouira, Morocco. (E) Artificial reefs: HMAS Swan, Dunsborough, Australia. (F) Coastal defence struc-
tures: Robben Island, South Africa. Note the seals hauled out on the dolos units.
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Artificial structures associated with energy production

The generation of energy from renewable resources continues to move up the political agenda 
for many countries due to the link between non- renewable fossil fuels and global climate change 
(Dincer 1999, Chow et al. 2003). Countries with coastlines have plentiful and predictable renewable 
energy resources in the form of offshore wind, tides, waves, and currents. Considerable attention is 
therefore being directed towards coastal waters as a source of offshore renewable energy (Figure 6; 
Pelc & Fujita 2002, Gill 2005).

Marine renewable energy installations

The location of wind turbines offshore on pylons was first suggested in the 1930s, but it was not 
until 1991 that the first offshore turbines (‘World Wind’) were installed 250 m off the coast of 
Sweden (Nikolaos 2004, Bilgili et al. 2011). After more than 30 years of development, Europe has 
become the front runner in the commercialization and utilization of offshore wind power technol-
ogy (Figures 5B, 6B), with 74 installations (2488 turbines) spanning 11 countries and comprising 
more than 91% of all global offshore wind power (Global Wind Energy Council [GWEC] 2014). 
Until recently, this was the only region in the world with operational capacity. While governments 
outside Europe have been slower to use this technology, many countries, including China, Japan, 
India, South Korea, Taiwan, and the United States, have begun to set ambitious targets (Figures 6C, 
6D; Lewis 2011, GWEC 2014, Yang et al. 2015).

Large amounts of energy can also be harnessed in coastal areas using tide or wave action. 
Traditionally, tidal projects have involved extensive barrage systems, which are used to block estu-
aries. Their energy- harnessing turbines are driven by tidal flow and are particularly effective in 
areas of large tidal range (e.g., Brittany, France, Bristol Channel, UK and the Bay of Fundy, Canada) 
(Pelc & Fujita 2002). In the United Kingdom, the large- scale Tidal Lagoon Swansea Bay represents 
a large- scale project that, once built, will combine energy generation technology and green engi-
neering with recreation and amenity facilities. Wave energy is considered to be one of the most 
promising renewable technologies (Pelc & Fujita 2002), with pilot projects including Limpet 500 off 
Islay, Scotland (Westwood 2004), and Wave Hub, Cornwall, England (Witt et al. 2012).

Oil and gas platforms

Despite the shift towards offshore renewable energy solutions, there are still thousands of offshore 
oil and gas platforms operating worldwide (Figure 5A). These are among the largest artificial struc-
tures in the marine environment (Patin 1999, Hamzah 2003). Globally, there are more than 7500 
offshore platforms (Parente et al. 2006) located on the continental shelves of 53 countries, pre-
dominantly in the Gulf of Mexico (4500 current installations), with 950 in East Asia, 550 in West 
Africa, and 490 in the North Atlantic and North Sea (reviewed in Doyle & Havlick 2009). A 40 to 
60 m platform has approximately 8–12 km2 of surface area that can be colonized by fouling com-
munities (Bull 1989) and can serve as habitat for 10,000–20,000 fish (Stanley & Wilson 1997). 
Offshore platforms have a production lifespan of about 17.5 years (Pulsipher et al. 2001) before they 
are decommissioned and removed or converted to artificial reefs, for example, through the Rigs- to- 
Reefs (RTR) programme (Kaiser & Pulsipher 2005).

Artificial structures associated with food production

Artificial reefs

An artificial reef is a submerged structure intentionally placed on the seabed that mimics charac-
teristics of natural reefs (Carr & Hixon 1997, Jensen 1998). Uses of artificial reefs include habitat 
rehabilitation (Baine 2001) and fisheries enhancement (Collins et al. 1994, Pickering & Whitmarsh 
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Figure 6 (A) Global distribution of operational and planned offshore wind farms. Note that the major hubs 
are located in (B) north- western Europe (2480 existing and 812 planned turbines), (C) East Asia (27 existing 
and 295 planned turbines), and (D) the north- eastern United States (5 turbines under construction, no data on 
numbers planned). (Data obtained from 4C Offshore; maps created by Danielle Bridger, Plymouth University.)
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1997, Jensen et al. 2000), but they can also be used to enhance recreation and tourism, for example, 
angling, surfing, and recreational diving (Figure 5E; Stolk et al. 2007). Increasingly, artificial reefs 
are being constructed with a primary function of wave energy dissipation and a secondary function 
of habitat rehabilitation (Hirose et al. 2002, Scyphers et al. 2015).

Structures associated with finfish and shellfish aquaculture

There is increasing concern about the impacts of the placement of semi- permanent fishing equip-
ment (Nugues et al. 1996). One example of this is crab- tiling: Bait collectors lay hard structures (e.g., 
car tyres and roof tiles) on estuarine mudflats and sand flats to provide shelter for crabs (Sheehan 
et  al. 2010a). While the structures may have a positive effect on crabs on a small spatial scale 
(Sheehan et al. 2008), the practice has wider negative impacts on infaunal and bird communities 
(Johnson et al. 2007, Sheehan et al. 2010b, 2012).

At intermediate spatial scales, lobster shelters (‘casitas’; Gutzler et al. 2015), oyster trestles 
(Figure 5C), and crab and lobster pots are contributing to the proliferation of hard structures in 
the sea and can attract considerable coverage of ephemeral fouling organisms such as barnacles 
and tube- forming polychaetes (Southward 1995). On a larger scale, the structures associated with 
finfish aquaculture can add a substantial amount of artificial material and, given the location of this 
industry, can lead to hardening in both nearshore and offshore waters. While the impact of these 
structures on the receiving environment has received much attention (e.g., Ruiz et al. 2001, Callier 
et al. 2013), relatively little is known about the epibenthic communities that foul these structures 
or their role in facilitating the spread of both native and non- indigenous species (but see Naylor 
et al. 2001).

Artificial structures associated with urbanization and climate change

Ports, harbours, and marinas

Ports and harbours (hereafter ports) are required for the transport of people and cargo between 
countries. World Port Source (http://www.worldportsource.com) lists over 4700 ports within 295 
countries globally. The five countries with the highest number of ports are the United States (532), 
United Kingdom (389), Italy (311), Japan (292), and Canada (239). A further six countries have over 
100 ports: China, Denmark, France, Indonesia, Australia, and Greece. The construction of ports 
generally leads to land reclamation and the linearization of the coastline due to the construction 
of straight- sided docks, piers, and mooring seawalls (Figure 7). In addition to the creation of thou-
sands of kilometres of artificial habitat, marine shipping activities connecting these ports on local, 
regional, and global scales are responsible for the spread of a wide range of invasive species (Floerl 
& Inglis 2005, Floerl et al. 2009), a process recognized as a key anthropogenic driver of global 
biotic homogenization.

As the size of vessels has increased, there has been a switch from traditional hold storage of 
cargo to containers, leading to many traditional port installations becoming redundant (Russell 
et al. 1983, Allen et al. 1992, 1995, Conlan et al. 1992, Hawkins et al. 1992a,b). As ports became 
increasingly obsolete from the 1970s onward, many were modified for alternative uses, including 
fish farms, housing, and tourist attractions (Russell et al. 1983, Hawkins et al. 1992a).

Artificial coastal defence structures

Coastlines are increasingly defended by engineered ‘armouring’ structures (Airoldi et al. 2005a, 
Charlier et al. 2005, Moschella et al. 2005, Chapman & Underwood 2011), including shore- parallel 
(e.g., seawalls, bulkheads, revetments) and shore- perpendicular structures (e.g., groynes, jetties, and 
breakwaters; Figure 5F) (Chapman & Bulleri 2003, Dugan et al. 2011). The primary goal of hard- 
armoured coastal defences is to protect property, infrastructure, and other landward assets from 
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flooding and erosion (Salman et al. 2004, Charlier et al. 2005). These structures can be very large 
(e.g., La Spezia Breakwater, Italy, and Plymouth Breakwater, England) or can be placed in close 
proximity to one another, thus creating a network of artificial structures that can span extensive 
stretches of coastline (e.g., Cesenatico, Italy; Airoldi et al. 2005a, Dafforn et al. 2015a).

In some regions coastlines have become extensively artificial (Stancheva et al. 2011). For exam-
ple, coastal armouring is reported to cover more than 89% of the natural shoreline in Monaco 
(http://www.medam.org); 85% of Belgium (Gregory 2010); 63% of Singapore (Lai et  al. 2015); 
and 60% of the Netherlands and China (Eurosion 2004, Guan 2013). There is increasing concern 
that artificial structures are acting as ‘stepping stones’ between regions that facilitate the spread of 
invasive species (e.g., Airoldi et al. 2015), although the extent to which they are acting in this man-
ner remains poorly understood and an important knowledge gap within the field of coastal ecology.

Artificial islands

In some places, the construction of artificial islands and associated coastal armouring has dramati-
cally increased the linear extent of shoreline. An extreme example of this can be seen in Dubai 
(Figure 8A), where initially there were plans to increase the 45 km coastline to more than 1500 km 
(>3300%) through the construction of The Palms, The World, The Universe, and Waterfront City 
developments, amongst others (Velegrinis & Katodrytis 2015). Many of the plans were never real-
ized, but the construction of The Palms alone (Figure 8A) has increased the linear extent of the 
shoreline by 130% (Burt et al. 2009, 2013). Doha and Bahrain have also constructed elaborate arti-
ficial islands; the Pearl- Qatar in Doha spans nearly 4 km2 (Figure 8B), and the Durrat Al Bahrain 
is made up of an array of crescent- shaped islands and covers approximately 5 km2 (Velegrinis & 
Katodrytis 2015). The construction of artificial islands to support infrastructure and people is not 
a new concept, but there is increasing concern about the environmental and political implications 
of these developments. At the time of writing, there was much media interest in construction of 
artificial islands by China in the Spratly Archipelago—a disputed group of more than 750 reefs, 

Singapore

Port of Singapore

0 2.5 5.0 km

Figure 7 The Port of Singapore (inset), the second- largest port in the world (Esri 2013), which handled 
32.2 million TEU (20-foot equivalent units) in 2013 (http://www.worldshipping.org). Note the linearization of 
the coastline. (Images from Google Earth.)
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atolls, cays, and islands that straddles the maritime borders of China, Brunei, Malaysia, Taiwan, 
Philippines, and Vietnam—in the South China Sea. Other large- scale contentious projects were 
also in the planning for Penang and Johor, Malaysia, and Copenhagen, Denmark.

Artificial structures as habitats: the diversity 
deficit and non- indigenous and pest species

The diversity deficit

Artificial habitats have previously been considered as surrogates (albeit simplified) for natural habi-
tats (Hawkins et al. 1983, Thompson et al. 2002, Bulleri & Chapman 2004), although the recent 
surge of comparative studies repeatedly showed distinct differences in community structure and 
functioning between artificial structures and natural rocky reefs. These differences can be per-
ceived as either positive or negative. On one hand, artificial structures have been reported to support 
increased diversity and abundance (Chou & Lim 1986, Connell & Glasby 1999, Wehkamp & Fischer 
2013, Munsch et al. 2014), provide habitat for unique taxa that are not found on natural rocky reefs 
(Chapman 2003, Bulleri & Chapman 2004, Andersson et al. 2009), or support larger adult individu-
als (Kirk et al. 2007). On the other hand, artificial structures are more commonly considered to 
support a comparatively lower diversity (Moschella et al. 2005, Wilhelmsson & Malm 2008, Pister 
2009, Firth et al. 2013b, Aguilera et al. 2014, Munsch et al. 2014), particularly of rare and mobile 
species (Chapman 2003, 2006, Pister 2009), than adjacent natural hard substrata, resulting in a 
more homogeneous landscape (Lam et al. 2009). Associated organisms have also been shown to 
have lower genetic diversity (Fauvelot et al. 2009, Sammarco et al. 2012) or reduced reproductive 
output (Moreira 2006) or to be smaller in individual size (Moreira 2006, Diaz- Agras et al. 2010).

The influence of habitat complexity

In natural environments, microhabitats (pits, crevices, and rock pools) are widely known to be impor-
tant for biodiversity through the provision of refuges from abiotic and biotic stress (Fairweather 
1988, Metaxas & Scheibling 1993, Johnson et al. 1998, Firth et al. 2013b). The diversity deficit 
in artificial habitats may largely be explained by lower habitat complexity compared with natural 
habitats (e.g., Chapman 2003, Moschella et al. 2005, Loke et al. 2015). For example, engineered 

A B

Figure 8 Examples of extreme cases of coastal development: (A) The Palm Islands and The World, Dubai; 
(B) the Pearl- Qatar, Doha. (Images from Google Earth.)
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materials (e.g., quarried granite, concrete, steel) often have smoother surface texture than rocky- reef 
substrata, and structures tend to lack important microhabitats, such as rock pools, pits, and crevices.

Construction material and habitat complexity are repeatedly shown to be important determi-
nants of community composition on artificial structures (e.g., Potts & Hulbert 1995, Andersson 
et al. 2009, Bracewell et al. 2013, Coombes et al. 2015). For example, Connell & Glasby (1999) 
found that urban structures in Sydney Harbour made from a range of materials supported very 
different epibiotic assemblages both between structural types and in comparison to natural reefs. 
Rilov & Benayahu (1998) found that fish abundance and diversity around oil platform pillars were 
correlated with habitat complexity. Hunter & Sayer (2009) reported up to three times higher abun-
dances of fish and crustacean species using complex artificial reef modules, compared with simple 
modules and natural reefs.

The influence of surface orientation and inclination

The proliferation of artificial structures is leading to an increase in the proportion of steep and 
vertical- facing artificial substrata (Andersson et  al. 2009, Chapman & Underwood 2011, Firth 
et  al. 2016a), and it is considered that the relative importance of orientation (i.e., north- south 
directionality) will increase with increasing substratum inclination (Firth et  al. 2016a). Surface 
orientation, inclination, and shading may influence biodiversity on vertical or floating structures 
such as seawalls, pontoons, and pilings (Connell 1999, Glasby 1999, Knott et al. 2004, Perkol- Finkel 
et al. 2006, Langhamer et al. 2009, Chapman & Underwood 2011, Firth et al. 2016a), leading to dif-
ferent emergent communities compared with natural reef habitats. On intertidal structures, a steeper 
shore profile can also lead to a reduction in habitat extent compared to natural shores, which may 
limit species diversity and abundance as a simple product of species- area relationships (Hawkins 
& Hartnoll 1980).

The influence of wave exposure

Pister (2009) suggested that wave exposure might also contribute to differences in diversity between 
intertidal artificial and natural habitats in California (see also Davis et al. 2002). Indeed, where 
structures are introduced to high- energy environments (as coastal defences often are), conditions 
may favour colonization by certain species (e.g., filter- feeders and limpets: Moschella et al. 2005, 
Jonsson et al. 2006, Vaselli et al. 2008) but hinder settlement and post- settlement survival of oth-
ers (e.g., some macroalgae: Jonsson et al. 2006; see also Mullineaux & Garland 1993). Structures 
with both exposed and leeward sides may present ‘unnatural’ sheltered habitat along exposed open 
coasts, which may favour algal- dominated communities (Southward & Orton 1954, Jenkins et al. 
1999, Jonsson et  al. 2006, Burt et  al. 2013). Further, high- disturbance regimes caused by wave 
energy and sand scouring around structures (Moschella et al. 2005, Burcharth et al. 2007, Firth 
et al. 2014b) may prevent communities from developing beyond early successional stages. Artificial 
structures often support assemblages more typical of rocky reefs jutting out from high- energy sandy 
beaches (Bally et al. 1984) that tend to be dominated by ephemeral early successional species.

The influence of structure age

Finally, the age of structures at the time of assessment may be an important determinant of how 
similar colonizing communities are to natural mature reef communities. Age has been shown to 
explain considerable variation in community structure in artificial habitats (Knott et  al. 2004, 
Sammarco et al. 2004, Perkol- Finkel et al. 2005, Pinn et al. 2005b, Burt et al. 2011, but see Wendt 
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et al. 1989, Langhamer et al. 2009, Dong et al. 2016). Sheehan et al. (2013) recently highlighted 
the importance of appropriate monitoring of artificial structures over long timescales to effectively 
assess their ecological impact. At the Wave Hub site in the south of England, they observed recovery 
of opportunistic and fast- growing reef species on the cable rock armouring route within 2 years of 
construction. Slower- growing species were, however, still largely absent.

Non- indigenous and pest species

Non- indigenous species appear more prevalent on artificial structures than on comparable adjacent 
natural habitats (see Mineur et al. 2012 for review). The introduction of novel artificial habitats in the 
marine environment may enable opportunistic and weedy species to take advantage of the unexploited 
bare substrata, particularly with increased surface inclination and shading (Chou 2006, Glasby et al. 
2007, Dafforn et al. 2009, 2012, Marzinelli et al. 2009, 2011, Forrest et al. 2013a,b, Simkanin et al. 2013).

In the Mediterranean, structures introducing ‘unnatural’ sheltered rocky habitat on the landward 
side of coastal defences along exposed open coasts can provide opportunities for non- indigenous 
algal species to colonize (e.g., Codium fragile tomentosoides and Caulerpa racemosa; Bulleri & 
Airoldi 2005, Vaselli et al. 2008, Airoldi & Bulleri 2011, Airoldi et al. 2015, but see Pister 2009), 
and this can be exacerbated by disturbance events such as structural maintenance or recreation 
(Airoldi et al. 2005b, Bulleri & Airoldi 2005, Airoldi & Bulleri 2011; see also Bracewell et al. 2013, 
Salomidi et al. 2013).

In Australia, the non- indigenous mussel Mytilus galloprovincialis planulatus frequently colo-
nizes vertical seawalls in Sydney Harbour, where it can often occupy nearly all of the available space, 
overgrowing native assemblages (Chapman et al. 2005, Chapman & Underwood 2011). In Europe, 
the invasive Australasian barnacle Austrominius (= Elminius) modestus colonizes structures, par-
ticularly on coastlines that are more sheltered and those in proximity to estuaries (Bracewell et al. 
2012, 2013).

Structures in close proximity to transport infrastructure, such as ports and harbours, are particu-
larly susceptible to colonization by non- indigenous species, especially encrusting invertebrates and 
ascidians (Lambert & Lambert 2003, Glasby et al. 2007, Dafforn et al. 2009, Griffith et al. 2009, Firth 
et al. 2011, Bishop et al. 2015). Non- indigenous species have also been recorded in high abundances 
on offshore structures such as oil and gas platforms (Fenner and Banks 2004, Sammarco et al. 2004, 
2010, Page et al. 2006, Yeo et al. 2010) and wind power turbines (Wilhelmsson & Malm 2008).

Artificial structures associated with aquaculture (e.g., oyster trestles, mussel ropes) can pro-
vide substratum for the attachment of non- indigenous species (e.g., Minchin 2007, Rius et  al. 
2011, Morgan & Richardson 2012, Nunn 2014, Pochon et al. 2015). Negative effects include direct 
impacts on cultured species (e.g., smothering, competition for space and food); deterioration of farm 
infrastructure (immersed structures such as cages, netting, and pontoons); and effects on natural 
ecosystem functioning of adjacent areas (Fitridge et al. 2012, Fletcher et al. 2013).

Disentangling ‘natural’ spread and facilitation 
by artificial structures

It has been suggested that artificial structures may provide opportunities for assisted migration of 
species at risk from climate change (Hoegh- Guldberg et al. 2008). The distribution of species is 
continually changing as fluctuations and trends in sea and air temperatures alter the suitability of 
a habitat (Parmesan & Yohe 2003, Harley et al. 2006, Sunday et al. 2012, Bates et al. 2014, 2015). 
The velocity of climate change (sensu Loarie et al. 2009) is dependent on local or regional features 
of the environment, some of which can act as barriers to species movement (Damschen et al. 2006, 
Burrows et al. 2011, Poloczanska et al. 2013), as well as changes in the physiological performance 
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of species (and in particular their free- living early life- history stages) as their environment changes 
(sensu proximate responses; Harley et al. 2006).

There is increasing evidence that artificial structures are facilitating the spread of species by 
allowing these barriers to be overcome (Herbert et al. 2003, Sammarco et al. 2012), increasing the 
rate of spread of some species (Hawkins et al. 2008, 2009) and leading to biotic homogenization. 
While it is becoming increasingly evident that artificial structures provide novel habitat for species 
(especially non- indigenous species; see Mineur et al. 2012 for review), disentangling ‘natural’ changes 
in distribution patterns associated with climate change from those associated with the proliferation of 
artificial structures is challenging. Next, we attempt to disentangle changes in natural spread associ-
ated with climate change from those distributional shifts facilitated by artificial structures.

It is important to point out that the very definitions of native and non- indigenous species will 
be challenged by both climate change and ocean sprawl. Hellmann et al. (2008) noted that taxa that 
were previously considered ‘invasive’ might diminish in impact under climate change; conversely, 
previously native species may become ‘invasive’. The geographic distributions of many native spe-
cies will shift, moving into areas where they were previously absent. In the examples that follow, we 
assign native or non- indigenous status to the species, based on that identified by the relevant authors. 
Care must be taken, and we advise only using the term non- indigenous species for those taxa whose 
origin is another biogeographic province. Thus a species whose range is moving polewards is indig-
enous to that region—and might well have been present in that region before, during previous warm 
interglacial periods. For example, many species have shown polewards spread from refugia follow-
ing the last glacial maximum (Maggs et al. 2008, Searle et al. 2009, McDevitt et al. 2010).

Range changes of non- indigenous species 
associated with artificial structures

Artificial structures have been widely reported to facilitate the spread of non- indigenous species in 
the marine environment (Tyrrell & Byers 2007, Ruiz et al. 2009, Sheehy & Vik 2010, Mineur et al. 
2012, Airoldi et al. 2015). For example, in South Africa, the number of reported non- indigenous 
species has risen dramatically in recent years (see Griffiths et al. 1992, Mead et al. 2011 for reviews). 
Small harbours with yachts commonly support more non- indigenous fouling species than other har-
bours (Peters et al. 2014). In a study encompassing a range of biogeographic provinces, Rius et al. 
(2014) found that increases and expansions of non- indigenous species distributions were uncorre-
lated with levels of boat traffic but concurrent with increases in sea- surface temperature (SST), sug-
gesting that climate change fostered the spread and abundance of non- indigenous tunicates across 
multiple spatial scales.

In the United States, the mussel Perna viridis is a recent invader to the south- eastern states, 
where it can be found overgrowing the native oyster Crassostrea virginica (Baker et al. 2007) or 
attached to any kind of artificial hard structure available (pier pilings, pontoons, sea walls). This 
species is susceptible to winter mortality events linked to extremely cold air temperatures (Firth 
et al. 2011, Urian et al. 2011). The invasive range of Perna viridis is spreading eastward along the 
Florida Panhandle and northward towards South Carolina (Benson 2010, Crickenberger & Moran 
2013, Spinuzzi et al. 2013). This region of the United States is characterized by sedimentary habitats 
and the spread of this species has been facilitated by artificial structures. In the case of P. viridis, it 
is considered that cold winters are limiting the northward range expansion in the short term, but it is 
expected that long- term warming will ultimately facilitate further spread, providing hard substrata 
are available (i.e., artificial structures; Firth et al. 2011).

In addition to non- indigenous species, artificial structures have been implicated in the increase 
and spread of pest and harmful species. Jellyfish blooms have been reported to be increasing in 
intensity and frequency worldwide (Condon et al. 2013, Graham et al. 2014, Pitt & Lucas 2014) 
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and have been linked to growth in marine shipping and aquaculture and the proliferation of arti-
ficial structures providing habitat for the polyps (Lo et al. 2008, Ishii & Katsukoshi 2010, Duarte 
et al. 2012). In addition, the cold- water toxic dinoflagellate Alexandrium catenella exhibited mul-
tiple blooms along the Spanish Mediterranean coastline in the 1990s (Vila et al. 2001); this expan-
sion was attributed to newly constructed harbours. Similarly, oil platforms in the Gulf of Mexico 
were considered responsible for the spread of cigatuera (human disease acquired by consuming 
finfish containing ciguatoxins) due to the creation of new suitable habitat for the dinoflagellate 
Gambierdiscus toxicus—the source of the ciguatoxins (Villareal et al. 2007).

Range changes of non- indigenous species associated with climate change

It has long been claimed that global climate change is linked to the increasing success of non- 
indigenous species (Dukes & Mooney 1999, Stachowicz et al. 2002a, Sorte et al. 2010), with associ-
ated negative impacts on native biodiversity (Vitousek et al. 1997, Sala et al. 2000; see review by 
Occhipinti- Ambrogi 2007). A global meta- analysis did not find a global increase in non-indigenous 
species distributions following climate and land use changes (Bellard et al. 2013), but as this study 
combined both climate and land use changes for marine, aquatic, and terrestrial taxa, it is difficult 
to disentangle any specific patterns for individual groups (see Lyons et al. 2015).

Climate- driven changes may affect both local dispersal mechanisms, due to the alteration of 
current patterns, and competitive interactions between non- indigenous species and native species, 
due to the onset of new thermal optima. The effects of warming climate are primarily a cause 
for physiological stress, which acts more strongly on species already near their tolerance limit 
(Laubier 2001). Extreme climatic events such as heatwaves and cold waves can cause mass mortali-
ties (Cerrano et al. 2000, Garrabou et al. 2001, Petes et al. 2007, Firth & Williams 2009, Firth et al. 
2011), and storm events can cause dislodgement of benthic organisms (Denny et al. 2009, Airoldi & 
Bulleri 2011, Smale & Vance 2016), resulting in bare space for invasion by non- indigenous species 
(reviewed in Diez et al. 2012).

Range changes of native species associated with artificial structures

Climate change– induced range shifts are complicated by additional non- climatic factors operating 
at smaller spatial scales, including habitat suitability, fragmentation, hydrodynamics, and deploy-
ment of artificial structures, which provide stepping stones in regions of unsuitable natural habitat 
and can bridge barriers to natural larval dispersal (Gaylord & Gaines 2000, Burrows et al. 2008, 
Keith et al. 2011, Sammarco et al. 2012, Firth et al. 2013a, Adams et al. 2014). Here we focus on the 
potential for artificial structures to potentially interact with climate change, thus exacerbating the 
rate of spread of species by acting as stepping stones to natural dispersal.

The proliferation of oil and gas platforms in the Gulf of Mexico has been linked with the range 
extensions of coral and fish species (Rooker et  al. 1997, Sammarco et  al. 2004, Atchison et  al. 
2008). Sammarco et al. (2012) investigated the genetic connectivity of corals on oil platforms in the 
northern Gulf of Mexico. Genetic connectivity was highest on platforms near the Flower Garden 
Banks (the only natural coral reef in the area) and decreased with distance away from the banks. 
Their study also revealed two genetically distinct populations either side of the Mississippi River, 
indicating that the river represents a formidable barrier to larval dispersal. Such a decrease in gene 
flow can reduce genetic diversity by removing barriers to dispersal, with a significant negative effect 
on the potential adaptive capacity of a species and, ultimately, on evolutionary processes (Palumbi 
2003, Airoldi et al. 2005a).

The spread of non- indigenous species is becoming increasingly linked to human- mediated 
transport of organisms, in particular associated with the aquaculture industry. In contrast, there 
are few examples of native species range expansions being facilitated by the same mechanism. One 
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example is the northward extension of the native infaunal polychaete Diopatra biscayensis beyond 
a regional biogeographic boundary in northern France (Wethey et al. 2016). Woodin et al. (2014) 
suggested that the placement of aquaculture structures provided the most likely mechanism for the 
bridging of a regional biogeographic boundary. It is expected that future warming will prompt the 
further northward extension of populations (Wethey et al. 2011), illustrating how climate change 
and artificial structures can act synergistically.

The proliferation of artificial breakwaters along the Belgian coastline is thought to have facilitated 
the range extension of the Boreal periwinkle Littorina saxatilis (Johannesson & Warmoes 1990). 
Interestingly, this species lacks a planktonic larval stage, and it is assumed that the continuous nature 
of the structures, rather than larval dispersal or climate change, has facilitated this particular range 
extension. In the United Kingdom, artificial coastal defence structures are becoming increasingly 
common along the southern coast of England. Historically, Portland Bill (Dorset) and St. Catherine’s 
Point on the Isle of Wight have acted as natural barriers to dispersal (Crisp & Southward 1958), but in 
recent years, populations of many southern warm- adapted invertebrate species, such as the barnacle 
Perforatus (= Balanus) perforatus, and the gastropods Gibbula umbilicalis, Patella ulyssiponensis, 
and Melaraphe neritoides, have managed to breach these hydrographic barriers (Herbert et al. 2003, 
Mieszkowska et al. 2006, Herbert et al. 2007, Keith et al. 2011). It has been suggested that artificial 
coastal defence structures and marinas have acted as stepping stones in this instance, ‘artificially’ 
facilitating an extension in range of these species (Moschella et al. 2005, Hawkins et al. 2008).

The construction of artificial structures can also infill the gaps in species distributions by effec-
tively creating corridors to dispersal between previously unconnected areas. In North Wales, the 
reef- forming polychaete worm Sabellaria alveolata has successfully colonized a network of coastal 
defence structures, bridging a historic gap in distribution of natural rocky shore populations that 
were previously separated by about 35 km (Firth et al. 2015). The same study also documented 
population increases within the geographic region, suggesting that the species may also be benefit-
ting from recent warming. The authors highlighted the difficulties in disentangling the effects of 
the proliferation of artificial structures from climate- driven warming. This spread has most likely 
come from S. alveolata populations on the coast of north- western England, showing the importance 
of artificial structures in consolidation of fragmented populations at range edges.

Range changes of native species associated with climate change

Evidence for changes in the latitudinal location of one or more range limits has been recorded for 
many marine species across the globe since the onset of the current period of climate warming in 
the 1980s. The general pattern has been a shift in ‘leading’ range edges expanding polewards to 
higher latitudes and cooler environmental temperature regimes and a contraction of the ‘trailing’ 
low- latitude range edge away from warming temperatures. These changes have been observed in 
global meta- analyses for pelagic fish (MacNeil et al. 2010, Sunday et al. 2012), plankton (Edwards 
et al. 2014), and marine species in general (Sorte et al. 2010, Poloczanska et al. 2013).

Leading edges

The leading edge is the range limit that is expanding as new populations become established at 
locations where previously none existed. ‘Hotspots’ of range shifts include the biogeographic break 
point between Boreal and Lusitanian regions in the north- eastern Atlantic, where leading range 
edges of Lusitanian species from warmer, low- latitude origins are extending into higher latitudes 
where environmental temperatures have increased sufficiently to facilitate survival and reproduc-
tion (Burrows et al. 2011). Several range extensions have been recorded around the UK coastline, 
many reported by the Marine Biological Association of the UK MarClim project, which has docu-
mented range shifts for a wide range of rocky intertidal invertebrates and macroalgae since the mid-
1980s (summarized in Helmuth et al. 2006, Hawkins et al. 2008, 2009, Mieszkowska et al. 2014). 
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The leading range edges of Lusitanian gastropods (Patella depressa, Phorcus lineatus, and Gibbula 
umbilicalis); barnacles (Chthamalus stellatus, C. montagui, and Perforatus perforatus); and kelp 
(Laminaria ochroleuca) have shifted northward around the Atlantic coastline and north- east along 
the English Channel coastline (Herbert et al. 2003, Mieszkowska et al. 2006, 2007, Smale et al. 
2014, Yesson et al. 2015). These shifts in range have implications for biotic interactions and commu-
nity structure and functioning in the ‘receiving’ environment (e.g., Moore et al. 2007a,b, Blight & 
Thompson 2008, Poloczanska et al. 2008, Firth et al. 2009). The extent of range shifts, however, is 
species specific, with some species moving much less than others (e.g., C. montagui and C.  stellatus 
in the English Channel; Herbert et al. 2007, 2009), most likely related to the duration of their free- 
living planktonic life- history stage (Shanks 2009). As such, the potential for a species to breach a 
hydrographic barrier is very much dependent on its particular early life- history characteristics.

Outside the United Kingdom, evidence of range shifts is mostly limited to recent decades, stem-
ming from the growing awareness of the need for datasets of broad spatial and temporal coverage 
to track and predict impacts of global environmental change (Lima et al. 2006, 2007a,b, Blanchette 
et al. 2008, Broitman et al. 2008). Nevertheless, significant range shifts have been observed. For 
instance, polewards shifts at the leading edge are reported along the Pacific coastline of the United 
States for the gastropod Kelletia kelletii (Zacherl et al. 2003). In the temperate zone of Australia, 
there are many endemic species due to its geographic isolation from other climatically similar 
regions (Poore 2001), and range extensions have been reported for a number of species. For exam-
ple, along the eastern coast, the urchin Centrostephanus rodgersii (Ling 2008, Ling et al. 2009) and 
the intertidal barnacle Austromegabalanus nigrescens have shifted considerable distances from the 
Australian mainland to Tasmania due to the intensification of the East Australia Current and result-
ing warmer sea temperatures (Pitt et al. 2010, Johnson et al. 2011). There have also been marked 
increases in abundance of the warm- water spiny lobster Jasus edwardsii and the abalone Haliotis 
rubra (Poloczanska et al. 2011).

Some evidence of range shifts is, however, equivocal in part due to localized warming trends or 
challenges in predicting the direction of shifts. For example, a study of 10 intertidal species along 
the Chilean coast involving the comparison of field studies to museum records did not find pervasive 
range shifts between the mid-1900s and 2000 (Rivadeneira & Fernández 2005). This was attributed 
to differential warming trends along the Chilean coast during this time. Similarly, a study of over 
80 intertidal species in eastern Australia comparing data from the 1940s and 1950s with current 
distributions indicated little change (Poloczanska et al. 2011). In New Zealand, there have been few 
large- scale studies. However, those that exist suggest fragmented distributions and complex evolu-
tionary histories, which makes the detection and prediction of climate- driven distribution changes 
problematic (Goldstien et al. 2006, Mieszkowska & Lundquist 2011).

Trailing edges

Far less information exists on the fate of lower- latitude range limits, even for well- studied taxa. 
Where assessments have been undertaken, shifts in trailing range edges have been observed. The 
tortoiseshell limpet Testudinalia testudinalis and the brown macroalga Alaria esculenta (Simkanin 
et al. 2005, Mieszkowska et al. 2006) have shown retractions in their southern extent as well as 
decreases in abundance in Britain and Europe during the last few decades. Some retractions have 
been over significant geographic distances. For example, the trailing edge of the blue mussel 
Mytilus edulis has retreated more than 350  km to higher latitudes in response to warmer sum-
mers related to climate change in the North Carolina region of the United States over the past few 
decades (Jones et al. 2009, 2010). In contrast, there has been an extension in range of the Boreal 
barnacle Semibalanus balanoides at the Boreal/ Lusitanian breakpoint region along the Biscay coast 
of France following the extremely cold winter of 2009–2010 (Wethey et al. 2011, Jones et al. 2012). 
In marine macroalgae, fewer changes in distribution have been detected than for animals. This 
could be due in part to difficulties in monitoring subtidal species over large spatial scales. The 
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lower dispersal capability of some macroalgae may also limit the ability of species to colonize new 
habitats (Araújo et al. 2011, Moalic et al. 2011).

Evidence of range shifts can be influenced by the phylogeographic history of the species in 
question. Lima et al. (2007a) showed a prevalence of shifts in ‘warm- water’ species (leading edge) 
in comparison to ‘cold- water’ counterparts (trailing edge). In those instances, there have been 
significant alterations in the range edge. Surveys of macroalgal distributions along the coast of 
Portugal during the 1950s, 1960s (Ardre 1970, 1971), and 2000s (Lima et al. 2007a) identified about 
120 conspicuous species that have shown significant alterations in the location of a range edge. A 
greater number of warm- water species showed northward extensions in latitudinal range limits, 
with significant correlations between distributional shifts and mean annual inshore SST since 1941 
(Lemos & Pires 2004). Species classified as cold water in origin displayed both northward and 
southward shifts with no significant change when considered as a group.

Mechanisms affecting distribution patterns: climate- driven changes 
in dispersal capacity and enhanced connectivity

Climate envelope models can be used to forecast where a species could potentially survive (Berry 
et al. 2002, Araújo et al. 2004, Thuiller 2004) as temperature is often the ultimate factor setting 
species distributions (e.g., Tomanek & Somero 1999, Perry et al. 2005). Direct limitation of disper-
sal capacity by coastal topographic features such as headlands or islands, coupled with the hydro-
dynamics of nearshore waters, such as residual currents, tidal streams, and frontal systems, is often 
the proximate factor setting distributional limits (Crisp & Southward 1958, Gaylord & Gaines 2000, 
Keith et al. 2011). Interannual variability in climate conditions (e.g., extreme weather events) may 
lead to changes in dispersal or survivorship in a given year (Occhipinti- Ambrogi 2007, Cheung 
et al. 2009, Aprahamian et al. 2010, Firth et al. 2011), and species are likely to ‘track’ suitable con-
ditions for survival (Burrows et al. 2011). Depending on larval ‘fitness’ under those conditions, the 
absence of suitable habitat, which could include artificial structures, may make the distance between 
patches of suitable habitat too great for successful recruitment or establishment of a viable popula-
tion. Alternatively, their introduction could play a role in providing stepping stones for dispersal 
(Bulleri & Airoldi 2005, Glasby et al. 2007, Miller et al. 2013), leading to biotic homogenization.

Disentangling the relative importance of climate change as an ultimate driver from the proxi-
mate role of artificial structures in enabling range extensions is challenging. Many species display 
a biphasic life history, in which they utilize a free- living (planktonic) larval life- history stage as a 
means of dispersal prior to metamorphosis to an often- sessile adult form. This larval life- history 
stage can last from minutes (e.g., Thorson 1946) to days (e.g., Ryland et al. 2000), to weeks (e.g., 
Ayata et al. 2009), or to months (e.g., Shanks 2009), the duration of which—referred to as the plank-
tonic larval duration—greatly influences the dispersive capacity of a species.

Larval development can be broadly classified into one of three strategies: direct development, 
lecithotrophy, or planktotrophy, with dispersal capability being least in direct developers and great-
est in planktotrophic developers (Thorson 1950, Shanks 2009). Despite marked differences in strat-
egies, there is evidence of increased fragmentation of natural habitats and reduced connectivity 
between populations, especially for species with short planktonic durations (Hughes et al. 2005b, 
Trakhtenbrot et al. 2005). Under current climate change scenarios, connectivity is predicted to fur-
ther decrease as increased sea temperatures and ocean acidification negatively affect reproductive 
success, development, and growth (Petes et al. 2007, Lika et al. 2011).

For many species, increased temperature leads to faster rates of development of larval, juve-
nile, and adult forms (Manush et al. 2006, Aprahamian et al. 2010, Mueller et al. 2015), reduc-
ing their exposure to ocean currents for transport (Shanks 2009). A meta- analysis by O’Connor 
et al. (2007) highlighted the general reduction in development times as temperatures increase for 
a range of phyla. While useful, this analysis was perhaps overly simplistic, in that it inferred a 
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linear relationship between planktonic larval duration and dispersal distance, predicting an average 
increase in dispersal distance of about 3.1 km with each additional day in the plankton. However, 
as highlighted by Shanks (2009), while in many instances larval duration is significantly correlated 
with dispersal distance, there are many exceptions, with individuals travelling much shorter dis-
tances than predicted (Siegel et al. 2003).

Artificial structures offsetting reduced dispersal potential

Predicting dispersal is challenging, and the use of 1-dimensional estimates of spread (e.g., km y–1) 
may not capture range shifts effectively (Mineur et  al. 2010). Certainly, there appears to be an 
increase in rates of species spread associated with human vectors in recent years (Mineur et al. 2010, 
2012), perhaps related to the proliferation of artificial structures (both onshore and offshore) that has 
altered the connectivity of marine populations (Saura et al. 2013, Adams et al. 2014, Airoldi et al. 
2015, Bishop et al. in press). In most instances, structures are built in areas that would otherwise be 
sedimentary, on one hand causing the fragmentation and loss of existing natural sedimentary habitats 
and on the other creating stepping stones or corridors for hard- bottom species (Dethier et al. 2003, 
Airoldi et al. 2005a, 2015, Bulleri & Airoldi 2005, Bulleri & Chapman 2010, Miller et al. 2013).

To date, the potential interactions between climate change and ocean sprawl on the connectivity 
of marine populations are poorly understood. Any increase in connectivity arising from the intro-
duction of artificial structures could be a cost- effective way of enhancing the conservation of threat-
ened species and habitats, for example, by providing new dispersal routes that facilitate migrations 
in response to climate change (Thomas 2011). There could be severe drawbacks, however, as these 
novel habitats can act as barriers or partial filters to the regional- scale dispersal of coastal species, 
disproportionately favouring non- indigenous over native species (Tyrrell & Byers 2007, Airoldi & 
Bulleri 2011, Airoldi et al. 2015).

The increased prevalence of artificial structures may therefore not be desirable in terms of 
increased risk of spread of potentially harmful non- indigenous species. Certainly, artificial struc-
tures have been implicated in the increase and spread of pest species (see ‘Non-indigenous and pest 
species’ on page 210). Understanding the factors that facilitate or prevent the migration of species 
through networks of structures would allow improved decision- making about the size and spacing 
of artificial structures in marine seascapes to simultaneously preserve fundamental ecological pro-
cesses, enhance conservation of native biodiversity, and achieve economic and social goals. To that 
end, accurate descriptions of dispersal distance both today and forecast for the future are needed to 
underpin the management and use of marine space.

Understanding the mechanisms of range extension: 
a modelling approach

Biophysical modelling has become an increasingly widely used tool for predicting dispersal and 
evaluating mechanisms used by species to facilitate their dispersal. In brief, the approach simulates 
the dispersal of planktonic species by coupling a physical (hydrodynamic) description of the envi-
ronment with a description or mimicry of biological traits or behaviours (e.g., vertical swimming) 
in response to a specific cue or cues, such as temperature, halocline, or pycnocline (e.g., North et al. 
2008, Lloyd et al. 2012). Simulations can be run to examine the effects of climate change on per-
formance of individuals of a species (i.e., planktonic larval duration) in a spatially resolved context. 
When coupled with data on the location of artificial structures, the interactions between these struc-
tures and climate change in facilitating species range extensions can be investigated.

The output of biophysical models is particularly useful to stakeholders, as the maps that are gen-
erated can be used to indicate areas of high or low connectivity (e.g., Figure 9). This information can 
support decision- making by managers to meet environmental objectives by identifying areas where 
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dispersal potential is high, supporting natural spread, or conversely areas where dispersal potential 
is low, reducing the likelihood of non-indigenous species spread. Predictions of larval retention 
can also aid forecasts of whether sites are likely to exhibit high or low recruitment rates (Gaines & 
Bertness 1992, Swearer et al. 1999, Morgan et al. 2009, Morgan et al. 2014).

In a recent study, Adams et al. (2014) used a biophysical model to examine how changes in 
population connectivity may arise following the introduction of artificial structures in the marine 
environment. They showed that dispersal was driven by advection by wind forcing and boundary 
layer hydrodynamic processes, with propagules remaining close to the coast during dispersal. New 
habitat (i.e., the artificial structures) increased the theoretical population size, increased the likeli-
hood of settlement, and facilitated access to previously inaccessible areas, particularly for short 
planktonic duration species (Adams et al. 2014). This type of analysis has the potential to shed light 
on sources of species as well as indicate possible locations for colonization.

Alternatively, the use of a physical model excluding any biological trait information may also 
provide valuable insights into areas of high and low connectivity (Largier 2003). For example, 
Polton (2014) characterized tidal excursion distances in and around the United Kingdom and Ireland 
(Figure 9A). This analysis revealed water retention time varied by an order of magnitude at local 
or subregional scales. If the physical environment alone can act as a suitable proxy for dispersal 
(Figure 9B), then this type of output could feasibly be used to highlight areas of larval retention 
(self- recruitment) or dispersal (connectivity) and support decision- making related, for example, to 
the placement of artificial structures to minimize connectivity. This approach, however, may not 
be suitable for species with longer planktonic larval durations. Certainly, a number of studies have 
highlighted the potential of larval behaviour to decouple dispersal predictions from estimates gen-
erated by physical (hydrodynamic) forcing alone (e.g., Shanks et al. 2003, Shanks 2009, Phelps et al. 
2015), particularly for species with planktonic larval durations exceeding 10–100 hours (Shanks 
2009, Knights et al. unpublished data; Figures 9B, 9C). Certainly, larval behaviour is often cited as 
playing a crucial role in determining dispersal distance and may well be responsible for the general 
failure of biophysical models to replicate patterns in nature (Jenkins 2005, Marshall et al. 2010).

The problem: biotic homogenization
Ocean sprawl—the proliferation of artificial structures—can be likened to urbanization (McKinney 
2006) and is one of the most homogenizing human activities in the marine environment. Artificial 
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2014 with permission from Taylor & Francis Ltd.
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structures are built to meet the relatively narrow needs of humans. They have traditionally been 
built with little consideration for the habitats that they replace and the communities that they inevi-
tably support. In comparison to analogous hard- bottom natural habitats, these structures are more 
physically homogeneous at a range of spatial scales (Moschella et al. 2005, Burcharth et al. 2007). It 
is ultimately this physical homogenization of the environment that drives biotic  homogenization—
the process by which species invasions and extinctions increase the genetic, taxonomic, or func-
tional similarity among locations at regional and global scales (see review by Streftaris et al. 2005). 
Biotic homogenization is now considered a discrete component of the broader biodiversity crisis, 
with significant ecological, evolutionary, and social consequences.

The diversity resistance hypothesis states that diverse communities are highly competitive 
and therefore more resistant to invasion (Elton 1958, Levine & D’Antonio 1999, Stachowicz et al. 
2002b). This hypothesis has been tested and supported by many experimental studies in marine 
systems (Stachowicz et  al. 1999, Stachowicz et  al. 2002b, Arenas et  al. 2006). Artificial struc-
tures are often characterized by lower species diversity and density than natural habitats (Bulleri & 
Chapman 2004, Moschella et al. 2005, Moreira et al. 2007, Vaselli et al. 2008), and the establish-
ment of invasive species on artificial structures could therefore be enhanced by the lower diver-
sity and weaker competitive interactions. This might also be exacerbated by artificial structures 
often being subject to high levels of disturbance, which facilitate colonization by opportunis-
tic species (Airoldi & Bulleri 2011).

Predation (including grazing) is an important element of biotic resistance (Simkanin et  al. 
2013). Predator abundance can differ between natural and artificial habitats (Dumont et al. 2011, 
Forrest et al. 2013a,b). Artificial structures, especially those that lack structural complexity or are 
separated from natural substrata, may have a lower abundance of mobile predators (Chapman 2003, 
Chapman & Blockley 2009, Dumont et al. 2011) and therefore may act as refuges for the establish-
ment of non- indigenous species. In natural habitats, where generalist predator numbers are greater, 
there may be increased resistance to invasion by newly arriving propagules (Forrest et al. 2013a,b).

Understanding the factors and processes sustaining the biodiversity of artificial habitats and 
assessing their influences on establishment of non- indigenous species is therefore of key importance 
for our ability to predict and manage future pathways of invasion in coastal areas. Furthermore, the 
design of artificial structures in such a way that they enhance biodiversity is one management option 
that not only will increase the biotic value of the structure but also will increase the resilience of the 
assemblages on these structures to biotic invasion (Elton 1958, Stachowicz et al. 1999, Stachowicz 
et al. 2002b, Arenas et al. 2006). We discuss possible options for biodiversity management and 
enhancement in the following section.

Managing artificial structures
In the previous sections we illustrated how ocean sprawl or the global proliferation of artificial 
structures is occurring at an increasing rate along coastlines and in nearshore waters. There are 
significant environmental impacts associated with their construction, operation, and decommis-
sioning (Dafforn et al. 2015b). Without planning and long- term management any structure that is 
placed in the sea can become a pollutant or hazard that contributes to the further degradation of 
the marine environment (Chou 1997). Here we consider options for managing marine development 
and provide recommendations for existing and future developments (Table 1). Our primary focus 
is the protection and promotion of native biodiversity with the ultimate goal of limiting undesir-
able biological homogenization. We identify management strategies for the cultivation of biodi-
verse communities through manipulations of target species, simple engineering interventions to 
create novel habitats, and designation of protective status. We also identify potential management 
strategies for future developments that offer opportunities to undertake an ecosystem approach to 
coastal defence by rehabilitating degraded natural habitats or working with stakeholders to create 
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Table 1 Management options for existing structures, with selected examples 
from the published literature

(A) Existing structures

Approach Description Results/outcome Location Source

(i) Manipulating species

Transplantating Transplanted hard and soft 
coral and sponges onto 
intertidal seawalls

Massive and encrusting 
species exhibited higher 
survival

Singapore Ng et al. (2015)

Transplanted coral onto 
natural and artificial 
subtidal reefs

Greater survival and growth 
on artificial reef due to 
sedimentation and current 
velocities

Israel Perkol-Finkel & 
Benayahu (2009)

Transplanted kelp onto 
subtidal pilings

Conducted for experimental 
purposes but demonstrates 
that kelp can be 
transplanted successfully 
onto artificial structures

Australia Marzinelli et al. (2009)

Transplanted threatened 
canopy algae onto 
subtidal rock armour 
breakwaters 

75% survival after 6 
months, indicating this is a 
viable rehabilitation 
option technique

Italy Susini et al. (2007)

Greater survival in artificial 
vs natural habitats due to 
habitat degradation in 
natural. Greater survival 
on landward vs seaward 
sides, no effect of 
orientation (i.e. vertical/
horizontal)

Italy Perkol-Finkel et al. 
(2012)

Survival was lower on 
structures located in sandy 
areas compared to natural 
bedrock, possibly due to 
higher biotic disturbance.

Italy Firth et al. (2014b), 
Ferrario et al. (2016)

Cultivation of subtidal 
mussels in disused docks 

In combination with 
artificially mixing the 
water, biofiltration by 
mussels significantly 
improved water quality by 
eliminating harmful toxic 
algae and enabling the 
establishment of healthy 
and diverse communities. 

UK Conlan et al. (1992), 
Hawkins et al. 
(1992a,b, 1999), Allen 
& Hawkins (1993), 
Russell et al. (1993), 
Allen et al. (1995), 
Wilkinson et al. (1996) 

Augmentative 
biocontrol

Using native species to 
prevent the establishment 
and spread of non-
indigenous species on 
subtidal artificial 
structures

Predation and space 
pre-emption of native 
species prevented or 
reduced the settlement 
success of non-indigenous 
species.

New Zealand Atalah et al. (2013a,b, 
2014, 2015), Forrest 
et al. (2013a,b)

Continued
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Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

Approach Description Results/outcome Location Source

Removals Chemical or physical 
removal of non-
indigenous species

Results varied: location, 
method and 
species-specific

Various Farnham & Gareth-
Jones (1974), Critchley 
et al. (1986), Carver 
et al. (2003), Hewitt 
et al. (2005), Coutts & 
Forrest (2007), Forrest 
& Hopkins (2013), 
McCann et al. (2013), 
Aldred & Clare (2014) 

(ii) Eco-engineering

Tiles Concrete “Artificial Units 
of Habitat (AUHs)” 
affixed to natural 
intertidal rocky reef

Deployed for research 
purposes but demonstrate 
how artificial surfaces can 
provide habitat

Australia Chapman et al. (2008)

Tiles with different 
densities and diameters 
of holes were affixed to 
intertidal rock armour

Many smaller (14mm) pits 
supported greater species 
richness than fewer larger 
(32mm) pits

UK Moschella et al. (2005), 
Witt et al. (2012)

Slabs with different 
textures and 
microhabitats (grooves 
and pits) affixed to 
intertidal rock armour

Slabs placed lower in the 
intertidal zone supported 
greater diversity and 
abundance than those 
placed higher up. Pits and 
grooves supported greater 
abundance of mussels and 
periwinkles than textured 
slabs.

Netherlands Borsje et al. (2011)

Concrete tiles of differing 
structural complexity 
affixed to intertidal rock 
armour (Figure 11B)

Tiles with greater structural 
complexity supported 
greater species richness 
(independent of surface 
area)

Singapore Loke et al. (2014), Loke 
& Todd (2016), Loke 
et al. (2016)

Concrete tablets and tiles 
containing different 
concentrations of 
crustose coralline algae 
covered coral rubble 
(CCACR)

Larvae of the fluted giant 
clam, Tridacna squamosa, 
settled preferentially on 
substrate containing 
higher CCACR

Singapore Neo et al. (2009)

Manipulated concrete tiles 
with/without texture 
affixed to piers in urban 
areas

Modified concrete recruits 
more diverse, and greater 
cover compared to 
standard Portland based 
cement. Textured surface 
enhances recruitment.

Israel Perkol-Finkel & Sella 
(2014)

Continued
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Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

Approach Description Results/outcome Location Source

 Concrete tiles with 
different fine-scale 
textures affixed to 
intertidal rocky reefs.

Grooved tiles supported 
greater abundance and % 
cover of barnacles than 
smooth concrete. 

UK Coombes et al. (2015)

Drilling Drilled pits of different 
density and size into 
intertidal seawall

Greater abundance of 
overexploited limpet 
Patella candei in areas 
with experimentally 
drilled pits.

Azores Martins et al. (2010)

Drilled pits and grooves 
on intertidal seawall

Results varied over time but 
smaller pits generally 
supported greater 
abundance of limpets and 
chitons than larger pits 
and grooves.

Australia Chapman & Underwood 
(2011)

Drilled pits of different 
diameters on intertidal 
concrete wave-breaker 
units (Figure 10A)

Greater species richness in 
pits than control areas. No 
difference among 
diameters.

UK Firth et al. (2014b)

 Drilled rock pools of 
different depths 
(12cm/5cm) on intertidal 
rock armour (Figure 10B)

Results varied over time. 
Pools supported greater 
taxon richness than 
adjacent emergent 
surfaces. After 6 mo: 
taxon richness was greater 
in 5cm than 12cm, after 
18 mo: there was no 
difference among depths. 
Different community 
structure. 

UK Firth et al. (2014b), 
Evans et al. (2016)

Manipulating 
concrete

Rock pools created in 
poured concrete among 
SHED units at different 
tidal heights and wave 
exposures on intertidal 
causeway (Figure 10D)

Lower pools supported 
greater diversity than 
upper pools. Surprisingly, 
the kelp, Laminaria 
digitata (typically a low 
shore and subtidal species) 
was found in upper pools. 
Sheltered pools filled up 
with sediment. 

Ireland Firth (2016b)

In-filled drilled cores with 
concrete to create pools 
on intertidal groyne 
(Figure 10C)

Rock pools supported 
greater taxon richness than 
emergent rock. Important 
habitat-forming coralline 
germlings found attached 
to concrete in pools. 

UK Firth et al. (2014b)

Continued



222

LOUISE B. FIRTH ET AL.

Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

Approach Description Results/outcome Location Source

Pits, grooves and recesses 
in concrete between 
blocks of intertidal 
seawall (Figure 11A)

Recesses supported greater 
species richness than other 
treatments.

UK Firth et al. (2014b)

Water-retaining 
depressions created 
between blocks on 
intertidal seawall

Water-retaining features 
rapidly colonised by rock 
pool fauna, including 
opisthobranchs, sea 
urchins and even 
octopuses.

Australia Chapman & Underwood 
(2011)

 Indentations created in 
concrete between blocks 
on intertidal seawall

Indentations supported 
greater richness of algae 
and sessile invertebrates

Australia Dugan et al. (2011)

Precast concrete 
units

Prototype BIOBLOCK 
with multiple habitats 
(pits, ledges, pools) 
replaced boulder in 
intertidal rock armour 
breakwater (Figure 10E).

Diversity of habitats rather 
than any particular one 
drove greater diversity on 
BIOBLOCK compared to 
surrounding boulders.

UK Firth et al. (2014b)

Precast Econcrete® 
rockpools deployed in 
intertidal rock armour 
revetment (Figure 10F). 

Pools supported high 
epibiotic cover and a 
range of fauna typical of 
rock pools. Control 
boulders were very 
species poor. 

USA Perkol-Finkel et al. 
(2015)

Precast Econcrete® piling 
jackets were deployed on 
subtidal pier pilings. 

Ecological jackets 
supported greater live 
epibiotic cover than 
control fibreglass jackets.

USA Perkol-Finkel & Sella 
(2014)

Precast modified 
flowerpots of different 
sizes attached at different 
tidal heights to intertidal 
seawalls (Figure 11D).

Greater diversity and 
abundance of epibiota in 
pots than seawall. Shallow 
and mid-shore pots 
supported greater diversity 
and abundance than 
deeper and high shore 
respectively. Some pots 
were destroyed by wave 
action; the improved 
design is currently being 
trialed in Sydney Harbour. 

Australia Browne & Chapman 
(2011), Browne & 
Chapman (2014), 
Rebecca Morris 
(unpublished)

Precast concrete 
“Vertipools” attached to 
intertidal seawalls 
(Figure 11E). 

Vertipools were designed to 
extend the intertidal zone 
vertically and provide 
habitat for mitigation for 
sea level rise. Currently 
being trialled.

UK Alice Hall (unpublished, 
www.ecclestongeorge.
co.uk)

Continued
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Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

Approach Description Results/outcome Location Source

Large-scale precast 
concrete faciae with 
different designs 
(textures, steps) attached 
to subtidal and intertidal 
seawalls (Figure 11C).

Results varied among 
treatments but generally 
supported greater diversity 
and abundance of many 
groups than the existing 
seawall.

USA Cordell et al. (in press)

Concrete modular 
breakwater reefs 
naturally colonized by 
the native eastern oyster, 
Crassostrea virginica

Biologically dominated 
concrete structures 
showed increased 
structural strength

USA Risinger (2012)

Artificial units for 
restoration and 
rehabilitation of target 
species. 

Econcrete® armouring 
units, Oyster castles, 
Reefballs, Tecnoreef®, 
WABCORE units

Various Harris (2009), Kingsley-
Smith et al. (2012), 
Dafforn et al. (2015b), 
Ponti et al. (2015), Sella 
& Perkol-Finkel (2015)

Other Construction of novel 
habitats (rockpools, shaded 
substrata) within intertidal 
seawall by replacing 
blocks with a lip.

Novel habitats increased 
diversity of epibiota, 
particularly higher on the 
shore.

Australia Chapman & Blockley 
(2009)

Habitat benches: piles of 
rocky substrate 
constructed adjacent to 
seawalls to create 
shallow water.

Results varied between 
years but habitat bench 
generally supported greater 
abundance of larval and 
juvenile fish than control 
riprap site. Diverse stands 
of kelp and other algae also 
observed on benches. 

USA Toft et al. (2013)

Construction of rock pools 
on top of intertidal 
seawall

No results given but reports 
of debris accumulation 
despite large openings for 
tidal flow. 

Australia Chapman & Underwood 
(2011)

Gabion baskets containing 
different sizes of rocks 
(small/large/mix)

No significant difference in 
species richness among 
treatments but small rock 
treatment supported 
greater total abundance 
than other treatments.

UK Firth et al. (2014b)

Changing slope of 
seawalls

Vertical surfaces supported 
greater abundance of mobile 
organisms and greater % 
cover and richness of sessile 
organisms than horizontal 
surfaces.

Australia Chapman & Underwood 
(2011)

Treating surfaces with 
chemical cues to promote 
recruitment of species

Recruitment was quicker 
and higher around treated 
surfaces

Tunisia Rivera-Ingraham et al. 
(2011a)

Continued
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Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

Approach Description Results/outcome Location Source

(iii) Designate structure or site

Site of Special 
Scientific 
Interest

The practice of 
designating a protected 
area based on biological, 
geological or 
physiographic interest. 
UK legislation. 

The network of intertidal 
coastal defence structures 
at Elmer proposed as a 
candidate SSSI due to 
vegetated shingle and 
organisms colonising the 
breakwaters. Proposed in 
2007, no update since. 

UK Burcharth et al. (2007)

Rigs-to-Reefs The practice of converting 
decommissioned offshore 
oil and petroleum rigs 
into artificial reefs.

Although this has widely 
been applied to a large 
number of rigs in the Gulf 
of Mexico, few studies 
have assessed the 
“success” of the practice 
or compared the different 
techniques. 

Gulf of Mexico Kaiser & Pulsipher 
(2005), Macreadie 
et al. (2011), 
Sammarco et al. (2014)

Renewables-to-
Reefs

The proposed practice of 
converting 
decommissioned 
windfarms into artificial 
reefs.

This practice has only 
recently been suggested 
and has not been 
implemented yet. 

Europe Smyth et al. (2015)

Artificial Marine 
Micro Reserve 
(AMMR)

The proposed practice of 
designating artificial sites 
as Artificial Marine 
Micro- Reserve 
(AMMR), where 
endangered species 
experience a refuge from 
human disturbance 

Artificial structures can 
provide valuable habitat 
for threatened and 
endangered species. The 
concept of a network of 
AMMRs has been 
proposed for the Western 
Mediterranean. 

Western 
Mediterranean

García-Gómez et al. 
(2011, 2015)

Marine reserves The practice of 
designating a protected 
area to protect natural or 
cultural resources. Levels 
of anthropogenic activity 
(e.g. fishing, diving) will 
be site-specific. 

Oil and gas platforms and 
wind farms have been 
described as de facto 
marine reserves due to the 
“artificial reef effect” and 
limited access of fishing 
gears. Official designation 
could be assigned to these 
locations during operation. 

Gulf of Mexico, 
North Sea

Wilhelmsson et al. 
(2006), Wilhelmsson & 
Malm (2008), Inger 
et al. (2009), Wilson & 
Elliott (2009), Feary 
et al. (2011), Reubens 
et al. (2011, 2013), 
Witt et al. (2012), 
Langhammer (2012), 
Ashley et al. (2014), 
Pearce et al. (2014)

Continued
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multifunctional structures. We outline how marine spatial planning can inform management deci-
sions and briefly discuss how stakeholder engagement and perceptions may be used to inform future 
development plans.

Management of existing structures

Any hard structure placed in the marine environment will ultimately become fouled by sessile spe-
cies (Wahl 1989, Dürr & Watson 2010, Bracewell et al. 2013) and attract mobile organisms such as 
fish and crustaceans (Collins et al. 1994, Jensen 2002, Langhamer & Wilhelmsson 2009, Ferrario 
et al. 2016). Occasionally, these colonizing communities can provide valuable ecosystem goods and 
services such as fisheries, carbon sequestration, and water purification, amongst others (Table 2A; 
e.g., Langhamer & Wilhelmsson 2009, Gkoumas et al. 2013, Layman et al. 2014), or be of conserva-
tion importance (Table 2B; e.g., Gass and Roberts 2006, Martins et al. 2010, García- Gómez et al. 

Table 1 (Continued) Management options for existing structures, with selected examples 
from the published literature

(B) Planned structures

Approach Description   Source

Eco-engineering Habitat enhancement can 
be much larger scale and 
effective if considered 
during the planning 
stage. All techniques 
described above can be 
considered at the 
planning stage 

See literature listed 
above

Multifunctional 
structures

Structures can be designed 
to satisfy multiple 
societal (e.g. fisheries, 
recreation, energy) and 
environmental goals (e.g. 
biodiversity, endangered 
or threatened species). 

Albertelli et al. (1995), 
Lamberti & Zanuttigh 
(2005), Piazza et al. 
(2005), Seitz & 
Lawless (2008), 
Challinor (2008), Gao 
et al. (2008), Borsje 
et al. (2011), Fletcher 
et al. (2011), Mead 
et al. (2011), Herbert 
et al. (2013), 
Reckenbeil & Ozbay 
(2014), van Loon-
Steensma et al. (2014), 
Zanuttigh et al. (2015), 
Evans et al. (in press)

Hybrid 
engineering and 
the ecosystem 
approach

Flood protection through 
ecosystem creation and 
restoration can provide a 
more sustainable, 
cost-effective and 
ecologically sound 
alternative to 
conventional hard 
engineering approach 

  Hashim et al. (2010), 
Kamali et al. (2010), 
Kamali & Hashim 
(2011), Tamin et al. 
(2011), Bilkovich & 
Mitchell (2013), 
Temmerman et al. 
(2013), Spalding et al. 
(2015), Sutton-Grier 
et al. (2015)
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Table 2 Summary of organisms providing important ecosystem services associated 
with artificial structures

(A) Organisms providing important ecosystem services

Service Descriptor Type of structure Source

Provisioning Commercially 
important shellfish

Coastal defences Bacchiocchi & Airoldi (2003), 
Devescovi & Iveša (2008), 
Jackson et al. (2008), Martins 
et al. (2010), Dafforn et al. 
(2012)

Commercially 
important fish

Oil and gas platforms, coastal 
defence structures

Page et al. (1999), Toft et al. 
(2007, 2013), García-Gómez 
et al. (2015)

Commercially 
important 
crustaceans

Marine renewable energy 
installations, coastal defence 
structures

Langhamer & Wilhelmsson 
(2009), Langhamer et al. 
(2009), Wehkamp & Fischer 
(2013), Ashley et al. (2014), 
García-Gómez et al. (2015)

Nursery habitat for 
fish and 
crustaceans

Marine renewable energy 
installations, coastal defence 
structures

Caine (1987), Able et al. (1998), 
Martin et al. (2005), 
Langhamer & Wilhelmsson 
(2009), Langhamer et al. 
(2009), Scyphers et al. (2015)

Over-exploited 
species

Coastal defences Guerra-García et al. (2004), 
Devescovi & Iveša (2008), 
Martins et al. (2010)

Regulating Carbon 
sequestration

Potentially all structures Chung et al. (2011), Gkoumas 
et al. (2013)

Water purification Potentially all structures Allen et al. (1992, 1995), Allen 
& Hawkins (1993), Wilkinson 
et al. (1996), Kohata et al. 
(2003), Hughes et al. (2005), 
Layman et al. (2014)

  Wave attenuation Coastal defences Borsje et al. (2011), Firth et al. 
(2015a)

Cultural Protect bathing 
beaches

Coastal defences Lamberti & Zanuttigh (2005)

Scuba diving Artificial reefs, oil rigs, 
coastal defences

Stolk et al. (2007), Wilhelmsson 
et al. (1998)

Bait digging and 
shellfish gathering

Coastal defences Airoldi et al. (2005b)

Recreational fishing Artificial reefs, harbours, 
coastal defences

Fayram & de Risi (2007)

Education (e.g. 
rockpooling)

Coastal defences Burcharth et al. (2007), Herbert 
(2011), Herbert et al. (2013), 
Firth et al. (2013a)

Scientific research Artificial reefs Wilding & Sayer (2002), 
Wilding (2014)

 Surfing Artificial surf reefs, 
multipurpose reefs

Black (2001), Fletcher et al. 
(2011)

Continued
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Table 2 (Continued) Summary of organisms providing important ecosystem services associated 
with artificial structures

Service Descriptor Type of structure Source

Supporting Primary production 
by algae and corals

Potentially all structures Southward & Orton (1954), 
Sammarco et al. (2004), Firth 
et al. (2014b)

 Habitat provision 
for other species

Potentially all structures Borsje et al. (2011), Perkol-
Finkel et al. (2012), Pearce 
et al. (2014), Firth et al. (2015)

(B) Organisms of conservation importance

Group, species Legislation Type of structure Source

Algae
Cystoseira amentacea var 
stricta

Bern Coastal defences in the 
northern Adriatic

Susini et al. (2007)

Cystoseira compressa Bern Coastal defences in the 
northern Adriatic

Susini et al. (2007)

Cystoseira barbata Bern Coastal defences in the 
northern Adriatic

Perkol-Finkel et al. (2012), Firth 
et al. (2014b), Ferrario et al. 
(2016)

Lithophyllum byssoides Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Porifera
Spongia agaricina Bern Coastal defences in the 

western Mediterranean
García-Gómez et al. (2015)

Spongia offinalis, bath 
sponge

Bern Artificial reefs in Indonesia de Voogd (2007)

Tethya aurantium, golf ball 
sponge

Barcelona Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Cnidaria
Astroides calycularis, stony 
cup coral

CITES, Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Corralium rubrum, 
precious coral

Bern Artificial reefs in Monaco Allemand et al. (2000)

Lophelia pertusa, cold 
water coral

CITES, Habitats Oil platforms in the North Sea Gass & Roberts (2006)

Annelida
Sabellaria alveolata, 
honeycomb worm

Habitats Coastal defences along the 
North Wales and Wirral 
coastline, UK

Firth et al. (2013a, 2015), Evans 
et al. (2016)

Sabellaria spinulosa, ross 
worm

Habitats, Bern Marine renewable energy 
installations in the southern 
North Sea, UK

Pearce et al. (2014)

Subsea pipelines, Northeast 
Scotland, UK

Braithwaite et al. (2006)

Groynes at Felixstowe, UK Killeen & Light (2000)

Groynes of Norderney, 
Fresian Islands, Germany 

Linke (1951)

Continued
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Table 2 (Continued) Summary of organisms providing important ecosystem services associated 
with artificial structures

Group, species Legislation Type of structure Source

Mollusca
Charonia lampas, knobbed 
triton

Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Cymbula nigra, Safian 
limpet

Bern, Barcelona Coastal defences in the 
western Mediterranean

Rivera-Ingraham et al. (2011b), 
García-Gómez et al. (2015)

Dendropoma petraeum, 
worm snail

Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Lithophaga lithophaga, 
date mussel

CITES, Bern, 
Habitats

Coastal defences in harbours 
in the western Mediterranean 
and Rovinj, Croatia

Devescovi & Iveša (2008), 
García-Gómez et al. (2015)

Lurida lurida, lurid cowry Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Patella ferruginea, ribbed 
Mediterranean limpet

Bern, Habitats Coastal defences in harbours 
in the western Mediterranean

Guerra- García et al. (2004), 
Espinosa et al. (2006a, 2008), 
Rivera-Ingraham (2011c), 
García-Gómez et al. (2015)

Patella candei, limpet Bern Seawalls in the Azores, 
Portugal

Martins et al. (2010)

Pinna nobilis, noble pen 
shell

Bern, Barcelona, 
Habitats

Sediments adjacent to coastal 
defences in the western 
Mediterranean

García-Gómez et al. (2015)

Pinna rudis, rough pen 
shell

Bern Sediments adjacent to coastal 
defences in the western 
Mediterranean

García-Gómez et al. (2015)

Crustacea
Homarus gammarus, 
European lobster

Bern Coastal defences in the 
western Mediterranean, 
marine renewable energy 
installations

Langhamer & Wilhelmsson 
(2009), García-Gómez et al. 
(2015)

Maja squinado, spider crab Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Palinurus elephas, 
European spiny lobster

IUCN (VU), Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Scyllarus arctus, slipper 
lobster

IUCN (LC), Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Megabalanus azoricus, 
Azorean barnacle

OSPAR Coastal defences in the 
Azores, Portugal

Southward (1998)

Echinodermata
Centrostephanus 
longispinus, hatpin urchin

Bern, Barcelona Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Echinus esculentus, 
European edible sea urchin

IUCN (LR/NT) Coastal defences on the Isle of 
Man

Moore (1934)

Ophidiaster ophidianus, 
purple starfish

Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Paracentrotus lividus, 
purple sea urchin

Bern Coastal defences in the 
western Mediterranean

García-Gómez et al. (2015)

Continued
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2015, Pearce et al. 2014, Firth et al. 2015). In contrast, they can also support non- indigenous, pest, 
and harmful species (e.g., Bulleri & Airoldi 2005, Villareal et al. 2007, Lo et al. 2008, Firth et al. 
2011, Mineur et al. 2012). Of course, there are many situations where the desirable end point is no 
fouling community (e.g., ships, aquaculture), and an increasing number of antifouling technologies 
are being developed to prevent settlement of marine organisms (Whelan & Regan 2006, Grozea & 
Walker 2009, Chapman & Regan 2012). With accumulating knowledge from best practice, simple 
and cost- effective measures can be used to achieve multiple ecosystem services, such as local biodi-
versity maintenance, provision of harvestable species, and protection of rare or endangered species.

Species manipulations: removals and transplantations

In comparison to terrestrial systems, the manipulation of organisms for purposes other than human 
consumption (aquaculture) is not well developed in marine systems. Here we outline some examples 
of pioneering research on methods of removal of non- indigenous species and the transplantation 
of desirable species on to artificial structures. All of the examples that follow are from relatively 
recent studies, and it must be noted that this form of marine wildlife management is very much in its 

Table 2 (Continued) Summary of organisms providing important ecosystem services associated 
with artificial structures

Group, species Legislation Type of structure Source

Pisces
Caranx crysos, blue runner CITES, IUCN (LC), 

Bern
Oil platforms in the Northern 
Gulf of Mexico

Keenan (2002)

Hippocampus brevirostris, 
short-snout European 
seahorse

CITES, IUCN (data 
deficient), OSPAR, 
Bern, Barcelona

Coastal defences in the 
western Mediterranean 

García-Gómez et al. (2015)

Hippocampus abdominalis, 
big-belly seahorse

CITES, IUCN (data 
deficient)

Swimming nets in Sydney 
Harbour, Australia

Clynick (2008)

Hippocampus whitei, New 
Holland seahorse

CITES, IUCN (data 
deficient)

Swimming nets in Sydney 
Harbour, Australia

Clynick (2008), Hellyer et al. 
(2011)

Epinephelus coioides, 
orange-spotted grouper

IUCN - NT Artificial reefs in the Arabian 
Gulf

Feary et al. (2011)

Epinephelus marginatus, 
dusky grouper

IUCN (EN), Bern Coastal defences, artificial 
reefs in the western 
Mediterranean

Charbonnel et al. (2002), 
García-Gómez et al. (2014)

Oncorhynchus tshawytscha, 
Chinook salmon

ESA Coastal defences in Puget 
Sound, USA

Toft et al. (2010, 2013) 

Pristis pectinata, 
small-tooth sawfish

IUCN (CR), CITES, 
ESA

Seawall lined canals in 
Florida

Poulakis et al. (2013)

Rhincodon typus, whale 
shark

CITES, IUCN (VU), 
UNCLOS, CMS

Oil platforms in the Arabian 
Gulf

Robinson et al. (2013)

Sciaena umbra, brown 
meagre

CITES, Bern Coastal defences, artificial 
reefs in the western 
Mediterranean

Charbonnel et al. (2002), 
García-Gómez et al. (2015)

Note: Species were selected if protected under international and/or national legislation. CITES = Convention on International 
Trade in Endangered Species of Wild Fauna and Flora; IUCN = International Union for Conservation of Nature Red 
List; LC = Least Concern; LR = Lower Risk; NT = Near Threatened; VU = Vulnerable; EN = Endangered; CR = 
Critically endangered; Bern = Bern Convention on the conservation of European wildlife and natural habitats; 
Barcelona = Convention for the Protection of the Mediterranean Sea Against Pollution; Habitats = EU Habitats 
Directive on the conservation of natural habitats and of wild fauna and flora; ESA – Endangered Species Act, USA; 
CMS = Convention on the Conservation of Migratory Species of Wild Animals; UNCLOS = United Nations 
Convention on the Law of the Sea; OSPAR = Oslo and Paris Convention.
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infancy. Much more research is required before removals or transplants can be advocated as generic 
management strategies for artificial structures.

Removal of non- indigenous species
Regarding removal of non- indigenous species, there are several examples where traditional meth-
ods (e.g., physical and chemical control) have been used in unsuccessful attempts to control or 
eradicate marine pests such as the colonial ascidian Didemnum vexillum (Coutts & Forrest 2007, 
Forrest & Hopkins 2013, McCann et al. 2013); the solitary ascidian Ciona intestinalis (Carver et al. 
2003, Aldred & Clare 2014); and the brown macroalgae Sargassum muticum (Farnham & Gareth- 
Jones 1974, Critchley et al. 1986) and Undaria pinnatifida (Hewitt et al. 2005). There are many 
challenges and limitations with traditional control methods for target marine pests, especially those 
that rely on chemical treatment or repeated diver detection, maintenance, and removal of visible 
organisms (Caffrey et al. 2010, 2011, Atalah et al. 2013a). Atalah et al. (2014) advocated that many 
of the limitations could be overcome with biocontrol (i.e., control by natural predators, either native 
or non- indigenous) as effective control agents will have a sustained effect on all life stages of target 
species or multispecies assemblages. This method of control of non- indigenous species is relatively 
well established in terrestrial and freshwater aquatic systems (e.g., Newman et al. 1996, Baars et al. 
2010, Mangan & Baars 2013). Despite the promising preliminary results to date, this field is very 
much in its infancy in the marine environment (but see Atalah et al. 2013a,b, 2014, 2015), and fur-
ther research is needed in this area.

Transplanting of desirable species
The growth of ecologically valuable benthic communities can be promoted through direct trans-
planting of desirable target species. The transplanting of corals onto artificial reefs has long been 
common practice in coral- reef rehabilitation and fisheries enhancement on artificial reefs (e.g., Clark 
& Edwards 1994, Perkol- Finkel & Benayahu 2009). In a recent study Ng et al. (2015) investigated 
the feasibility of transplanting corals and sponges to the intertidal zone of seawalls. After only 18 
months, species with massive and encrusting growth forms were most successful at establishing on 
the seawall and were even observed to provide food and shelter for reef fish and gastropods. Despite 
the short- term nature of this study, the results indicated that the transplantation of nursery- reared 
reef biota is a viable strategy that enhances the ecological value of seawalls. Habitat- forming algae 
(e.g., Cystoseira barbata) can be successfully transplanted on to artificial structures (Falace et al. 
2006, Susini et al. 2007, Perkol- Finkel & Airoldi 2010, Perkol- Finkel et al. 2012), but care should 
be taken to protect younger individuals from biotic disturbance from grazers (Ferrario et al. 2016).

Mussels are important filter- feeders and provide an important biofiltration service by remov-
ing toxins and particulates and preventing unsightly and potentially toxic phytoplankton blooms, 
contributing to improved water quality in both natural and artificial settings (e.g., Wilkinson et al. 
1996). One example from the United Kingdom describes how mussels settled on to ropes in an 
experimental fish farm (Russell et al. 1983, Hawkins et al. 1992a,b) and were transplanted into 
experimental docks in Liverpool, leading to recovery of these enclosed artificial ecosystems (Allen 
et al. 1992, Allen & Hawkins 1993, Allen et al. 1995, Wilkinson et al. 1996).

Eco- engineering: creating novel habitats for biodiversity enhancement

The field of eco- engineering (the integration of ecological, economic, and societal needs in the 
design of artificial habitats) has received much attention in recent years (for reviews, see Dugan 
et al. 2011, Dafforn et al. 2015a,b, Dyson & Yocom 2015). A major output of this surge of research 
has been a wide range of studies that have implemented small- scale modifications on artificial 
structures that can be widely applied in a range of different situations. Due to access and cost 
implications, the vast majority of this work has focused on intertidal seawalls and coastal defence 
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structures. A number of recent reviews provided excellent summaries of the different management 
approaches to coastal development (see Dyson & Yocom (2015) for a comprehensive review of eco-
logical design for urban waterfronts and Dafforn et al. (2015a) for a broader approach to restoration 
and hard and soft engineering).

Here we specifically cover the various ecological engineering techniques that have been tested 
on hard artificial structures (Figures 10 and 11; Table 1). On artificial structures in the marine envi-
ronment eco- engineering is largely implemented to increase heterogeneity and complexity of other-
wise topographically simple and featureless substrata. Ideally, engineering modifications should be 
implemented during construction (see the discussion that follows). A range of options is also avail-
able for retrofitting enhancements on to existing structures. Microhabitats such as pits, crevices, and 
rock pools are important refuges from abiotic and biotic stress and disturbance on natural rocky 
shores, thus supporting diverse communities (Moschella et al. 2005, O’Connor & Crowe 2005, Firth 
& Crowe 2008, Firth et al. 2009, Firth et al. 2014a, Firth & Crowe 2010). These microhabitats are 
largely absent from artificial structures (Moschella et al. 2005, Firth et al. 2013b).

Texturing and the addition of pits and ledges (millimetre- centimetre scale)

The incorporation of surface roughness, pits, grooves, and ledges can facilitate the persistence of species 
that would not normally be able to live on a featureless surface (Firth et al. 2014b). They can also promote 
species of conservation and commercial importance (Martins et al. 2010). Surface roughness and pits 
and crevices can be incorporated directly onto artificial structures by drilling directly into the substratum 
(Figure 10A; Martins et al. 2010, Firth et al. 2014b); by manipulating the concrete between the blocks 
on seawalls (Figure 11A; Chapman & Underwood 2011, Firth et al. 2014b, Loke et al. 2015, Loke & 
Todd 2016); or by affixing precast or predrilled habitat enhancement tiles or plates (Figure 11B–11D; 
Moschella et al. 2005, Chapman et al. 2008, Borsje et al. 2011, Witt et al. 2012, Toft et al. 2013, Loke et al. 
2014, Coombes et al. 2015). Recently, 3-dimensional printing has been used to create artificial enhance-
ment units (Talia Sherrard PhD thesis submitted and currently being examined by external examiners).

Water- retaining features (centimetre- metre scale)

Water- retaining features (i.e., rock pools) are particularly important in artificial habitats (Moschella 
et al. 2005, Chapman & Blockley 2009,  Firth et al. 2013b). A wide range of techniques has been 
tested on seawalls and coastal defences, all of which had similar results, increasing taxon richness 
and functional diversity (Table 1; Figures 10 and 11). Deep and shallow pools drilled directly into 
the boulders of rock armour at Tywyn in Wales showed no significant differences in colonizing 
diversity but did show differences in community structure (Figure 10B; Firth et al. 2014b, Evans 
et al. 2016). Even after 18 months, the cumulative number of taxa colonizing the pools had not lev-
elled off (Evans et al. 2016), indicating that a greater diversity of transient and ephemeral taxa were 
utilizing the novel habitats at different times of year. This intervention requires horizontal or near- 
horizontal substrata but can be implemented in locations of all exposures, ranging from sheltered to 
very exposed. The drilled pools remained undamaged following the extreme storms of 2013–2014 
(A.J. Evans personal  observations), indicating that drilling pools may represent a long- term option 
that will be resilient to storm and wave damage.

Pools were incorporated into Sydney, Australia, seawalls during repair works by replacing 
sandstone blocks with a lip that retained water, thus functioning as a shaded rock pool supporting 
significantly greater diversity and abundance of epibiota than the existing seawall (Chapman & 
Blockley 2009). This option can only be implemented during construction work and in relatively 
sheltered environments due to danger of damage to the seawall from wave action. Depending on the 
size of the blocks used for constructing the seawall, the size of cavities can be varied to offer a range 
of different habitat types along the same stretch of seawall.

Manipulating concrete can also create rock pools. Taking advantage of cores drilled through 
boulders on a groyne in North Wales (Figure 10C), Firth et al. (2014b) in- filled these cores with 
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Figure 10 Variety of different ecological engineering techniques that can be incorporated into rock revet-
ment or riprap. (A) Pits drilled into wave- breaker units on Plymouth Breakwater, United Kingdom (Firth 
et al. 2014b). (B) Rock pools drilled directly into boulders on Tywyn Breakwater, United Kingdom (Firth 
et al. 2014b, Evans et al. 2016). (C) Drill- cored hollows infilled with concrete to retain water at Penrhyn Bay, 
United Kingdom (Firth et al. 2014b). (D) Concrete poured at base of SHED units in Galway Bay, Ireland 
(Firth 2016a). (E) Precast concrete BIOBLOCK with multiple habitat types at Colwyn Bay, United Kingdom 
(Firth et al. 2014b). (F) Precast concrete rock pools in Brooklyn Bridge Park, United States (Perkol- Finkel & 
Sella 2015).
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Figure 11 Variety of different ecological engineering techniques that can be incorporated onto seawalls. 
(A) Pits created by manipulating the concrete between bricks on a seawall, Shaldon, United Kingdom (Firth 
et al. 2014b). (B) Precast habitat enhancement plates/ tiles with different levels of complexity affixed to a sea-
wall in Pulau Hantu, Singapore (Loke et al. 2014, 2015). (C, D) Large- scale precast fascia fronting urban sea-
walls in Seattle, Washington, USA (Toft et al. 2010, 2013). (E) Modified precast concrete flowerpots affixed to 
seawalls in Sydney, Australia (Browne & Chapman 2011, 2014, Morris 2016). (F) Precast concrete Vertipool 
affixed to seawall on the Isle of Wight, United Kingdom (http://www.ecclestongeorge.co.uk).
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concrete to a depth of 10 cm, resulting in the creation of small pools that supported important 
habitat- forming crustose coralline algae after only 6 months. A potentially universal method of 
creating rock pools on rock armour is by pouring concrete among the boulders or concrete units. 
Buckets were placed in wet concrete that was poured at the base of concrete units in Galway Bay, 
Ireland (Figure 10D). Once the concrete had set, the buckets were removed, yielding water- retaining 
features that supported a wide variety of organisms that were not otherwise present on the structure 
(Firth et al. 2016a). These manipulations were unaffected by the severe storms of 2013–2014, which 
caused severe damage in Galway Bay, indicating that this option may also be a long- term solution 
that will be resilient to storm and wave damage.

Precast concrete units (beyond metre scale)

A wide variety of materials has been used in artificial reef construction, including used tyres, 
old vehicles, boats, pipes, fibreglass, metal, building materials, and waste products from industry 
(Collins et al. 1994, Chou 1997, Jensen et al. 2000, Collins et al. 2002, Loh et al. 2006). The Reef 
Ball is perhaps one of the most famous and successful examples of a purpose- built precast habitat 
enhancement unit (Harris 2009) that can be used for a variety of purposes, ranging from coral and 
oyster reef rehabilitation to mangrove planting. This concept has been applied to artificial structures 
deployed in the intertidal zone with the development of a range of different precast concrete habitat 
enhancement units. The BIOBLOCK is a large unit that has multiple habitats in a single unit (pits, 
ledges, rock pools; Figure 10E) that can replace rock armouring boulders and can be retrofitted or 
deployed during construction (Firth et al. 2014b). The BIOBLOCK is another potentially universal 
method of habitat creation in rock armouring that can be implemented in a range of different expo-
sures, ranging from sheltered to very exposed. At 5.4 t, it is unlikely to be moved during a storm and 
represents a potential long- term option that will be resilient to storm and wave action.

A clever way of incorporating water- retaining features on existing seawalls is the attachment of 
modified concrete flowerpots (Figure 11E; Browne & Chapman 2011, 2014), a concept that captured 
a lot of media attention in Sydney and has now been applied elsewhere (e.g., Vertipools on the Isle of 
Wight, UK; Figure 11F). Dyson & Yocom (2015) described seawall stairs as precast concrete steps 
designed to increase nearshore habitat area. These add both horizontal surfaces and microhabitat to 
the urban waterfront by incorporating exposed aggregate (surface texture) and depressions designed 
to mimic tide pools and may provide habitat, enhance food production, and improve migration cor-
ridors for juvenile salmon and other organisms (Enabling the Business of Agriculture [EBA] 2011).

Interdisciplinary research among ecologists, engineers, and materials scientists is rapidly 
advancing the field with the design of environmentally friendly concrete (e.g., Econcrete�) and 
other materials for the production of artificial reef units (Loh et al. 2006, Ponti et al. 2015); armour-
ing units (S. Perkol- Finkel unpublished data); pile encapsulation (Perkol- Finkel & Sella 2014, 2015); 
rock pools (Figure 10F; Perkol- Finkel & Sella 2015); and seawalls (Figure 11C-D; Toft et al. 2013). 
All of this can be retrofitted to existing structures or indeed considered at the planning stage and 
incorporated during construction.

Other novel approaches to habitat enhancement

Rock- filled gabion baskets and mattresses are also widely used in more sheltered locations. 
Preliminary work carried out by Firth et al. (2014b) revealed that by careful selection of the stone 
sizes it is possible to enhance diversity and abundance of epibiota, and these habitats undoubtedly 
provide refuge from predation as well as wave action and adverse thermal conditions for mobile fish 
and crustaceans. Further research is required to fully test the potential for this feature to be incor-
porated into design of new structures as a management option.

Habitat benches can be constructed on top of and adjacent to seawalls to create areas of shallow 
water. The addition of novel shallow- water habitat may provide habitat for benthic flora and fauna 
and mobile fish and crustaceans (Toft et al. 2010, 2013, Chapman & Underwood 2011). Finally, 
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baskets can be attached to seawalls to support both submergent and emergent vegetation, which in 
turn may provide habitat and nursery grounds for other shallow- water species (Holloway & Connell 
2002, Perkol- Finkel et al. 2008; see Dyson & Yocom 2015).

Designation of sites as reefs or de facto reserves

All artificial structures have the capacity to act as both artificial reefs and fish aggregation devices 
through the ‘artificial reef effect’ (e.g., Rilov & Benayahu 1998, Love et al. 1999, Helvey 2002, 
Reubens et al. 2011, 2013). Owing to the potential for collision between vessels and marine renew-
able energy installations or fishing gear entanglement, it is not possible to undertake many forms 
of commercial fishing within the immediate vicinity of marine renewable energy installations. 
Providing a refuge from intense fishing pressure, artificial structures have the potential to protect 
and enhance exploited stocks (Wilhelmsson et al. 2006, Wilhelmsson & Malm 2008, Langhamer 
et  al. 2009). In recent years various authors have discussed the potential for marine renewable 
energy installations to act as de facto marine protected areas (MPAs) (Inger et al. 2009, Witt et al. 
2012, Ashley et al. 2014). Ultimately, the implementation of such MPAs will also enrich benthic 
biota by locally eliminating the damage caused by fishing gear towed along the seabed (e.g., Pearce 
et al. 2014).

Artificial marine microreserves
Occasionally, endangered and threatened species can be found in high densities on artificial struc-
tures (García-Gómez et al. 2015, Table 2). In the Mediterranean, overexploited molluscs have been 
found on coastal defence structures in harbours. The limpet Patella ferruginea is the most endan-
gered invertebrate in the Mediterranean but can be found in abundance in the Port of Ceuta, Tunisia 
(Guerra- García et al. 2004, Espinosa et al. 2006a,b, 2008, Rivera- Ingraham et al. 2011). Similarly, 
the overexploited date mussel Lithophaga lithophaga is found in abundance on the soft limestone 
breakwaters in Rovinj, Croatia (Devescovi & Iveša 2008). In a similar way to marine renewable 
energy installations functioning as de facto reserves from the impacts of fishing pressure, artifi-
cial coastal constructions like breakwaters, docks, and harbours may be closed to the public and 
ultimately prevent harvesting and fishing (García- Gómez et al. 2011). Following the discovery of 
abundant populations of Patella ferruginea in the Port of Ceuta, there have been proposals for 
the establishment of artificial sites termed artificial marine microreserves (AMMRs), where some 
endangered species experience a refuge from human disturbance (García- Gómez et al. 2011, 2015).

Other protection status for artificial structures
Artificial structures can be considered important for other reasons, such as heritage or scientific 
value. Harbours, ports, and piers are often designated for their historic value, and many even have 
UNESCO World Heritage status. For example, the disused docks of Liverpool, England, fall within 
the Liverpool Maritime Mercantile City UNESCO site and represent an important example of an 
urban ‘lagoonoid’ system supporting high biodiversity in clean waters (Allen et al. 1995, Hawkins 
et al. 2002). Furthermore, the conservation value of the Elmer network of artificial coastal defence 
structures on the southern coast of England has been recognized by the proposed designation as a 
Site of Special Scientific Interest (SSSI). This is largely because of the vegetated shingle but also 
because of the animals and plants colonizing the breakwaters (Burcharth et al. 2007).

Should it stay or should it go? Applications of the Rigs- to- Reefs concept

The removal of existing structures has significant environmental and financial costs (Dafforn et al. 
2015b). The typical lifespan of oil platforms and wind farms is 17.5 and 20–30 years, respectively 
(Pulsipher et al. 2001, Ortegon et al. 2012). Macreadie et al. (2011) estimated that 6500 oil and gas 
platforms are due for decommissioning by 2025, with an estimated cost of US $8 billion for the Gulf 
of Mexico alone (Kolian and Sammarco 2005). The Rigs- to- Reefs programme was developed in the 
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United States to convert decommissioned offshore oil and gas platforms into artificial reefs (Kaiser 
& Pulsipher 2005). This initiative operates under a ‘win- win’ premise (Rosenzweig 2003), whereby 
obsolete rigs are recycled as artificial reefs with the primary goal to provide substantial cost savings 
for the oil and gas industry while providing secondary benefits through benthic habitat conservation 
and fisheries management. Macreadie et al. (2011) discussed how this perception is widely recog-
nized despite little evidence supporting the ‘production hypothesis’ over the ‘attraction hypothesis’ 
(Pickering & Whitmarsh 1997). Since the implementation of the programme in the United States, 
similar schemes have been implemented throughout South- East Asia and Mexico. There was inter-
est in implementing the programme in Europe, but following much debate, environmental opposi-
tion has prevented the implementation of Rigs- to- Reefs in the North Sea (Picken & McIntyre 1989, 
Picken et al. 2000, Baine 2002, Sayer & Baine 2002).

The Rigs- to- Reefs concept has been proposed recently as a potential management strategy, 
termed renewables- to- reefs, for the large number of European wind farms that will be decommis-
sioned in the future (Smyth et al. 2015). This new technology means few baseline data are currently 
available (Ashley et al. 2014). Much of the focus of the construction of marine offshore renewable 
energy installations has focused on the impact on marine megafauna, birds, and the receiving envi-
ronment (Carstensen et al. 2006, Drewitt & Langston 2008, Bailey et al. 2010), with little consider-
ation of the fouling communities.

Sammarco et al. (2014) provided one of the few studies that has conducted a quantitative assess-
ment of different options for Rigs- to- Reefs. They found no significant difference in coral den-
sity between standing and toppled oil platforms and recorded that the invasive coral Tubastraea 
 coccinea was more abundant on the toppled compared to standing rigs. While Rigs- to- Reefs may 
potentially represent a popular and viable option by reducing access to towed fishing gear, with little 
existing data, careful consideration will be required in relation to the management goals, and each 
installation should be considered on a case- by- case basis (Smyth et al. 2015).

Planning future developments

Some of the greatest advances can potentially be made as a result of broader consideration, at the 
design stage, of the ecological consequences of new structures. In particular there is a need to 
recognize that the overarching drivers for construction in the marine environment (sea- level rise, 
global trade infrastructure, tourism) often operate at a much broader scale than the ‘impacts’ on 
society (flooding in a particular part of a town) and the associated societal responses (construction 
of a seawall to protect that location) (Smyth et al. 2015). Equally important in the context of this 
review, the ecological consequences of coastal structures can have far- reaching effects on species 
and habitats away from the structures themselves. Hence there is a clear need for marine spatial 
planning to consider synergistic and antagonistic consequences at broad spatial and temporal reso-
lution (Kidd 2007; Fischer et al. 2009, Jay et al. 2012). Such consideration needs to be incorporated 
at the design and planning stage to maximize opportunities and minimize threats. For example, in 
large arrays of structures there could be potential to enhance stocks of commercially important spe-
cies by green engineering. Similarly, it may be possible to achieve synergistic benefits by designing 
multifunctional structures for a range of different purposes. Overall it is important to work with 
nature using an ecosystem- based approach.

Ecological engineering

At present the evidence base for ecological benefits from engineering modifications comes from rel-
atively small- scale interventions. Few studies describe eco- engineering that has been incorporated 
into the planning stage of a new development. In ‘Managing artificial structures’ on page 218, we 
reviewed the range of different methods that have been retrofitted on to existing structures (Table 1). 
All of the examples could be considered at the design phase. Whenever and wherever possible, 
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eco- engineering should be incorporated into a project during construction rather than retrospec-
tively. Any manipulations will be cheaper, can be implemented on a much larger scale, can take 
advantage of heavy- lifting machinery on site, and can be covered by the existing licence for the con-
struction work. They can also be considered in any environmental assessment at the design stage.

Langhamer & Wilhelmsson (2009) conducted one of the few eco- engineering studies imple-
mented at the design phase. They showed that small holes cast into the concrete base of wave 
energy converters had a significant positive effect on the abundance of the commercially important 
crab Cancer pagurus. Furthermore, the European lobster (Homarus gammarus) was also found to 
occupy these holes (Table 1). Hence, there could be real opportunities here, for example, to create 
local potting fisheries in areas where arrays of wind turbines now preclude fishing by trawling. 
Further research is essential to determine the long- term effects and in particular whether these 
manipulations represent new ‘production’ as opposed to ‘attraction’ of mobile organisms from else-
where (Pickering & Whitmarsh 1997, Baine 2001, Spanier et al. 2011). Whichever applies, concen-
trating shellfish in defined areas makes pot and creel fisheries more productive.

Multifunctional structures

In light of the potential negative impacts of introducing additional novel habitats to the marine 
environment, multifunctional structures may provide a better option for fisheries enhancement and 
spatial efficiency. For example, secondary fisheries benefits may be designed- in to multifunctional 
coastal structures (e.g., Wilhelmsson et  al. 2010, Zanuttigh et  al. 2015) alongside their primary 
function as coastal defence that has been deemed essential or appropriate for shoreline management 
(e.g., Scyphers et al. 2015). Albertelli et al. (1995) suggested that using artificial structures for aqua-
culture of Lithophaga lithophaga might help to divert pressure from the very damaging harvesting 
techniques on natural reefs (Fanelli et  al. 1994). However, care is needed to ensure destructive 
harvesting methods are still compatible with the primary function of structures. Alternatively, col-
location of aquaculture with offshore industries may be viable, thereby increasing food or biofuel 
provision while minimizing additive impacts that would result from multiple and more dispersed 
developments resulting from single- use constructions (e.g., Buck et al. 2008, Zanuttigh et al. 2015). 
However, multifunctional usage needs to be considered from multiple perspectives (engineering, 
ecological, societal) to ensure synergies rather than conflicts of interest (Scyphers et al. 2015).

Water filtration by diverse rocky- reef assemblages has been linked to societal benefits of a 
coastal breakwater in an integrated approach to beach management in Italy (Lamberti & Zanuttigh 
2005). Consequently, there is growing interest in artificial reefs (including coastal protection reefs) 
that are constructed from, seeded by, or are naturally colonized by oysters and other filter- feeding 
organisms (Piazza et  al. 2005, Gao et  al. 2008, Borsje et  al. 2011, Reckenbeil & Ozbay 2014, 
Scyphers et al. 2015). It is important to consider the outcomes holistically. Wilhelmsson & Malm 
(2008) pointed out the risk associated with a lack of understanding of the potential for dense aggre-
gations of filtrating animals (on wind farm pilings) to profoundly affect ecosystem dynamics (e.g., 
see Maar et al. 2010).

Artificial reefs used for coastal protection can also enhance recreational amenities, such as surf-
ing, and are known as multifunctional artificial reefs (MFARs). For example, artificial surf reefs 
(ASRs) have been successfully developed in Australia, New Zealand, the United Kingdom, and the 
United States (Fletcher et al. 2011, Mead et al. 2011), with others planned for the Azores (Ng et al. 
2015). Not all such constructions have functioned well for surfing activities. Constructed in 2008, 
Boscombe Surf Reef is a multifunctional artificial reef on the southern coast of England that has 
been criticized for failing as an ASR, yet its value as habitat for a wide range of organisms has been 
widely recognized, with it now being a popular snorkelling site as part of a larger ‘coastal activity 
park’ (Fletcher et al. 2011, Herbert et al. 2013).
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Hybrid engineering and the ecosystem approach: building with nature

In addition to the potential environmental impacts and poor habitat quality of artificial structures 
described previously, ‘hard’ coastal defence approaches are often extremely expensive. In the 
absence of adequate coastal zone management and marine and maritime spatial planning, they 
can lead to inappropriate coastal development along eroding or low- lying coasts. They can also 
exacerbate coastal erosion through ‘coastal squeeze’ of natural intertidal habitats (Turner et  al. 
2007, Govaerts & Lauwaert 2009). Consequently, ‘soft’ engineering approaches, such as beach 
replenishment, sand dune stabilization, and managed realignment, are widely considered to be more 
sustainable options for flood and coastal erosion risk management (Turner et al. 2007, Govaerts & 
Lauwaert 2009). Nevertheless, in scenarios where no alternative options are viable for protecting 
people and assets, many shoreline management plans continue to recommend a strategy of ‘hold the 
line’. This means that local authorities are required to maintain existing defences and potentially 
augment these with additional hard protection measures. Where hard defence structures are con-
sidered necessary for flood and coastal erosion risk management, it is essential that they be imple-
mented with ecologically sensitive design to minimize impacts on the natural environment (Firth 
et al. 2014b, Hoggart et al. 2014).

Some locations are already implementing the ecosystem and hybrid approaches to coastal 
defence (e.g., Bilkovic & Mitchell 2013, Temmerman et al. 2013). For example, in Selangor, Malaysia, 
breakwaters and geotextile tubing were deployed in front of degraded mangroves at two locations, 
reducing wave energy and protecting seedlings of transplanted mangroves (Hashim et al. 2010, 
Kamali et al. 2010, Kamali & Hashim 2011, Tamin et al. 2011). Such rehabilitation practices are not 
currently widely used in conjunction with coastal protection (but see Perkol- Finkel et al. 2012, Firth 
et al. 2014b, Ferrario et al. 2016). These preliminary studies showed the potential for cost- effective 
habitat rehabilitation. Any rehabilitation technique, however, must take into consideration ecologi-
cal principles, including detailed knowledge of the species concerned (Dafforn et al. 2015b). It is 
also important to have clear restoration targets against which to measure success (Hawkins et al. 
2002, Knights et al. 2014) and where possible to work by ‘nudging nature’ (Hawkins et al. 1999) to 
achieve maximum leverage from natural capital. We can build on these early successes and develop 
a more robust and widespread use of hybrid structures viewed using an ecosystem approach. To 
echo the plea by Sutton- Grier et al. (2015), now is the time to design, test, research, develop, and 
apply hybrid structures and the ecosystem approach to protect human populations and infrastruc-
ture and strengthen coastal resilience (Spalding et al. 2014).

Managing artificial structures and infrastructure and the need for marine spatial planning

Structures placed in the sea can have impacts ranging from the local- scale (1 to 10 m) loss or modi-
fication of habitat to much larger scales (over hundreds of kilometres) by influencing networks of 
connectivity (Adams et al. 2014, Airoldi et al. 2015, Bishop et al. in press, Heery et al. in press). 
Widespread habitat modification, particularly of fringing coast, modification of sediment transport 
across large areas of seabed by structure placement, or crossing of the seabed by power cables and 
pipelines can lead to modification at the 1000 km scale (Dafforn et al. 2015a, Goodsir et al. 2015). 
The extent and type of impact will be determined partly by the attributes of the structures them-
selves, for example, in the manner and extent to which they modify not only sediment transport 
(Wilhelmsson et al. 2010) but also its arrangement (Dafforn et al. 2015a, Huang et al. 2015), hence 
the need for marine (or maritime) spatial planning.

Many structures are built in response to local needs, often by locally focussed businesses (such 
as holiday resorts or hotels) or authorities (ports, local municipal councils). These can then scale 
up over extensive stretches of coastline. Perhaps the best- documented example is in the northern 
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Adriatic, where over 80% of the coastline is now defended, often with one defence starving an 
adjacent location of sediment and exacerbating erosion (Airoldi et al. 2005a, Burcharth et al. 2007). 
Isolated patches (‘islands’) of artificial, mainly hard and modified, habitats surrounded by natural, 
usually soft sediment, habitat can also occur. The scope for colonization of such islands (e.g., an 
isolated offshore rig or a single breakwater or jetty on a sandy coast) will be restricted by suitability 
of the receiving habitat and hydrodynamics influencing larval supply, settlement, and recruitment to 
adult populations as well as food supply (Floerl & Inglis 2005). For example, Airoldi et al. (2015) 
found non- indigenous species were two or three times more abundant on infrastructure built along 
sedimentary coastlines than on natural rocky reefs or infrastructure built close to rocky coastlines in 
the northern Adriatic. Dafforn et al. (2015b) suggested that the designs and placements of different 
structures could restrict (breakwaters enclosing marinas) or enhance (dense configuration of pilings, 
pontoons, breakwaters) larval exchange and hence connectivity (Thomas 2011). On the Adriatic 
coast of Italy connectivity has been increased, facilitating the spread of non- indigenous species 
(Airoldi & Bulleri 2011, Airoldi et al. 2015). These examples emphasize the importance of spatial 
planning for urban development; this is as important in the sea as on land (Dafforn et al. 2015b).

Limitations

Research focusing on the ecological consequences of coastal construction is now fairly extensive, 
and there are data indicating the potential for modification of engineering design to influence eco-
logical outcomes. Our ability to achieve specific ecological objectives, such as boosting stocks of 
commercially important species or minimizing the spread of non- indigenous species, is still limited. 
One of the key drivers behind coastal construction is societal need, yet we know little about human 
perceptions of these constructions, in particular perceptions relating to different designs and differ-
ing ecological outcomes (but see van Loon- Steensma & Slim 2013). For example, the availability 
of alternative designs with known and predictable different outcomes may be valuable in gaining 
public engagement during the consenting process. In addition to debate about whether a structure 
should be built (i.e., managed retreat or soft defences), there should be discussion about what type 
of structure should be built (Wilson et al. 2015), including secondary outcomes. There is a grow-
ing body of work on perception of the natural world (e.g., Wyles et al. 2014, 2015) and in particular 
use of visualizations to help understand perceptions about future scenarios relating, for example, to 
flooding and climate change (e.g., Sheppard 2012, Tebboth 2014). Such approaches need to be incor-
porated within the planning and consenting process for coastal structures (Evans et al. in press).

There is also limited understanding of the interactive effects between structures, and the under-
lying drivers for their construction, and other environmental challenges, such as proliferation of 
pest species (e.g., jellyfish), parasite species and non- indigenous species, and interactive effects with 
climate change. Despite this gap in our knowledge, it is important to consider construction within 
the context of the multiple stressors that now challenge our environment.

Future directions
Looking to the future, it is essential to consider all of the relevant concerns and benefits in a wider 
perspective of marine spatial planning. The deployment of artificial structures in the marine envi-
ronment has the potential to cause conflict among interest groups, including the public, energy com-
panies, the fishing sector, and environmental groups. Conflicts should be minimized by integrating 
key stakeholders from the outset into the design, siting, construction, and operational phases of the 
installations and by providing clear evidence of both positive and negative potential environmental 
consequences (Scyphers et al. 2015, Wilson et al. 2015). It is also important to consider this in a 
framework of global change so that planning considers temporal as well as spatial elements.
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Concluding remarks
Often, we have considered structures either in isolation or as part of a network of similar structures, 
for example, windfarms (Adams et al. 2014), oil and gas platforms (Sammarco et al. 2010, 2012), 
coastal defences (Airoldi et al. 2015), or ports and harbours (Peters et al. 2014, Rius et al. 2014). 
With the increasing human population, continued ocean sprawl, the increase in global shipping, 
and biotic homogenization, these structures could begin to function as super ‘artificial networks’. 
For example, there are already some 4000 structures in the Gulf of Mexico, referred to as the ‘steel 
archipelago’ (Villareal et al. 2007). The challenge is therefore to take a holistic view of this bigger 
picture in terms of spatial scale and at the same time to consider the challenges in terms of multiple 
stressors (e.g., pollution, see Dafforn et al. 2009, Crooks et al. 2011; climate change, see Occhipinti- 
Ambrogi 2007; pest species [e.g., jellyfish], see Lo et al. 2008, Ishii & Katsukoshi 2010, Duarte 
et al. 2012; parasite species, see Firth et al. in press; toxic algae, see Vila et al. 2001, Villareal 
et al. 2007; extreme climatic events, see Firth et al. 2011, Diez et al. 2012, 2015a, Wernberg et al. 
2013, Smale & Vance 2015), both now and in the future. The potential rewards from such a holistic 
approach are considerable, with real opportunities for ‘win- win ecology’ (Rosenzweig 2003).
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