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Abstract
Increasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to 
global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. 
To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering 
and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotat-
ing wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy 
extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in 
five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe 
which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts 
from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our 
approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied 
in environmental impact assessments of WPP within woodlands worldwide.
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Zusammenfassung
Neue Anwendung und Validierung einer Methode zur Abschätzung der visuellen Einflüsse von bewegten Rotorblättern von 
Windenergieanlagen in Waldgebieten. Weltweit werden immer mehr Windenergieanlagen (WEA) errichtet, um den anthro-
pogenen Beitrag zur globalen Erwärmung zu reduzieren. Es gibt jedoch auch Bedenken hinsichtlich der Auswirkungen von 
WEA auf die menschliche Gesundheit und auf wildlebende Tiere. Um potenzielle Auswirkungen von WEA in Umweltver-
träglichkeitsprüfungen einzubeziehen, werden häufig Modelle angewendet, die Schattenwurf und Lärm berücksichtigen. 
Ein standardisiertes, einfaches und breit anwendbares Verfahren für die Bestimmung der Sichtbarkeit von bewegten Rotor-
blättern in Waldgebieten fehlt bisher weitgehend. Wir kombinieren die Flächen der Bodenbedeckungsklasse Wald, die aus 
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Orthofotos extrahiert wurden, mit Airborne-Laserscanning-Daten (LiDAR), um die Sichtbarkeit der Rotorblätter in fünf 
Waldstudiengebieten mit hoher räumlicher Auflösung darzustellen. Durch eine in-situ-Validierung in den fünf über Europa 
verteilten Untersuchungsgebieten, die zu einer einzigartigen Stichprobe von 1738 unabhängigen Feldbeobachtungen führte, 
zeigen wir, dass unser Ansatz adäquat vorhersagt, von wo aus bewegte Rotorblätter in Waldgebieten sichtbar sind und von 
wo nicht. Wir liefern damit den Beweis, dass unser Ansatz eine wertvolle Methode für die Bestimmung der Sichtbarkeit von 
sich bewegenden Rotorblättern mit hoher Auflösung liefert, die wiederum in Umweltverträglichkeitsprüfungen von WEA 
in Wäldern weltweit eingesetzt werden kann.

1  Introduction

Addressing global warming and related counteractions, a 
number of international political agreements aimed to pro-
mote the use and production of renewable energy in form 
of wind energy, photovoltaics or other techniques within 
the last decades (UNFCCC 2015). As a consequence, wind 
power plants (WPP) have been increasingly constructed 
across the globe (Renewable Energy Network 2018). There 
are, however, increasing concerns regarding the effects of 
WPP on human welfare (Merlin et al. 2015) and on free liv-
ing animals (Kuvlesky et al. 2007).

Assessing and analyzing environmental impacts of 
planned WPP on humans typically account for acoustic 
effects (noise emission), visual effects (e.g. shadow flicker-
ing, reflecting or blinking) or risks in form of ice throw on 
humans or human infrastructures (e.g. Kuvlesky et al. 2007; 
Schäffer et al. 2019). Residential health aspects or psycho-
social stress as well as landscape aesthetics are further main 
issues that have been addressed in past studies and assess-
ments (Bakker et al. 2012; de Vries et al. 2012). Such impact 
assessments of WPP typically focus on human wellbeing, 
including the number of turbines, distances to residential 
or recreational functions, observers’ height, weather/atmos-
pheric conditions or forest cover acting as screen (Manchado 
et al. 2019; Möller 2006; Rodrigues et al. 2010; Torres et al. 
2009; Tsoutsos et al. 2009; for an overview see also Jom-
bach et al. 2010). However, comprehensive environmental 
impact assessments should also address effects of WPP 
within woodlands on wildlife.

Effects of WPP on wildlife include the collision of bats 
and birds with moving wind turbine blades, barotraumas (De 
Lucas and Perrow 2017; Drewitt and Langston 2008) as well 
as behavioural adaptations due to WPP presence (Coppes 
et al. 2020; Hötker 2017; Rabin et al. 2006). These adapta-
tions include changes in birds’ vocalization (Whalen et al. 
2019; Zwart et al. 2016) and the avoidance of areas close to 
the turbines (Coppes et al. 2020; Hötker 2017). It is assumed 
that noise generated by WPP causes changes in displaying 
(singing) behaviour of male birds (Szymański et al. 2017), 
but animals seem also to react to visual cues (D’Angelo et al. 
2008), e.g. shadow flickering or moving blades of WPP.

While several studies focus on effects of WPP on wild-
life behaviour in flat, open landscapes with low amounts of 

vegetation (Hoover and Morrison 2005; Millon et al. 2015; 
Smith et al. 2020), large knowledge gaps remain for for-
ested areas, although there is an expanding pressure on these 
habitats (Bunzel et al. 2019). However, some rare studies 
provided evidence, that the movement of rotating turbine 
blades yielded behavioural effects on forest-dwelling wild-
life species (Coppes et al. 2019; Skarin et al. 2018). Move-
ment of rotor blades in the view of animals’ vision might 
trigger an anti-predator response, as prey animals react to 
movement in their sight (Heesy 2004). As a consequence, 
animals avoid such objects to reduce the risk of predation. 
Thus, home ranges of freely ranging female reindeers shifted 
after WPP construction and switched to areas where wind 
turbines were “out of sight” (Skarin et al. 2018). Thereby, 
“out of sight” was defined based on topography at a target 
height of 110 cm above ground, including information on 
vegetation coverage. Such studies are generally known as 
visual impact assessments.

Noise and shadow flickering of WPP can be modelled 
for WPP using specialized software (e.g. windPRO—EMD 
International). One widely applied approach for visual 
impact assessments of WPP are viewshed analyses (cf. Lag-
ner et al. 2018). This method draws lines of sight between 
WPP and selected locations in the landscape (Möller 2006). 
As large obstacles affect visibility of the WPP (Burrough 
et al. 2015), this analysis generally includes the topography, 
buildings and in some cases the average height of forests. 
Especially in forested landscapes, the structure of a forest 
(i.e. open vs. dense canopy cover and tree height) is likely 
to affect from where a WPP is visible or not. Approaches 
accounting for such woodland characteristics were only 
scarcely published yet (Skarin et al. 2018) or are entirely 
missing in such visual impact assessments. However, to 
obtain reliable estimates of visual cues of WPP on forest- or 
ground-dwelling animals, it is crucial to determine an accu-
rate assessment of the visibility of rotating turbine blades 
within woodlands.

Facing this lack, we developed a high-resolution visibility 
assessment of rotating turbine blades within forest-covered 
landscapes. We combined land cover information on for-
est canopy extracted from orthophotos and airborne laser 
scanning (LiDAR) data to assess the visibility of rotating 
turbine blades within forested landscapes on five study 
sites with high spatial resolution. Thereby, we aimed at the 
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construction of a valid visibility assessment, which can be 
derived from earth observation data rather than field records 
and which can be taken as proxy for the visibility of rotating 
turbine blades in forest landscapes. Our approach allows for 
broad application by practitioners to ensure its considera-
tion in environmental impact assessments in forest-covered 
landscapes. Conformingly, we used broadly available data 
without the need for extensive preparative procedures. This 
ensures practicability of the assessment and thus enables 
subsequent consideration of the resulting proxy in environ-
mental impact assessments. As such visual impact assess-
ments of moving rotor blades within forested areas have not 
been considered in environmental impact assessment up to 
now, our approach closes this lack and provides a further 
tool for decision making. In order to evaluate our visibility 
assessment for its usability, we developed a comprehensive 
validation approach. We used a unique, large dataset of 
independent field records of the visibility of rotating turbine 
blades, including different forest sites across Europe. This 
validation was done by means of Generalized Linear Models 
(GLM), where we contrasted visibility—predicted by our 
assessment approach—with levels of visibility recorded 
in nature. To our knowledge, both aspects, i.e. the high-
resolution assessment of the visibility of rotating turbine 
blades within woodlands and the comprehensive statistical 
validation of the assessment based on cross-European field 

Table 1   List and characteristics of study sites and characteristics of the related wind energy plants

Validation sample size indicates the number of field record plots per study site

Site Name Size (ha) Mean altitude and 
range (m a.s.l.)

Mean slope and range (°) Wind tur-
bine height 
(m)

No. of 
turbines 
(n)

Validation 
sample size 
(n)

Grid size of 
plots  
(m × m)

Germany 1 Alexanderschanze 160 901 (675–965) 11.7 (1.0–34.0) 120 1 171 100 × 100
Germany 2 Hornisgrinde 300 1023 (857–1147) 17.8 (0.0–36.0) 124 1 305 100 × 100
Austria 1 Pretul 360 1391 (989–1639) 22.3 (5.9–49.3) 119 21 267 100 × 100

121
Austria 2 Hochpürschtling 655 1393 (1258–1489) 15.0 (1.5–32.8) 146 9 339 140 × 140
Sweden Jädraås 2295 304 (245–366) 5.3 (0.7–24.8) 175 66 656 200 × 200

Fig. 1   Location of cross-European study sites, GER 1 and 2 are the 
study sites in Germany, AUS 1 and 2 the study sites in Austria and 
SWE is the Swedish study site

Table 2   Characteristics and sources of base data for the visibility assessment (SE standard error)

Study site region DSM, 
DTM data 
base

Data source (reference) Point density (points/m2) SE heights Reference system

Austria LiDAR Land Steiermark, A17 Statistik und Geoin-
formation, GIS (Land  (2019)

2 above 2000 m a.s.l
4 below 2000 m a.s.l

 ± 0.15 m EPSG 32633

Germany LiDAR Landesamt für Geoinformation und Landent-
wicklung Baden-Württemberg

(Schleyer 2001)

0.8  ± 0.15 m EPSG 25832 in plane
EPSG 7837 in height

Sweden LiDAR Lantmäteriet
(Lantmäteriet 2018)

1–2  < 0.1 m SWEREF 99 TM in plane
RH 2000 in height
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observations, have not been published in a comparable way 
up to now.

2 � Methods

2.1 � Study Sites

We used five cross-European study areas with active WPP 
comprising study sites in the Eastern Alps (Austria), on cen-
tral European low altitude mountain ranges (Germany) and 
Central Sweden (see Table 1, Fig. 1). The Austrian study 
areas were located in the Styrian Alps at elevations between 
989 and 1639 m a.s.l.. Typical forest communities of the 
Austrian study sites were coniferous montane forests with 
dominance of Norway spruce (Picea abies), silver fir (Abies 
alba), and European larch (Larix decidua). The two Aus-
trian sites comprise one wind park with 9 turbines of the 
type Repower MM92 (total height 146 m), and one wind 
park with 14 turbines of the type ENERCON E82-E4 (total 
height 119 m) and seven E70E4 (total height 121 m). The 
German study sites were located in the Black Forest low alti-
tude mountain range in the state of Baden-Württemberg at 
elevations between 675 and 1147 m a.s.l.. There, the typical 

mixed montane forests are characterized by Norway spruce, 
silver fir, Scots pine (Pinus sylvestris), and European beech 
(Fagus sylvatica). The two German study sites contain one 
turbine of the type ENERCON E-70 (total height 120 m) 
and one of the type Südwind S70 (total height 124 m). 66 
turbines of the type Vestas V112 (total height 175 m) are 
situated at the facility in the Swedish study site, which was 
located in Central Sweden at elevations between 245 and 
366 m a.s.l.. The Swedish forests are predominantly charac-
terized by Scots pine and Norway spruce.

2.2 � Visibility Assessment (VA)

Orthophotos for the land cover classification and topo-
graphic data based on LiDAR technology were supplied by 
the Styrian provincial government (“Land Steiermark, A17 
Statistik und Geoinformation, GIS”, Austrian study area), 
the regional authority for geoinformation and land devel-
opment Baden-Württemberg (“Landesamt für Geoinforma-
tion und Landentwicklung Baden-Württemberg”, German 
study areas) and the Swedish mapping, cadastral and land 
registration authority (“Lantmäteriet”, Swedish study area) 
(Table 2). We used the digital surface models (DSM) and 
digital terrain models (DTM), prepared and provided by the 

Fig. 2   Workflow of data processing, field sampling and statistical validation within our study
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provincial governments or regional authorities, respectively, 
as this would allow for a congruent processing in practical 
application contexts in future. For the Austrian Province 
of Styria and for Sweden, topographic data are provided as 
open data.

To address effects of forest cover and related vegetation 
structures on the visibility of rotating turbine blades, we first 

defined a processing radius of 3 km around each turbine and 
then derived the height of the vegetation for all study areas. 
We limited the processing radius to 3 km to reduce calcula-
tion efforts and to focus on an area of presumably higher 
biological relevance (i.e. decreasing perceptibility of rotat-
ing turbine blades with increasing distance). Using the high-
resolution topographic data based on LiDAR technology, 

Fig. 3   Schematic visualization of the different in-situ interactions of topography and forest cover on the visibility of rotating wind turbine blades

Fig. 4   Visualization of the different in-situ interactions of topogra-
phy and forest cover on the visibility of rotating wind turbine blades 
in one study area: a location of wind turbines in the Hochpürsch-
tling study area on a topographical base map (source: basemap.at, 
Open Government Data Österreich Lizenz CC-BY 4.0), b viewshed 
analysis showing the visibility of the wind turbines only based on 
the topography (yellow indicates that a least one wind turbine is vis-

ible), c viewshed analysis showing the visibility of the wind turbines 
including the vegetation (green indicates that a least one wind turbine 
is visible), d the locations of the plots used for in-situ observation 
whether a wind turbine was not visible (red dots), partially visible 
(orange dots) or fully visible (green dots) during the field records at 
an 1.5 m-observer height
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we calculated vegetation height by subtracting the DSM 
from the DTM (see workflow-chart, Fig. 2). Additionally, 
we classified false-colour orthophotos in a pixelwise manner 
by thresholding the bands. This straightforward classifica-
tion approach was sufficient as the dominant land cover was 
forest and the purpose of the classification was to eliminate 
forest from non-forest land cover. The thresholding had to 
be done for each study site separately.

In a second step, we only considered vegetation higher 
than 2 m in our analyses to further eliminate the phenologi-
cal highly variable ground vegetation. Therefore, we could 
separate this stratum, which does not significantly impact 
the visibility of rotating turbine blades for medium- to large-
sized forest-dwelling wildlife species, from forest cover in a 
narrow sense. We then added only the resulting forest veg-
etation height to the DTMs (i.e. elevation and topography of 
the study areas) to create a raster dataset (1 × 1 m resolution).

Finally, we applied a viewshed analysis per turbine using 
the tool “Viewshed” in ArcGIS 10.5.2 with the following 

input parameters: the geographical location of each single 
turbine, the total height of the turbine and our raster includ-
ing data on elevation, topography and forest vegetation. To 
create and validate a standardized, yet simple and widely 
applicable proxy for the visibility of rotating wind turbines 
in woodland areas, we calculated visibility at ground level 
per turbine. The output of the viewshed data indicates per 
raster cell (1 × 1 m resolution), whether the upper tip of the 
rotating turbine blades is visible or not (binary output) from 
this cell (see Fig. 3). Thus, instead of modeling the visibil-
ity of the entire rotor swept area (e.g. by combining several 
viewshed analyses), we created a model which is readily 
applicable and easy to interpret (Fig. 4).

2.3 � Field‑Based Visibility Records (VR)

For a validation of our VA, field work was performed 
between 1 July 2016 and 31 October 2016. We recorded vis-
ibility of rotating turbine blades within woodlands via field 

Table 3   Delineation of visibility classes (#1–3) of rotating turbine blades in forested terrain in the course of field mapping

Visibility 
class

Description Sketch

#1 The rotating turbine blades are not visible or only visible within small crown 
windows (not distinctly differing from movements of branches)

#2 At least one rotating turbine blade is partially visible

#3 The rotating turbine blades are fully visible
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mapping on a systematic grid, ranging from 100 × 100 m 
to 200 × 200 m, depending on the size of the study areas 
and already in situ established sampling grids, respectively. 
Plot locations were approached with handheld GPS devices 
(Garmin Etrex 30× and Etrex 20×). Field validation was 
performed up to 2359 m from the towers of WPPs on the 
study sites.

To verify, whether our VA of rotating turbine blades 
would hold as authoritative proxies for impact assessment 
for medium- to large-sized forest-dwelling animals, we 
recorded the visibility of moving blades at two different 
observer heights above ground (explained below). The field-
based visibility records were based on several, subsequent 
steps: first, we compiled a schematic representation of three 
visibility classes (not visible/partially visible/fully visible), 
which are highlighted and described in Table 3. Prior to the 
field records, we intensively trained all field observers to 
calibrate field records and to ensure consistent assessments 
throughout the study. During the field records, observers 
compared and recalibrated their assessment in several day 
intervals by comparing and adjusting their personal assign-
ment in accordance with other observers. This process 
ensured a consistent recording throughout the study.

To account for positioning inaccuracy of GPS locations, 
we based our visibility assessment on a 5-m contour line 
transect-average per sampling plot. Field records were only 
done on days with optimal weather conditions (no fog, no 
rain) representing time of maximum visibility and when 
rotor blades were rotating/active. We used an observer height 
of (1) 50 cm above ground, which simulates the view angle 
of different medium-sized ground dwelling animal species 
in Central European forests (e.g. red fox Vulpes, capercaillie 
Tetrao urogallus) and (2) 150 cm above ground, which simu-
lates the view angle of large ground-dwelling animals (e.g. 
red deer Cervus elaphus) and also represents human percep-
tion (cf. Lagner et al. 2018). The validation of the visibility 
assessments at these two observer heights should indicate, 
whether the general viewshed analyses at ground level would 
provide an authoritative proxy of the visibility for a wide 
range of ground-dwelling wildlife species of differing body 
size. To account for a potential impact of different environ-
mental drivers on the visibility of rotating turbine blades 

within woody landscapes and to address potential drivers 
of misclassification, we also recorded a set of explanatory 
variables during the field records (Table 4).

2.4 � Contrasting Assessed Visibility vs. Field 
Records—Statistical Validation

We validated our visibility assessment (VA) of rotating tur-
bine blades by contrasting the modelled visibility against 
the results of our independent field-based visibility records 
(VR). VA was determined at different spatial scales (ras-
ter cell resolution 1 × 1 m, within a 10 and 20 m radius), 
whereas VR was determined at two different observer 
heights (50 cm and 150 cm above ground). Field validation 
was only done within woodland areas.

Based on the binary VA output per grid cell (not vis-
ible/visible), we calculated the spatial percentage of cells, 
where rotating turbine blades were predicted to be visible. 
This percentage of cells with visibility was derived for a 
10 m and 20 m radius around each field sampling point, 
using a circular moving window. This further improved our 
model validation, as the grid points of the field records were 
approached using handheld GPS, which are known to hold 
potential GPS-inaccuracies of up to several meters, while the 
grid cell size for the viewshed analyses (not visible/visible) 
was 1 × 1 m. Considering the ordinal and binary scale of 
our VR output (i.e. three classes vs. two classes of visibility, 
see Table 5) and the different scale levels of potential driv-
ers of visibility in the field (see Table 5), we chose GLMs 
(Generalized Linear Models) and GLMMs (Generalized 
Linear Mixed Models) for the statistical validation. Logis-
tic regression models describe the relationship between a 
categorical response variable and at least one explanatory 
variable (Anderson 1984; Hosmer and Lemeshow 2000). 
In case that the response variable is dichotomous, a binary 
logistic regression ca be run. A special case of multino-
mial logistic regression models, where the response vari-
able shows more than two categories (being polytomous), 
is the ordinal logistic regression. For this type of logistic 
regression, the response variable shows at least three ordered 
levels. For proportional odds ordinal logistic regression 
models, which we used in our study, the proportional odds 

Table 4   List of tested explanatory environmental variables for the logistic regression analyses, yielding from field records

Variable Description

Sun conditions Backlighting occurring/not occurring (0/1) during the field records, referring to the direc-
tion of the WPP

Wind conditions At observer height level, i.e. 50 cm and 150 cm above ground level
1 = calm/light air (Bft 0–1), 2 = light/gentle breeze (Bft 2–3), 3 = moderate/fresh (Bft 4–5)

Forest edges Occurring/not occurring (0/1) at sample plot level
Canopy cover % of the ground covered by the crown of trees
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assumption has to be satisfied. According to this assump-
tion, the slope between each pair of levels of the response 
variable is assumed to be the same for each independent 
variable. Thus, the model comprises only one set of coef-
ficients for the independent variables, but different intercepts 
per level of the response variable, respectively. In general, 
logistic regression models hold the advantage that they are 
robust both in terms of underlying distributions and in terms 
of scale levels of input data (Agresti 1989). The statistical 
validation of the visibility assessment with GLMs was based 
on two steps (see also Table 5):

1.	 We first calculated proportional odds ordinal logistic 
regression models (OLR) per study site for each observer 
height (50 cm and 150 cm above ground) separately, 
using the three visibility classes (not visible/partially 
visible/fully visible) of the field-based visibility records 
as response variable and the calculated percentage of 
visibility as explanatory variable (VA, within a 10 m or 
within a 20 m radius, respectively). For the study site 
Alexanderschanze, we did not calculate an OLR, as the 
sample size per visibility class was too small to allow 
for site-specific OLR runs (Harrell 2001). We further 
fitted models with additional environmental variables 
(e.g. wind conditions or backlighting, for details see 
Tables 4 and 7) to test the explanatory value for the vis-
ibility records (VR). Prior to these analyses, we plotted 
the explanatory variables against the visibility assess-
ment (VA) classes and run Brants tests (Brant 1990) to 
ensure, that the explanatory variables would satisfy the 
proportional odds assumption, being one precondition 
for running OLRs (McCullagh 1980; Harrell 2015). We 
also compared the effect coefficients of environmental 
explanatory variables based on binary logistic regres-
sions of two related levels of the factorial response vari-
able, respectively (i.e. not visible vs. partially visible 
and partially visible vs. fully visible) to control for the 
proportional odds assumption. As the environmental 
explanatory variable “canopy cover of trees” did not 
meet the requirement of proportional odds, it was dis-
carded from OLR calculations.

2.	 Accounting for the fuzziness of visibility records (VR) 
in the field (i.e. the field workers’ assignment of the vis-
ibility of rotor blades to one of three distinct classes of 
visibility—not visible/partially visible/fully visible), we 
also ran mixed effects logistic regression models with 
a binary outcome variable (binary logistic regression 
models, BLR) considering only two classes of visibility 
(not visible vs. visible) at a given study plot. Thereby, 
we used the binary visibility records (VR) (at 50 and 
150 cm above ground, respectively) as response vari-
able, the visibility assessment (VA, within a 10 m or 
20 m radius) as well as additional environmental varia-Ta
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bles (e.g. wind conditions, backlighting or canopy cover 
of trees) as explanatory variables. Accounting for the 
differing sample sizes per study sites (Table 1), we con-
sidered the study site as random intercept (after checking 
the random intercept assumption via boxplots per study 
site).

To analyze potential causes for misclassifications of the 
VA (prediction of the VA does not correspond to the VR), 
we further ran BLRs. We used correctness of classification 
(i.e. correct assignment of plots with or without visibility 
of rotor blades) of the VA as binary response variable and 

different environmental variables (e.g. wind conditions, 
backlighting and canopy cover of trees) as explanatory vari-
ables. Again, we considered the study site as random inter-
cept, accounting for differing sample sizes per study site.

The models were calculated using the packages MASS 
(Venables and Ripley 2002) for the OLR and lme4 (Bates 
et al. 2015) for the BLR within the R 3.5.2 (R core team) 
environment. The Brants test was calculated using the brant 
package (Brant 1990).

Fig. 5   Boxplots of the percentage of grid cells with visibility of the 
rotating turbine blades at two observer heights within the 10 m (upper 
panel, a and b) and 20  m radius (lower panel, c and d) around the 
grid center according to the visibility assessment, contrasted against 

the three classes of visibility of field records (1, not visible; 2, par-
tially visible; 3, fully visible). The observer height of 50  cm above 
ground is depicted in the left panel (a and c), the observer height of 
150 cm in the right panel (b and d)
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3 � Results

In total, we validated the output of our visibility assessment 
with 1738 independent direct personal recordings of vis-
ibility in the field. Both, across all study sites and for each 
single study site, the percentage of visible grid cells (accord-
ing to the model) within a 10 m and a 20 m radius increased 
with increasing visibility levels recorded in the field (not 
visible/partially visible/fully visible) (for an overview across 
all study sites see Fig. 5). This applies both for observer 
heights of 50 cm and 150 cm above ground (Fig. 5). At 
plot center level (1 m2) and for both observer heights above 
ground (50 cm and 150 cm), the rate of correct classifica-
tion (= both status “visible” and “not visible” according to 
the model and to the field records) was 69% across all study 
sites (ntotal_plots = 1738). Correct positive classification rates 
(visibility = correctly classified) was 67 and 69% and cor-
rect negative classification rates (non-visibility = correctly 
classified) was 70 and 68% for 50 cm and 150 cm observer 
heights, respectively.

At study site level, OLRs consistently yielded a signifi-
cant explanatory effect of the visibility assessment (VA) on 
the visibility classes (not visible/partially visible/fully vis-
ible), recorded in the field (VR). This applies both for the 
10 m and the 20 m radius and for observer heights of 50 cm 
and 150 cm above ground (see Table 6, “Appendix”). Apart 
from the VA, only the wind condition appeared as significant 
environmental explanatory variable in rare cases. Neither 
sun conditions (backlighting), nor the occurrence of forest 
edges significantly contributed as explanatory variables to 
the OLRs per study site. We, thus, reduced the OLRs per 
study site to the intercepts and the explanatory variable VA.

Across all study sites, the BLRs showed significant effects 
of the VA (10 m and 20 m radius) on the visibility classes 
of VR, together with effects of the environmental explana-
tory variables canopy cover of trees and wind conditions 
(see Table 7, “Appendix”). The canopy cover of trees nega-
tively affected visibility of rotor blades in the field, whereas 
increasing wind stringently showed a positive effect on VR. 
Sun conditions (backlighting) and the occurrence of forest 
edges did not significantly contribute to the BLRs across all 
study sites.

The BLRs of classification correctness also showed sig-
nificant effects of the environmental explanatory variables 
canopy cover of trees and wind conditions on the classifica-
tion correctness (i.e. correct classification of both visibility 
and non-visibility; see Table 8, “Appendix”) at both observer 
heights. Thereby, both increasing canopy cover of trees and 
increasing wind negatively affected accordance between VA 
and VR. Again, the explanatory variables of sun conditions 

(backlighting) and the occurrence of forest edges did not 
enter the final BLRs.

4 � Discussion

The validation steps of this study showed, that our visibility 
assessment provides an authoritative proxy for the visibility 
of rotating turbine blades within landscapes that are covered 
by forests. This applies both for different levels of visibility 
of rotating turbine blades (not visible/fully visible/partially 
visible) and for a binary assessment (visible vs. not visible). 
Thus, we offer a valid proxy that had neither been derived 
nor statistically validated for forested landscape patches until 
now.

Independent field observations of the visibility and 
related model validations for woodland areas are scarcely 
available in literature (cf. Wróżyński et al. 2016). In all cases 
within our study, the visibility assessment proved to be a 
significant independent variable within the different vali-
dation models. Consequently, high resolution land surface 
data generated via LiDAR technology, can adequately depict 
forest and vegetation structures which lower the visibility of 
rotating wind turbine blades apart from pure terrain features. 
Using our experimental approach, we proved that natural 
visual obstructions (e.g. forest vegetation cover) can be 
considered in spatial visibility analyses. Thus, neither time 
consuming, expensive field records, nor direct addressing of 
residents with questionnaires (Pedersen et al. 2009; Tsoutsos 
et al. 2009) or related methods (de Vries et al. 2012) have 
to be conducted.

The output of our visibility assessment can be used to 
implement the visibility of rotating turbine blades adequately 
in environmental impact assessments in woody landscapes, 
which was lacking so far (e.g. Rafiee et al. 2018; Rodrigues 
et al. 2010) and to base conclusions on potential effects on 
the visibility assessment output. This might address both, 
human welfare perspectives as well as potential effects of 
WPP on forest-dwelling wildlife (see Coppes et al. 2019), 
constituting a potentially important factor in regional assess-
ments of visual impacts and in related planning processes 
(cf. Möller 2006). As distinctly different “observer heights” 
might be relevant for considering effects of rotating turbine 
blades on different medium- to large-sized ground-dwelling 
wildlife-species, the validation of the ground-level VA at 
different observer heights was an important issue in this 
study. Thereby, we could prove, that even ground-level VA 
provides an authoritative, yet simple and widely applicable 
proxy for the visibility of rotating wind turbines in woodland 
areas.



11PFG (2021) 89:1–14	

1 3

However, despite of a high rate of correct classification 
(and thus a successful model validation), some uncertain-
ties in the purely remote-based assessment of visibility 
are remaining. All final binary logistic regression models 
(at different observer heights and for different plot radii), 
either proving relations of the visibility assessment out-
put to the visibility records in the field or exploring driv-
ing factors of misclassification, comprised the variables 
canopy cover of trees and wind condition. For the first 
suite of models, relating the output of the visibility assess-
ment to the field records, increasing canopy cover within 
forests negatively impacted visibility in the field, whereas 
increasing wind had the opposite effect. Obviously, the 
assignment of sample plots to the category “visible” or 
“not visible” becomes fuzzier in case of higher canopy 
cover. This applies for both validation heights and for the 
two plot radii. In contrast, fast blade motion during strong 
wind conditions might attract views. The referring effect 
coefficients in the validation models all show a very similar 
order of magnitude.

On the other hand, both canopy cover and wind affected 
the classification correctness, with a lower probability of 
correct classification in case of increasing forest cover 
and increasing wind. While visibility on sparsely covered 
plots might be easily recorded, increasing forest cover 
could have caused difficulties for the field workers to deter-
mine a distinct visibility class. Another possible cause for 
the observed misclassifications of the visibility could be 
attributed to the fact, that our visibility assessment only 
addressed the visibility of the tip of the WPP and not of 
the entire rotor swept area. Therefore, the upper tip of the 
turbine blades might not be visible as per assessment, but 
a large part of the rotor swept might be visible in the field 
recording, for example at forest edges. However, forest 
edges did not remain as significant driver in any final vali-
dation model.

We finally conclude, that our assessment of the visibility 
of rotating turbine blades in woodlands can adequately esti-
mate from where moving blades are visible or not. Based 
on a unique field validation of the assessment in different 
topographical conditions throughout Europe, we assume that 
our approach can be applied under different forest condi-
tions. We thus provide an authoritative additional approach 
to represent potential impacts of WPP in woodland areas 
on both humans and wildlife in terms of visibility of rotat-
ing turbine blades. This information can consequently be 
used for evaluations of existing as well as planned WPP in 
woodland areas.

Appendix

See Tables 6, 7 and 8.

Table 6   Final ordinal logistic regression models per study site at the 
two different observer heights (50  cm and 150  cm above ground); 
observer heights are indicated with “_50cm” and “_150cm” in the 
model acronyms; study sites are indicated in the model acronyms 
with Hochpürschtling, HP; Pretul, PR; Hornisgrinde, HG; Swe-
den, SWE; categories of the response variable (visibility of rotor 
blades during field records) are: 1, not visible; 2, partially visible; 
3, fully visible; the output of the visibility model VM is indicated as 
“VM_10m” and “VM_20m”, indicating the percentage of 1 m2 grid 
cells within a 10 or 20 radius, where the visibility model yielded vis-
ibility of the rotor blades; intercepts are depicted per category of the 
response variable, relating the levels 1 (partial visibility) and 2 (full 
visibility) to the reference category 0 (no visibility)

Model no Exp(B) SE t value p

OLR1_HP_50cm Intercept 1/2 2.148 0.230 9.340  < 0.001
Intercept 2/3 3.707 0.299 12.393  < 0.001
VM_10m 0.046 0.006 8.313  < 0.001

OLR2_PR_50cm Intercept 1/2 0.285 0.242 1.177 0.239
Intercept 2/3 1.964 0.272 7.217  < 0.001
VM_10m 0.028 0.005 6.134  < 0.001

OLR3_HG_50cm Intercept 1/2 1.741 0.172 10.104  < 0.001
Intercept 2/3 3.317 0.283 11.734  < 0.001
VM_10m 0.024 0.004 5.653  < 0.001

OLR4_SWE_50cm Intercept 1/2 4.472 0.412 10.843  < 0.001
Intercept 2/3 6.721 0.466 14.416  < 0.001
VM_10m 0.068 0.005 12.793  < 0.001

OLR5_HP_50cm Intercept 1/2 2.831 0.287 9.853  < 0.001
Intercept 2/3 4.527 0.365 12.408  < 0.001
VM_20m 0.065 0.007 9.185  < 0.001

OLR6_PR_50cm Intercept 1/2 0.497 0.261 1.900 0.057
Intercept 2/3 2.201 0.295 7.464  < 0.001
VM_20m 0.033 0.005 6.430  < 0.001

OLR7_HG_50cm Intercept 1/2 1.789 0.176 10.160  < 0.001
Intercept 2/3 3.379 0.288 11.738  < 0.001
VM_20m 0.028 0.005 5.806  < 0.001

OLR8_SWE_50cm Intercept 1/2 5.556 0.460 12.068  < 0.001
Intercept 2/3 7.920 0.522 15.163  < 0.001
VM_20m 0.093 0.006 13.784  < 0.001

OLR9_HP_150cm Intercept 1/2 2.301 0.240 9.573  < 0.001
Intercept 2/3 3.663 0.300 12.210  < 0.001
VM_10m 0.049 0.006 8.464  < 0.001

OLR10_PR_150cm Intercept 1/2 0.121 0.240 0.503 0.615
Intercept 2/3 1.729 0.264 6.560  < 0.001
VM_10m 0.027 0.005 5.884  < 0.001

OLR11_HG_150cm Intercept 1/2 1.626 0.166 9.804  < 0.001
Intercept 2/3 3.248 1.273 11.907  < 0.001
VM_10m 0.273 0.004 6.344  < 0.001

OLR12_
SWE_150cm

Intercept 1/2 4.472 0.412 10.843  < 0.001

Intercept 2/3 6.721 0.466 14.416  < 0.001
VM_10m 0.068 0.005 12.793  < 0.001

OLR13_HP_150cm Intercept 1/2 3.019 0.303 9.967  < 0.001
Intercept 2/3 4.507 0.37 12.176  < 0.001
VM_20m 0.068 0.007 9.229  < 0.001

OLR14_PR_150cm Intercept 1/2 0.331 0.259 1.279 0.201
Intercept 2/3 1.965 0.286 6.867  < 0.001
VM_20m 0.032 0.005 6.218  < 0.001
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Exp(B) denotes the effect coefficient (= odds ratio), SE the standard 
error associated with the effect coefficient; t value is the parameter 
estimate (aka coefficient) divided by its standard error and p is the 
p-value used in testing the null hypothesis that the coefficient (param-
eter) is 0

Table 6   (continued)

Model no Exp(B) SE t value p

OLR15_HG_150cm Intercept 1/2 1.695 0.171 9.937  < 0.001
Intercept 2/3 3.347 0.281 11.925  < 0.001
VM_20m 0.032 0.005 6.622  < 0.001

OLR16_
SWE_150cm

Intercept 1/2 5.643 0.460 12.257  < 0.001

Intercept 2/3 8.015 0.523 15.324  < 0.001
VM_20m 0.086 0.006 14.151  < 0.001

Table 7   Final binary logistic regression (BLR) models across all 
study sites at the two different observer heights (50 cm and 150 cm 
above ground); observer heights are indicated with “_50cm” and 
“_150cm” in the model acronyms; study sites considered as random 
intercepts; categories of the response variable (visibility of rotor 
blades during field records) are: 1, not visible; 2, visible; the output of 
the visibility model VM is indicated as “VM_10m” and “VM_20m”, 
indicating the percentage of 1 m2 grid cells within a 10 or 20 radius, 
where the visibility model yielded visibility of the rotor blades

Wind conditions are indicated as “wind” with three distinct wind 
classes, i.e. wind 1, Bft 0–1; wind 2, Bft 2–3 and wind 3, Bft 4–5. 
Exp(B) denotes the effect coefficient (= odds ratio), SE the standard 
error associated with the effect coefficient; t value is the parameter 
estimate (aka coefficient) divided by its standard error and p is the 
p-value used in testing the null hypothesis that the coefficient (param-
eter) is 0

Model no Exp(B) SE z value p

BLR1_50cm Intercept − 0.718 0.533 − 1.346 0.178
VM_10m 0.028 0.003 10.996  < 0.001
Canopy cover − 0.027 0.003 − 9.739  < 0.001
Wind 2 0.464 0.158 2.944 0.003
Wind 3 0.824 0.224 3.679  < 0.001

BLR2_50cm Intercept − 1.011 0.56 1.808 0.071
VM_20m 0.034 0.003 11.562  < 0.001
Canopy cover − 0.025 0.003 − 9.262  < 0.001
Wind 2 0.446 0.159 2.805 0.005
Wind 3 0.791 0.225 3.51  < 0.001

BLR3_150cm Intercept − 0.427 0.461 − 0.925 0.355
VM_10m 0.030 0.003 11.531  < 0.001
Canopy cover − 0.029 0.003 − 10.472  < 0.001
Wind 2 0.416 0.158 2.631 0.009
Wind 3 0.900 0.228 3.953  < 0.001

BLR4_150cm Intercept − 0.716 0.485 − 1.478 0.140
VM_20m 0.035 0.003 12.114  < 0.001
Canopy cover − 0.028 0.003 − 10.011  < 0.001
Wind 2 0.397 0.159 2.489 0.013
Wind 3 0.865 0.229 3.771  < 0.001

Table 8   Final binary logistic regression (BLR) models of classifica-
tion correctness (across all study sites), calculated per sample plot 
center at the two different observer heights (50 cm and 150 cm above 
ground); observer heights are indicated with “_50cm” and “_150cm” 
in the model acronyms; study sites considered as random intercepts; 
categories of the response variable (correctness of classification) are: 
0 = not correctly classified (i.e. either visibility or non-visibility), 
1 = correctly classified (i.e. both visibility and non-visibility). Wind 
conditions are indicated as “wind” with three distinct wind classes, 
i.e. wind 1, Bft 0–1; wind 2, Bft 2–3 and wind 3, Bft 4–5

Exp(B) denotes the effect coefficient (= odds ratio), SE the standard 
error associated with the effect coefficient; t value is the parameter 
estimate (aka coefficient) divided by its standard error and p is the 
p-value used in testing the null hypothesis that the coefficient (param-
eter) is 0

Model no Exp(B) SE z value p

BLR5_50cm Intercept 1.374 0.252 5.447  < 0.001
Canopy cover − 0.006 0.002 − 2.809 0.005
Wind 2 − 0.311 0.14 − 2.224 0.026
Wind 3 − 0.287 0.19 − 2.809 0.005

BLR6_150cm Intercept 1.419 0.253 5.605  < 0.001
Canopy cover − 0.007 0.002 − 3.042 0.002
Wind 2 − 0.337 0.14 − 2.404 0.016
Wind 3 − 0.209 0.192 − 1.09 0.276
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