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EXECUTIVE SUMMARY 

 

• The seabird declines that commenced at the end of the last century have 

continued during the last two decades. 

• Further research into the causes of these declines is required if we are to 

fully understand the complex mechanisms operating, which are known to 

vary geographically. Climate change is considered to be one of the main 

causes of the declines. The principal mechanism is the effect of climate 

warming on food supply. 

• There is growing evidence that short-term weather conditions have an 

important effect, including extreme weather events. Climate models 

predict further warming and increased severity and frequency of extreme 

weather events in UK waters. 

• Seabirds face an uncertain future and may decline further in the coming 

decades, as the interacting effects of new and existing influences will pose 

additional challenges. 

 

1. WHAT IS ALREADY HAPPENING?  

 

The UK holds internationally important populations of seabirds (Mitchell et 

al., 2004).  After expanding for much of the last century, UK seabirds have 

shown substantial declines in the last two decades (Grandgeorge et al., 2008; 

JNCC, 2016).  A recent UK Government-led assessment of the state of the 

UK’s seas concluded that breeding seabirds had not achieved ‘Good 

Environmental Status’ (GES) as defined by the UK Marine Strategy (Defra, 

2019).  Over a third of species assessed had experienced declines in breeding 

abundance of 20–30% or more since the early 1990s (Mitchell et al., 2018a).  

Furthermore, the proportion of species experiencing widespread and frequent 

breeding failures has been increasing over the last decade (Mitchell et al., 

2018b).  These assessments were not confined to UK colonies: similar 
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patterns of change have occurred elsewhere in the North-east Atlantic 

(OSPAR, 2017a; b).   

 

Of the 25 species breeding in the UK, six (24%) are on the UK’s ‘Red-list’ of 

Birds of Conservation Concern  (European shag, Atlantic puffin, black-

legged kittiwake, Arctic skua, roseate tern and herring gull) and 18 (72%) are 

‘Amber-listed’ (Eaton et al. 2015).  Investigating these declines is important 

because the UK is legally obliged to safeguard seabird populations, and they 

play an important role in UK recreation and culture.  Furthermore, they have 

the potential to be cost-effective indicators of marine environmental change 

(Parsons et al., 2008).  To develop effective conservation strategies and fulfil 

the potential of seabirds as indicators requires the mechanisms underpinning 

population change to be quantified. 

 

A recent assessment concluded that the top three threats to the world’s 

seabirds, in terms of number of species affected and average impact, are: 

invasive alien species, bycatch in fisheries, and climate change or severe 

weather (Dias et al., 2019).  In the UK, climate change is considered to be 

one of the primary causes of the declines in seabird populations and for the 

growing number of red-listed species (Daunt and Mitchell, 2013; Daunt et al., 

2017; Eaton et al., 2015; McDonald et al., 2015; OSPAR, 2017a, b; Mitchell 

et al., 2018a, b).  Previous MCCIP seabird reviews (e.g. Daunt and Mitchell, 

2013; Daunt et al., 2017) have described how climate may affect seabird 

populations via two main processes: indirect effects via changes in food 

supply, and direct effects such as mortality from extreme weather.  Several 

studies have been published since the last MCCIP seabird review in 2017 

(Daunt et al., 2017), which have advanced our understanding of both types of 

climate change. 

 

Indirect effects of climate via changes in food supply 

 

In the recent assessments of seabird population status in the North-East 

Atlantic conducted by OSPAR (2017c) and the UK Government and 

Devolved Administrations (Mitchell et al., 2018a, b; Defra, 2019), species 

that feed on fish within the water column are faring much better than those 

that feed at the surface.  
 

Water-column feeders forage at a broad depth range on pelagic and demersal 

fish and invertebrates (e.g. squid, zooplankton). Water-column feeders 

include auks, European shag, great cormorant, northern gannet and Manx 

shearwater, which can also be considered a surface-feeder. Surface-feeders 

forage within the surface layer (within 1m to 2 m of the surface) on small fish, 

zooplankton and other invertebrates. Surface-feeders include terns, gulls, 

skuas, storm-petrels, shearwaters and northern fulmar.  

 

Functional groupings based on foraging behaviour were developed by ICES 

(2015) and used in marine assessments by the UK Marine Strategy (Mitchell 
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et al., 2018), by OSPAR (2017) by the European Union (see Commission 

Decision 2017/848/EU). 
 

In the Celtic Seas and Greater North Sea, a higher proportion of surface-

feeders failed to meet targets for abundance trends (OSPAR, 2017a; Mitchell, 

2018a) and experienced frequent, widespread breeding failures (Mitchell 

2018b; OSPAR, 2017b). A similar pattern was found in an assessment of 

Baltic seabirds and waterbirds (HELCOM, 2018) but not in Norwegian Arctic 

waters, were surface-feeders and water-column feeders were faring equally 

poorly (OSPAR, 2017a, b).  This supports the widespread assertion that 

surface-feeding species are more vulnerable to changes in prey abundance 

(Furness and Tasker, 2000). Previous MCCIP seabird reviews have suggested 

that climate change affects seabirds indirectly, by driving changes in the 

availability of small fish that many seabirds rely on for food.   They have also 

highlighted additional impacts on prey availability to seabirds from past and 

present fisheries.  However, it would seem that some species, in particular 

those that can exploit prey throughout the water column, are buffered to some 

extent against these effects. Availability of enough prey in the right location 

and at the right time appears to be crucial, since there is only weak evidence 

linking absolute prey abundance to breeding success in most species (ICES, 

2015).   

 

Previous MCCIP reviews have reported on studies that have related seabird 

demographic rates (e.g. breeding success, adult survival) to indicators of 

climate change, such as rising Sea-Surface Temperature (SST).  The most-

studied species in this context is the back-legged kittiwake. This species is a 

surface-feeder, specialising on small shoaling fish, particularly sandeels 

(Wanless et al., 2018). It has shown some of the largest declines in breeding 

abundance of any seabird in the UK and elsewhere in the North-East Atlantic 

(JNCC, 2016; Mitchell et al., 2019a; OSPAR 2017).  

 

Studies have shown that the over-winter survival of adult black-legged 

kittiwakes breeding in eastern Scotland was lower following winters with 

higher SST, and breeding success one year later was reduced (Frederiksen et 

al., 2004, 2005, 2007; Frederiksen, 2014).  This relationship between 

breeding success and SST has subsequently been demonstrated at other 

kittiwake colonies on the British North Sea coast, but the strength of this 

relationship varies greatly between colonies (Cook et al., 2014a, b). Indeed, 

recent studies at two north-east coast colonies did not find significant 

relationships between SST and kittiwake breeding success (Carroll et al., 

2017; Eekes-Medrano et al., 2017). There is evidence that breeding success 

is positively related to sandeel abundance (Daunt et al., 2008; Eerkes-

Medrano et al., 2017).  In turn, climate affects sandeel recruitment by altering 

the timing of key life history events in sandeels and their copepod prey 

(Regnier et al., 2019). The inconsistent patterns observed between kittiwake 

breeding success and temperature reflects the complex ways in which 

temperature affects the abundance and timing of sandeels and their prey 
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(Eerkes-Medrano et al., 2017; MCCIP, 2018; Regnier et al., 2019).  Critical 

new evidence suggests that the proportion of sandeels in the diet of seabirds 

breeding on the Isle of May National Nature Reserve, south-east Scotland, 

has declined in both summer and winter over the last three decades, linked to 

trends in SST (Howells et al., 2017, 2018; Wanless et al., 2018). Warming of 

waters around much of the UK has led to substantial changes in species 

composition and abundance at lower trophic levels (Beaugrand et al., 2008; 

Kirby and Beaugrand 2009; Luczak et al., 2012; Frederiksen et al., 2013).  

There have been northward shifts of key copepod prey of sandeels, associated 

with critical thermal boundaries (Beaugrand et al. 2008; Reygondeau and 

Beaugrand 2011).  The changes in seabird diet composition may reflect long-

term changes in the abundance and quality of their principal and alternative 

prey resulting from climate change. 

 

It is important to note that the relationship between SST and breeding success 

is apparent in other seabirds, including northern fulmar, Atlantic puffin and 

Arctic tern (Burthe et al., 2014; Cook et al., 2014a).  Reed et al. (2015) 

demonstrated that average frequency of skipped breeding in common 

guillemots was greater in years where SST was higher. The annual survival 

rates of European shags were also negatively related to temperature (Burthe 

et al., 2014). Although most studies have focussed on temperature effects, 

recent evidence has shown that kittiwake breeding success is negatively 

correlated with another climate-induced process, stratification in the water 

column (Carroll et al., 2015).  Clearly, the processes whereby climate change 

effects on seabirds are complex and not fully understood (see below).  

 

One important mechanism whereby climate change may affect seabirds is 

temporal mismatching between availability of prey and peak energy demands 

in the breeding season. This ‘trophic mismatch’ may have a negative impact 

on demographic rates of seabirds. In the North Sea, seabirds have not kept 

pace with changes in the timing of key life-history events of sandeels (Burthe 

et al. 2012). A recent global meta-analysis has demonstrated that seabirds 

have not adjusted their timing of breeding over time (Keogan et al. 2018).  

This suggests that seabirds may have limited capacity to adjust their timing 

of breeding to coincide with the peak availability of prey. 

 

The relationship between kittiwake breeding success and SST has recently 

been used to construct an indicator to determine if kittiwake breeding success 

is being driven largely by prevailing climatic conditions, or is being impacted 

by other human pressures (e.g. fishing) or natural factors other than climate 

warming (e.g. predation, weather; Cook et al., 2014b; Mitchell et al., 2018c).  

This indicator is informative in understanding regional variation of climate 

effects on seabirds. The indicator was constructed from breeding success data 

collected at 22 kittiwake colonies on the North Sea coast of Britain and was 

assessed annually during 1986–2015 (Mitchell et al., 2018c; see Figure 1). 

During the late 1980s, the breeding success indicator was in line with SST 

except in Shetland where it was much lower than expected. This was most 
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likely due to a crash in the Shetland sandeel stock at that time, which was 

caused by a change in currents and independent of SST (Monaghan et al., 

1989; Hamer et al., 1993; Wright and Bailey, 1993). Breeding success at 

colonies in Shetland subsequently recovered temporarily during the early 

1990s. At the same time, breeding success was lower than expected (as 

predicted by SST) at colonies in eastern mainland Scotland that were adjacent 

to an area of high sandeel fishing pressure, as previously shown by 

Frederiksen et al. (2004, 2008a).  The fishery was closed to fishing from 2000 

onwards. Subsequently, breeding success at most colonies on the British 

mainland remained below what would be expected from prevailing SST. 

However, since 2009, breeding success at mainland colonies has been in line 

with SST, except at a colony in eastern England – Bempton Cliffs and 

Flamborough Head.  Carroll et al. (2017) found that higher kittiwake breeding 

success at this colony was associated with higher sandeel spawning stock 

biomass the preceding winter and lower sandeel fishing mortality two years 

previously.   

 

In contrast, at all kittiwake colonies in Orkney and Shetland breeding success 

has been below that expected from SST since 2001. Many kittiwake colonies 

in Shetland and Orkney have failed to produce any young in numerous years 

since 2001 and have experienced the steepest declines in breeding numbers 

in the UK (JNCC, 2016). It is unclear why kittiwake breeding success has 

been poorer than expected across all colonies in Orkney and Shetland since 

the early 2000s. It is unlikely to have been due to fishing pressure, since this 

was low or even absent due to voluntary bans during this period (ICES, 2017). 

In some years, extreme weather events (e.g. such as heavy rain washing away 

nests from cliffs) may also have lowered breeding success, but such events 

are unlikely to have caused such widespread and sustained reductions in 

breeding success. At some colonies, particularly on Shetland, predation from 

great skuas is likely to be a major cause of poor breeding success and declines 

in colony size (Heubeck et al., 1999; Votier et al., 2004). 

 

Interestingly there is no relationship between SST and kittiwake breeding 

success at kittiwake colonies in the Celtic Seas region, on the west coast of 

Britain and eastern Ireland (Lauria et al., 2013; Cook et al., 2014b). This 

could be because kittiwakes in the Celtic Seas are also more reliant on other 

species of small fish (e.g. sprat, herring) that are differently affected by SST 

compared to sandeels.   
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Figure 1: Kittiwake Breeding Success Indicator (from Mitchell et al. 2018c). The miniature 

pie charts show the location of kittiwake colonies on the east coast of the UK and the 

proportion of years (2009–2015) when breeding success was as expected by prevailing 

climatic conditions (i.e. SST) (green), or was lower than expected (red), or was not 

measured (grey). The red line denotes limits of the sandeel fishing ban that has been in 

place since 2000. 

 

Direct effects – mortality from extreme weather 

 

Seabirds may also be affected by climate directly, in particular during extreme 

weather (Jenouvrier, 2013). Extreme weather such as high winds and heavy 

rainfall during the breeding season can chill eggs and kill nestlings and have 

resulted in widespread breeding failures (Aebischer, 1993; Mallory et al., 

2009). Newell et al., (2015) demonstrated severe impacts of a summer storm 

on breeding performance of four UK seabird species, particularly razorbills.  

 

Extreme weather conditions at sea can impair the ability of some species to 

forage and find enough food. This can lead to poor body condition, lower 

survival and can cause substantial ‘wrecks’ (Morley et al., 2016; Louzao et 

al., 2019).  This is at least partly because flight (in flapping flight species) 

and diving are more costly at higher wind speeds (Kogure et al., 2016).  An 

analysis of European shags on the Isle of May has revealed that very poor 

adult survival occurs during sustained periods of strong onshore winds and 

high rainfall in late winter (Frederiksen et al., 2008a). Shag plumage is only 

partially waterproof, presumably an adaptation to highly efficient underwater 

foraging, and Frederiksen et al. (2008a), speculated that this adaptation may 

make shags and similar species vulnerable to rough sea conditions during 

winter. 

 

Most recently, the ‘Beast from the East’ storm in February and March 2018 

caused breeding seasons to be markedly delayed at seabird colonies on the 

a) 1986-91 (Shetland sandeel
collapse)

b) 1994-1999 (Wee Bankie
sandeel fishery)

c) 2010-15 (sandeel fishery closure 
in red box, since 2000)
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east coast of Britain. In addition, the storms that hit the Atlantic coast of 

Europe in 2013/2014 demonstrated the significant impact that winter storms 

can have on the over-winter survival of seabirds.  The wave action generated 

during 2013/14 was the most energetic recorded along the Atlantic coast of 

Europe since at least 1948 (Masselink et al., 2016). A total of 54,982 birds 

were ‘wrecked’ along the European coastline, of which 94% were dead, 

apparently due to starvation, exhaustion and drowning (Morley et al., 2016). 

The majority of birds found were recorded on the French coastline (80%) and 

just over half were Atlantic puffins (Morley et al., 2016). The 2013/14 wreck 

provided an opportunity to test models that predict the cumulative effect of 

extreme wind events.  Louzao et al. (2019) identified a threshold response of 

bird mortality in relation to extreme wind events above which birds 

experienced consistent increased mortality.  This will help local response 

services to anticipate the occurrence of mass-mortality events under future 

climatic scenarios. 

 

Such mass mortality events can have long-lasting effects on seabirds, which 

are generally long-lived and slow to reproduce.  

  

 

2. WHAT COULD HAPPEN IN THE FUTURE? 

 

IPCC (2018) predicted, under a 1.5°C increase in global temperatures, that 

UK seas would continue to warm, sea-levels would rise, extreme precipitation 

and storminess would increase in frequency and magnitude and our oceans 

would continue to become more acidic as they absorb more CO2. All these 

changes will have consequences for seabirds. Most seabird species in the UK 

are at the southern limit of their range in the North-East Atlantic.  As a result, 

we may see changes in species’ ranges in association with climate change, 

with the potential for associated overall declines in population size.   

 

Frederiksen et al. (2013) and Russell et al. (2015) predicted that habitat 

suitability for seabirds will shift northward over the next century, and 

concluded that northern distributional shifts of seabirds are likely over this 

period. Russell et al. (2015) constructed climate envelopes for each species, 

which characterised the climate of their range using a composite of measures 

of (a) winter cold, (b) overall warmth or growing season, and (c) available 

moisture. The study predicted how the geographical position of the climate 

envelope and therefore the species range would change under two climate 

scenarios (A1b and A2 emission scenarios from Solomon et al., 2007), neither 

of them extreme, which generated very different predicted changes in range. 

For example, the northern fulmar and great skua were predicted to have 34% 

and 17%  difference in their range reduction under the higher emission 

scenario (A2) compared to the lower emission scenario (A1b). This illustrates 

that even small decreases in greenhouse gas emissions could yield benefits 

for conservation.  
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Russell et al. (2015) predicted that 65% of species breeding in the British 

Isles would show a decline in their European range, some by as much as 80%. 

Species that breed at higher latitudes and whose foraging ecology makes them 

vulnerable to low prey-availability are likely to lose range, due a lack of 

available land to colonise (Russell et al., 2015). Lower-latitude species could 

shift their range northwards, but the rate and likelihood of this change is not 

fully understood.  The rate of change is range is expected to be limited due to 

many species returning to their natal colony to breed (estimated between 38 

and 83%, dependent on the species) and have high fidelity to that colony for 

their life span (> 10 years).  

 

Consequently, range shifts rely on recruitment to a non-natal colony by first 

time breeders, which is known to vary by species, and thought to be 

influenced colony-specific factors such as distance from breeding colony, size 

and age of colony (Coulson and Coulson, 2008; Devlin et al., 2008; Barlow, 

2013).  

 

Russell et al. (2015) predicted that, under a best case scenario of unlimited 

dispersal, Leach’s storm petrel, great skua and Arctic skua will come close to 

or completely extinct in the UK by 2100, while the ranges of black-legged 

kittiwake, Arctic tern and auks are predicted to decline significantly. These 

studies support the climate envelope modelling of Huntley et al. (2007) that 

predicted that, by the end of the 21st century, the range of some seabird 

species breeding in the UK would shift northwards and other species may 

become extinct within the UK. 

 

These predictions seem sensible for species, such as Arctic and great skua, 

which are confined to breeding in colder parts of the northern hemisphere 

(Furness, 1988). By contrast, the climate envelope predictions of extinction 

of Leach’s storm-petrel from the UK may be less reliable, since they breed in 

warmer climes than currently experienced in the UK. Furthermore, the current 

distribution in the Scottish Continental Shelf is positively correlated with the 

proximity to deep oceanic water where they feed on plankton concentrated by 

upwellings and ocean currents (Mitchell, 2004). Thus, future changes in the 

number and distribution of Leach’s storm-petrel breeding in the UK are more 

likely to result indirectly from climate change via changes in their planktonic 

food resources, rather than as a direct response to changes in air temperature 

and humidity or rainfall.   

 

However, it is not clear whether warming will have a similar impact in other 

regions around the UK where climate effects are weaker, such as in the Irish 

Sea, Celtic Sea and English Channel (Lauria et al., 2012, 2013). Carroll et al. 

(2015) showed that kittiwake breeding success is predicted to decline by 21–

43% between 1961−90 and 2070−99.  Regional differences were observed, 

although with lower probabilities associated, with smaller declines projected 

for colonies further up the east coast, with the largest proportional decline 

occurring at Fair Isle. This indicates that larger impacts may not be limited to 
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southern colonies of kittiwakes, which were also recognised by large declines 

reported in northern Scotland (JNCC, 2016).  

 

In line with recent evidence that seabirds are reducing their reliance on 

sandeels (Howells et al., 2017, 2018; Wanless et al. 2018), emerging prey 

species may be critical to the future wellbeing of seabirds. However, to be an 

effective alternative to current prey such as sandeels and sprats, they will have 

to fulfil important criteria of abundance, availability and quality. This was not 

the case for the snake pipefish Entelurus aequoreus which increased 

dramatically in UK waters in the mid 2000s, before the population crashed 

(Kirby et al. 2006; Harris et al. 2007, 2008). Trophic mismatch may continue 

to be a concern, depending on the effect of climate change on the timing of 

key life history events of current and emerging prey.   

 

Furthermore, an outcome of climate change that is of increasing concern is 

ocean acidification, as more CO2 is absorbed by our oceans (IPCC, 2018). 

Increases in pH are already affecting phytoplankton (Riebesell et al., 2013, 

Richier et al. 2014) at the base of the food chain, the consequences of which 

may be felt right up the food chain to forage fish and associated top predators 

(Heath et al., 2012). Recent increases in jellyfish, which have been linked to 

overfishing and climate change, have been observed around the world 

including in UK waters (Purcell et al., 2007; Brotz et al., 2012). They may 

impact on seabirds since they are in direct competition with lesser sandeels 

and other forage fish for planktonic food such as copepods, while also being 

predators of fish larvae. In summary, if sea temperatures continue to rise as 

predicted, it is likely that seabirds that feed on small shoaling fish will 

experience poor breeding seasons and lower survival with increasing 

frequency in some parts of the UK.  

 

Extreme weather events may also become more important since most climate 

models predict an increase in their frequency in the future (Solomon, 2007; 

Rahmstorf and Coumou, 2011). These impacts are likely to have demographic 

consequences for populations under future predicted changes in storminess 

(Lewis et al., 2015; Louzao et al., 2019). As mentioned above, European 

shags are particularly susceptible to stormy weather, but their rapid 

population growth under favourable conditions allows recovery from periodic 

large‐scale weather‐related mortality.  However, Frederiksen et al. (2008) 

predicted that an increase in annual variation in survival/mortality rates, as 

expected from more frequent stormy weather, would lead to reduced 

population growth rate and increasing probability of extinction. 

 

Future climate change is also likely to have direct impacts on breeding 

seabirds through sea-level rise, particularly in the southern North Sea where 

ground-nesting seabirds such as terns, and in particular the little tern, tend to 

nest just above the high-water mark. Habitat loss to sea-level rise may be 

mitigated by nesting habitat creation further up the shore. 
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Other drivers of seabird populations are also expected to interact with climate 

change in complex ways. The previously demonstrated additive effect of 

fisheries and sea temperatures (Frederiksen et al., 2004b; 2007; 2014) have 

recently been shown in a colony in eastern England (Carroll et al., 2017). But 

such effects are unlikely to be maintained at higher sea-surface temperatures, 

where climate effects are predicted to override fishery effects. Predation by 

invasive native and non-native mammals at colonies has a profound impact 

on seabirds (Mitchell and Ratcliffe, 2007; Dias et al., 2019), but it is unclear 

what the interaction with climate change might be.  Evidence is emerging of 

the importance of parasites on seabirds (Duneau et al., 2008; Reed et al., 

2008; Hicks et al., 2019). There is widespread concern that climate change 

may interact with disease, since increasing temperatures can alter host 

susceptibility, pathogen survival and disease transmission rates (Lafferty, 

2009). This is a particular concern in species like seabirds whose high site-

fidelity limits their capacity to escape disease outbreaks. Furthermore, the 

effects of pollutants, which can have a deleterious impact on seabirds 

(Thompson and Hamer, 2000), may be exacerbated by environmental 

conditions and disease (Bustnes et al., 2015). Climate induced changes in 

prey availability may alter exposure or transmission rates of parasites and 

pollutants.  Clearly, important interactions between climate and other drivers 

is likely to occur in future but it is challenging to predict whether they with 

be additive, synergistic or antagonistic (Crain et al., 2008). Accordingly, the 

current evidence suggests that UK seabirds face an uncertain future because 

of predicted future climate change and potential interactions with other 

drivers.   

 

 

3. CONFIDENCE ASSESSMENT 

 

 

What is already happening? 
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What could happen in the future? 
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The level of confidence on what is currently happening remains at 

‘Moderate’, as in previous MCCIP report cards. There is broad consensus on 

the current effects of climate change on UK seabird populations, but there is 

a lack of precise, mechanistic understanding of how climate affects seabirds 

and the interplay between climate and other factors. Evidence is also mostly 

limited to effects on seabirds during the breeding season. However, we know 

much less about how climate affects seabirds outside the breeding season 

when they are distributed across large areas of sea and ocean.  

 

Furthermore, confidence remains ‘Low’ on what will happen in the future.  

Predictive studies are becoming more common, but results show high 

uncertainty and are dependent on the choice of climate scenario.  

Furthermore, model projections on frequency or severity of extreme storm 

events remain limited, impairing our ability to predict future changes in 

seabird populations affected by weather. 

 

 

4. KEY CHALLENGES AND EMERGING ISSUES 

 

Previous MCCIP report cards have identified three main knowledge gaps (a) 

the effects of climate on the small shoaling fish (notably sandeels) that are the 

principal prey of seabirds; (b) the interaction between climate and other 

anthropogenic drivers such as fisheries, pollutants, disease and marine 

renewables; and (c) the role of phenotypic plasticity and microevolution in 

enabling seabird populations to adapt to climate change. 

 

These knowledge gaps are as relevant now as they were a decade ago because 

they are very challenging to address. The approach of most studies is still to 

link climate or plankton to seabirds, because of the limited data available on 

mid-trophic level fish such as sandeels or sprat.  However, a growing body of 

work is emerging on the links between climate and these important fish 
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species (notably sandeels) and their prey (in particular Calanus copepods), 

which is proving of great benefit to seabird ecologists (van Deurs et al., 2009, 

2014; Engelhard et al., 2013; Eerkes-Medrano et al., 2017; Regnier et al., 

2019). However, there is a paucity of evidence on climate change impacts 

seabirds outside the breeding season (see above on ‘Confidence’), which 

makes it difficult to predict how populations will adapt and respond to climate 

change. A key area of demography that we do not understand well is dispersal 

and migration and how this might respond or adapt to climate change and 

how this would impact population dynamics.  

 

The interaction between climate and other drivers remains unknown and 

should be a focus for future research (Burthe et al., 2014; Oro, 2014).  It is 

important to know if the impacts from multiple drivers simply have an 

additive effect on seabirds or whether they are antagonistic or synergistic; 

evidence to date that all three types of interaction are common in marine 

systems (Crain et al., 2008). Research is emerging on phenotypic plasticity 

of traits in relation to environmental variation in seabirds, but it remains in its 

infancy (Grémillet and Charmentier, 2010; Sydeman et al., 2015). A future 

priority is to test whether micro-evolution can provide a rapid ‘evolutionary 

rescue’. Central to this research area is the need to better quantify the extent 

to which key climatic drivers, such as temperature and extreme weather, can 

cause selection).  Comparatively few study systems have the potential to do 

this, but this should not discourage researchers to focus on this important 

question. 

  

 

5. EMERGING ISSUES  

 

A potential driver of immediate and future relevance is the impact of marine 

renewables on seabirds. A huge expansion in marine renewable developments 

is planned in the coming years to meet ambitious renewable energy targets. 

Seabirds may be affected by these developments through a range of 

mechanisms, notably collision and displacement (Grecian et al., 2010). These 

effects may be additive to climate change, or may interact with climate if, for 

example, the latter results in seabird range shifts, changing the spatial overlap 

with fixed developments. Breeding birds may be particularly vulnerable 

because, as central place foragers, they are constrained to obtain food within 

a certain distance from the breeding colony (Masden et al., 2010b; Langton 

et al., 2011), and developments are proposed in areas that lie within breeding 

seabird foraging ranges (Harris et al., 2012). Cumulative and combined 

effects must also be considered when quantifying interactions between 

marine renewables and climate (Masden et al., 2010a). 

 

Seabirds may also face additional threats that may interact with climate 

change (Burthe et al., 2014; Oro, 2014).  There are concerns about leaching 

of legacy contaminants (e.g. metals, persistent organic compounds, biocides) 

and emerging contaminants (e.g. pharmaceuticals, personal care products, 
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transformation products and micro and nano-polymers) into the marine 

environment (Brand et al., 2018) that may detrimentally affect seabirds 

(Goutte et al., 2014; Bustnes et al., 2015). There is growing concern with the 

increase in plastics in the marine environment, which seabirds are known to 

ingest, but the ramifications are unclear (Wilcox et al., 2015; O’Hanlon et al., 

2017).   

 

Furthermore, positive management measures designed to allow commercial 

fish stocks to recover may have adverse impacts on seabird populations 

(Bicknell et al., 2013). The current implementation of EC Landing 

Obligations will lead to an eventual halt to discarding fish from vessels and 

remove an important food source for some species (ICES, 2016). In addition, 

Reilly et al. (2014) suggested that haddock and whiting could outcompete 

kittiwakes for sandeels in the North Sea, and, if management succeeds in 

recovering stocks of these two fish species, the resulting competition could 

have an important effect on the availability of sandeels to kittiwakes that 

could potentially exceed the effect the industrial sandeel fishery had in the 

past (Frederiksen et al., 2004).  

 

It will be critically important to consider these multiple drivers 

simultaneously, not in isolation, because the complex way in which they 

interact with climate may play a key role in determining the long-term well-

being of the UK’s seabirds. 
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