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Abstract

There is an urgent need to translate the outcomes of offshore-wind-fisheries research and monitoring into information that is useful to
decision-makers. Papers published in peer-reviewed journals typically report whether or not results are significant based on a statistical
test and an associated P-value which is compared to a threshold (e.g. P < 0.05). However, statistical significance cannot tell us whether
or not the observed results hold any biological relevance. The lack of a clear connection to biological relevance makes it difficult for
decision-makers to interpret research findings and understand how a given study fits into the larger picture of offshore wind interactions
with the ecosystem. Toward addressing this challenge, this paper makes the following recommendations to translate the outcomes
of research and monitoring studies into information that is useful to scientists, fisheries managers, and other stakeholders: (i) report
effect size(s) and associated confidence intervals associated with outcomes for research and monitoring studies alongside the results of
conventional statistical tests of significance; (ii) consider the biological relevance of research and monitoring outcomes using scientific
reasoning to assess the magnitude and direction of the effect size, the width of the confidence intervals, and the factors that may have
affected them; (iii) advance cumulative science by reporting the components used to calculate effect sizes, namely the mean, standard
deviation, and sample sizes for individual studies; (iv) publish raw data to new or existing open access data repositories following the
FAIR guiding principles of data stewardship and management, i.e. data should be Findable, Accessible, Interoperable, and Reusable;
and (v) conduct periodic meta-analyses of existing research to evaluate the mean, magnitude, and direction of the effect size to evaluate
the overall mean effect of offshore wind development across studies.
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Introduction

The science of fish and fisheries interactions with offshore
wind is advancing quickly as offshore wind developments
(OWDs) continue to be constructed in marine ecosystems
around the world (Galpasoro et al. 2022, Hogan et al. 2023,
Gill et al. 2024). An international scientific community is
emerging to address questions of fisheries resource interac-
tions with OWDs as evidenced by the existence of multiple
ICES (International Council for the Exploration of the Sea)
working groups addressing offshore wind issues and the re-
lease of the ICES Roadmap for Offshore Renewable Energy
(ICES 2024). Multi-modal approaches, including field, labo-
ratory, and modeling methodologies are being applied as re-
searchers grapple with a wide range of questions, including
how habitat change, energy emissions, and altered physical
oceanography affect biomass, abundance, and distribution;
whether these changes translate to population level effects;
and what these changes mean for fisheries socio-economics
(Galpasoro et al. 2022, Hogan et al. 2023, Gill et al. 2024).
The recent advancement of research efforts has yielded an ac-
celerated rate of peer-reviewed research on these topics which
will provide the basis of much needed scientific advice for reg-
ulators and fisheries managers (Fig. 1).

The need for actionable science to support fisheries man-
agement decisions with regard to OWD cannot be overstated.
Although research efforts are advancing, they still lag behind
the pace of OWD due to the immediacy of society’s critical
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License
reuse, distribution, and reproduction in any medium, provided the original work
eed for renewable energy, and the reality that economics
nd infrastructure development occur on a much more rapid
imetable than empirical science. Therefore, there is an imme-
iate need to translate the outcomes of research and monitor-
ng into information that is useful to decision-makers (Wilding
t al. 2017).

The majority of published papers report results that are sig-
ificant based on the statistical tests used, and often results are
haracterized as having a positive, adverse, or neutral effect
n the indicator(s) measured (e.g. Gill et al. 2024). Many com-
elling effects of OWD on fisheries species have been described
Galpasoro et al. 2022, Gill et al. 2024). These include, e.g. the
ffects of electromagnetic fields and low frequency noise on
he movement and behavior of cod larvae (Gadus morhua)
nd haddock larvae (Melanogrammus aeglefinus) (Cresci et
l. 2022, 2023); the effect of enhanced food availability for
uropean plaice (Pleuronectes platessa) due to the coloniza-

ion of epibenthos on structures and scour protection (Buyse
t al. 2023); the effect of wind farm presence on black sea bass
bundance (Centropristis striata) (Wilber et al. 2022); and the
emporary effect of fishing cessation during construction on
he size and abundance of European lobster (Homarus gam-
arus) (Roach et al. 2018, 2022).
As the outcomes of empirical research are published in peer-

eviewed literature, the scientific community is beginning to
iece together the complex puzzle of interactions between
WD and the structure and function of marine ecosystems.
tional Council for the Exploration of the Sea. This is an Open Access
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
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Figure 1. Temporal trend from 2010 to 2023 in the cumulative global
installed energy capacity for offshore wind (bars) and in the cumulative
number of peer-reviewed papers on the broad topic of offshore wind and
fish or fisheries (line). Sources: 1Statista (2024); 2Web of Science search
by year for papers containing the terms and “offshore wind” and “fish”
or “fisheries.”
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Table 1. American Statistical Association principles underlying the proper
use and interpretation of the P-value (as stated in Wasserstein and Lazar
2016).

Principle 1: “P-values can indicate how incompatible the data are
with a specified statistical model.”
Principle 2: “P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were produced by
random chance alone.”
Principle 3: “Scientific conclusions and business or policy decisions
should not be based only on whether a P-value passes a specific
threshold.”
Principle 4: “Proper inference requires full reporting and
transparency.”
Principle 5: “A P-value, or statistical significance, does not measure
the size of an effect or the importance of a result.”
Principle 6: “By itself, a P-value does not provide a good measure of
evidence regarding a model or hypothesis.”
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hile the puzzle pieces continue to emerge, the question of
ow to evaluate biological relevance is coming to the fore.
he purpose of this paper is to provide researchers with re-
ources, concepts, and best practices to evaluate the biologi-
al relevance of their findings, and facilitate the advancement
f the cumulative science of offshore wind and fisheries. Al-
hough this paper focuses on offshore wind research outcomes
or fisheries species, the concepts presented could be extended
nd applied to other marine species and other anthropogenic
ctivities.

he issue: statistical significance is not equivalent
o biological relevance

esearch that gets published in peer-reviewed journals often
resents results that use a threshold test such as P < 0.05
or statistical significance. Results with a P-value below this
hreshold tend to get published while those above the thresh-
ld often get placed in the “file drawer” of research (sensu
osenthal 1979). Statisticians have long noted many caveats
ith the P < 0.05 approach, namely that that P-values are of-

en misused, misunderstood, and misinterpreted (Wasserstein
nd Lazar 2016); that with a sufficient level of replication, a
tatistical test will almost always find a significant difference
Sullivan and Feinn 2012); and that P-values cannot tell us
bout the strength of an effect or its biological relevance. This
pproach to data analysis and interpretation persists, despite
arly calls to move away from this approach in the sciences
t large (Wilkinson et al. 1999) and in the ecological sciences
pecifically (Martinez-Abrain 2008, Halsey 2019). The Amer-
can Statistical Association (ASA) felt so strongly about this
ssue that in 2016, it was compelled to publish a list of prin-
iples underlying the proper use and interpretation of the P-
alue (Table 1; Wasserstein and Lazar 2016) which was later
upported by a note published by Amrhein et al. (2019) that
ad more than 800 signatories from across the sciences. The
fficial ASA statement spurred the publication of numerous
apers making a variety of recommendations on this topic.
ome suggested reducing the standard P-value to 0.005 (Ben-
amin et al. 2018 cited in McShane et al. 2019). Others rec-
mmended halting the practice of dichotomizing results into
hose that are significant vs. those that are not (McShane et
l. 2019). The statement published by the ASA, however, was
ot intended to eliminate the P-value approach; rather it was
ocused on informing scientists on the proper use and interpre-
ation of P-values. Still, many of us, myself included, continue
his practice because this is the method for analysis and inter-
retation we learned in graduate school, and because “signifi-
ant” results are what get published in peer-reviewed journals.
iven the context of the rapidly advancing field of offshore
ind and fisheries science and the urgent need for actionable

esearch to underpin scientific advice, how then can biological
elevance be evaluated? This is a vexing question and one that
s faced across the sciences.

potential solution: effect sizes with confidence
ntervals and scientific reasoning

ffect Size—Current best practices call for reporting more
nformative quantities such as the effect size and confidence
ntervals around the effect size, while continuing to report,
lthough de-emphasizing, P-values (Popovic et al. 2024). An
ffect size is a quantitative measure of the difference between
wo groups (when comparing discrete groups such as a treat-
ent and a control) or the association between two groups

when comparing the relationship between two continuous
ariables). Some common examples are provided in Table 2.
ne statistical authority in the USA, the American Psycholog-

cal Association (APA), has been recommending the routine
eporting of effect size since 1994 (Wilkinson et al. 1999). The
enefits of reporting effect sizes are multiple. First, effect sizes
re straightforward to calculate. There are many textbooks,
nline resources, and existing statistical packages available to
alculate them (e.g. Borenstein et al. 2009, Viehtbauer et al.
010, Wallace et al. 2016). Second, effect sizes are straightfor-
ard to understand (Table 2; Fig. 2). For example, a Cohen’s
of 0.8 indicates that the average sample from the impact site
as 0.8 standard deviations greater than an average sample

rom the control site (Table 2; Fig. 2; Cohen 1988). Third,
ffect size can be calculated for any response variable. Fourth,
ffect sizes put studies examining similar questions using dif-
erent designs or methods on equal footing for comparison.
ifth, understanding effect sizes can inform power analysis
nd the design of future research and monitoring.

Precision and confidence intervals—Precision of the effect
ize can be estimated with either the variance (S2) or the stan-
ard error (SE) of the effect size. The equations for variance
nd SE are unique for each effect size metric (Borenstein et al.
009). Larger confidence intervals around an estimated effect
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Table 2. Examples of common measures of effect size and their attributes.

Measure of effect
size

Equation for effect
size Variable definitions Effect size definition

Benchmarks of
relative magnitude

Measures for comparison of groups

Cohen’s d d = (X̄impact−X̄control )
s X̄impact= Mean at the impact site;

X̄control = Mean at the control site;
s = standard deviation

Standardized mean
difference between the
impact group and the
control group (Cohen 1988)

Small 0.2
Medium 0.5
Large 0.8
Very large 1.3

Hedges’ g g = d ∗ 1 − ( 3
4df−1 ) d = Cohen’s d; df = degrees of

freedom used to estimate the
standard deviation

Standardized mean
difference between the
impact group and the
control group; Corrects for
bias due to small sample
sizes (Hedges and Olkin
1985)

Small 0.2
Medium 0.5
Large 0.8
Very large 1.3

Log response
ratio (LRR)

RR = X̄impact

X̄control
LRR =

ln(X̄impact ) −
ln(X̄control )

RR = response ratio; X̄impact=
mean at the impact site; X̄control =
mean at the control site

The natural log of the ratio
of the response in the impact
location to the response in
the control location (Hedges
et al. 1999, Sullivan and
Feinn 2012)

Small 0.7
Medium 1.1
Large 1.4

Measures of association
Pearson’s
correlation (r)

r =∑
(xi−x̄)(yi−ȳ)√∑

(xi−x̄)2 ∑
(yi−ȳ)2

xi= value of the ith x-variable; yi

= value of the ith y-variable; ¯̄x =
mean of the x-variables; ȳ = mean
of the y-variables; r ranges from
−1 to 1

Measure of the strength and
direction of the relationship
between two sets of
continuous data (Nakagawa
and Cuthill 2007, Borenstein
et al. 2009)

Small: ± 0.2
Medium: ± 0.5
Large: ± 0.8

Coefficient of
determination
(r2)

r2 = SSResiduals
SSTotal

SSResiduals= sums of squares of the
residuals; SSTotal= total sums of
squares; r2 ranges from 0 to 1

Proportion of variance in
one variable explained by
another variable (Nakagawa
and Cuthill 2007, Sullivan
and Feinn 2012)

Small: 0.04
Medium: 0.25
Large: 0.64

eta squared (ƞ2) ƞ2= SSEffect

SSTotal
SSEffect= sums of squares of the
effect; SSTotal= total sums of
squares; ƞ2 ranges from 0 to 1

Proportion of variance in a
dependent variable
explained by group
membership of the
independent variable
(Lakens et al. 2013)

Small: 0.01
Medium: 0.06
Large: 0.14

Adapted from Table 1 in Sullivan and Feinn (2012), Table 1 in Lakens et al. (2013); draws on information from Ferguson (2009).
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size indicate lower precision and greater uncertainty in the es-
timate, i.e. that there is less confidence in the estimated effect
size. Many factors may affect the precision of the estimated
effect size (ES), and many of these are described in Table 3.
Among these is the number of samples. Notably, several ef-
fect sizes offer corrections for small sample size bias such as
Hedges g, an alternative to Cohen’s d which corrects for bias
in studies in which sample size is <20; and omega squared, a
less biased alternative to eta squared (Table 2; Lakens et al.
2013). These factors should be considered when evaluating
the precision of a given estimate, and in attempting to reduce
uncertainty in future studies.

Interpreting effect size with scientific reasoning—Small,
medium, and large effect size ranges have been defined for
some specific measures of effect size (Table 2) but these cate-
gories have been described as arbitrary even by those who de-
veloped them (e.g. Cohen 1988). Figure 2 shows the difference
in the distribution between a hypothetical control (mean = 14,
standard deviation = 3) and impact site for a normally dis-
tributed response variable under scenarios in which Cohen’s
d is considered to be small, medium, and large. From a bi-
ological perspective, although these are useful benchmarks,
hey still require scientific reasoning to interpret (Bakker et
l. 2019). An effect size defined as “small” may have im-
ortant biological consequences for some response variables.
or example, a “small” change in primary production could
ave important consequences for the overall productivity of
n ecosystem (Friedland et al. 2012); likewise, a “small” in-
rease in water temperature could make a habitat inhospitable
or some species but more welcoming to others (Mills et al.
024). On the other hand, there may be instances where we
ay interpret that an effect size is biologically relevant only
hen it is medium or large, such as an increase in abundance
f an already abundant species. These considerations may ex-
end beyond the biological context to the effects on human
imensions. While a 10% change in fish abundance may seem

ike a relatively small change for some species, such a change
ay have strong downstream effects for the fishing commu-
ity and socio-economic indicators (Livermore et al. 2023,
illis-Norton et al. 2024).
Determining the biological relevance (i.e. practical signif-

cance) of an effect size requires scientific reasoning rooted
n a deep understanding of existing scientific evidence. There
s no boiler plate, one-size-fits all approach for defining the
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(a)

(b)

(c)

Figure 2. Distributions under the scenarios in which Cohen’s d shows (a) “small” effect; (b) “medium” effect; and (c) “large” effect, given the effect size
benchmarks in Cohen (1988). Solid line = control site; Dotted line = impact site. The biological relevance of an effect size of a given magnitude can be
evaluated with scientific reasoning.
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iological relevance of an effect size for an individual study.
owever, there are logical questions that can be asked of in-
ividual studies that can facilitate a scientific reasoning pro-
ess to draw such inferences. Table 3 describes several fac-
ors and questions that influence effect size and its precision
hich should be considered when evaluating the biological

elevance for the outcome of offshore wind research and mon-
toring studies. Applying scientific reasoning provides context
or comparing an effect size from an individual study to other
ffect sizes reported in the literature for similar studies (Lak-
ns 2013, Bakker et al. 2019). The research community is
orking to identify meaningful indicators for ecosystem re-

ponses to OWD including those associated with individual
ize, condition, trophic dynamics, aggregate biomass, sensi-
ive species, ecosystem function, migration, distribution, and
ocio-economics (Raoux et al. 2019, Baulaz et al. 2023, Fried-
and et al. 2023, Methratta 2024, NEFSC 2024, Secor et al.
024, Willis-Norton et al. 2024). The concepts of scientific
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Table 3. Considerations for interpreting effect size and applying scientific
reasoning to infer biological relevance of an ES for a given study (adapted
from Bakker et al. 2019).

1. Research or monitoring question—What question does the study
address? What are the spatial and temporal scales relevant to the
question?
2. Magnitude and direction of effect size—How big is the effect size
(ES)? Does the ES evaluate differences between groups or measures
of association? Is the metric appropriate for the study design?
3. Width of the confidence intervals around the effect size.—What is
the level of precision for the ES, i.e. how much confidence do we have
in the effect size? Larger confidence intervals around an estimated
effect size indicate lower precision and greater uncertainty in the
estimate.
4. Biological response(s) measured to address the question—What
aspect of biology is the effect size assessing: abundance, density, size,
condition, egg production, etc.
5. Consequences of change in the biological response(s)
measured—Would the magnitude of effect measured in the study
have a commensurate, disproportionate, or neutral effect on an
individual, the population, the ecosystem? How would these changes
affect fisheries, fishing communities, and other ecosystem
uses/functions?
6. Study design.—What study design was used? For example, is it a
Before-After-Control-Impact (BACI), Before-After-Gradient (BAG)
design, or a Before-After (BA) design? Was it a field or laboratory
study? Is the effect size metric used appropriate for the study design?
7. What is the effect size comparing?—ES is a relational measure,
which means by definition it is used for comparisons. Does the ES
compare before vs. after, control vs. treatment, BACI contrasts,
different treatment levels, or some other comparisons in an
experimental design?
8. Sample size—What is the level of replication? Increased precision
is expected in a study with larger sample sizes.
9. Potential covariates—What other un-controlled variables might
have contributed to the magnitude and direction of the ES and
associated estimates of precision, and how might these differ among
similar studies? Covariates may include the number/size/placements
of turbines, distance from shore, season/time of year, time since
intervention began, habitat types, depth, water temperature, focal
species, gear type, differences in gear deployment (e.g. soak time), etc.
10. Status of the population being studied—What is the status of the
species/stock/population? Is the population experiencing an
increasing, decreasing, or neutral trend and what are the causes (if
known) of the trend? Is the species endangered? Is there active fishing
in the area for the focal species? What other stressors is the
population currently exposed to or vulnerable to? Baseline data
collection and analysis can inform many of these questions.
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reasoning in Table 3 provide a path toward understanding
when changes in these indices are biologically meaningful.

This raises the question of what should be done when a
change is found to be biologically relevant, i.e. to what end
are we monitoring? Reference points, thresholds, and decision
criteria are needed to engender purpose for offshore wind re-
search and monitoring programs, and to connect outcomes to
the decision-making process (Link 2005, Wilding et al. 2017,
Methratta et al. 2023, Cresci et al. 2024). Such decision cri-
teria would be invaluable in informing when an impact mit-
igation action should be triggered, where to site future wind
farms, and in the evaluation of cross-sector trade-offs in an
integrated ecosystem assessment framework (Samhouri et al.
2014, 2017, Wilding et al. 2017, RODA 2023, Cresci et al.
2024). Thresholds for unacceptable levels of change can be
determined through expert elicitation and agreed upon by rel-
evant stakeholders and regulatory agencies prior to the initi-
ation of a monitoring program (Wilding et al. 2017). For ex-
ample, Wilding et al. (2017) proposed that exceedance of the
upper confidence level of the pre-determined threshold of un-
cceptable change should trigger a precautionary mitigation
esponse.

outine reporting of effect sizes could accelerate
umulative offshore wind and fisheries science

umulative science (sensu Lakens 2013), or an aggregation of
xisting pieces of information into a cohesive, well-supported,
idely accepted scientific knowledge/concept/paradigm, can
e advanced through quantitative meta-analysis. Quantitative
eta-analysis is a method by which a standardized estimate of

he mean effect (i.e. the mean effect size) can be calculated for
group of similar studies so that they are comparable (Hedges
nd Olkin 1985, Borenstein et al. 2009, Gurevitch et al. 2018).
ynthesizing the results of similar studies conducted by multi-
le investigators in a quantitative manner holds the potential
o reveal emergent patterns across studies. Used in ecology
nd fisheries science since the early 1990s, meta-analytic
ethods have been valuable in developing cumulative science

cross topic areas including marine protected areas (Hollitzer
t al. 2023), ocean acidification (Cattano et al. 2018), and
ffshore wind (Methratta and Dardick 2019). Thorson et al.
2015) describes some of the challenges and solutions asso-
iated with meta-analytic techniques and provides a guide to
est practices for applying these methods in fisheries science.
umulative science is also needed to underpin cause–effect

elationships in order to advance cumulative effects models
Willsteed et al. 2018). Conducting meta-analyses can be time
onsuming, primarily because of the time it takes to acquire
he data to include in analyses. Routine and consistent report-
ng of effect sizes in individual papers would make conducting
eta-analysis of offshore wind impacts (and other impacts to

he marine ecosystem) much more time and cost efficient. This
ould bypass or at least minimize the effort needed to comb
he literature, extract the elements needed from individual
apers, contact authors for data, digitize figures to estimate
eans, etc. and would be particularly valuable in an area of

cience where information is urgently needed. By extension,
he publishing of data and meta-data to open-access, virtual
epositories following FAIR data stewardship and man-
gement principles (i.e. data that are Findable, Accessible,
nteroperable, and Reusable) (Wilkinson et al. 2016) would
ikewise advance open and transparent science. This could
asten the delivery of science-based information to fisheries
anagers and advance the development of cumulative science

or offshore wind and fisheries.

outine reporting of effect sizes could inform future
esearch studies

ower analysis is commonly used to estimate the number of
amples needed to detect an effect and thus correctly reject
he null hypothesis (Cohen 1988). Many of the questions be-
ng asked in offshore wind and fisheries science are new, and
articularly for in-situ field studies, there are many variables
hat cannot be controlled which increase the variance around
stimated means. Power analysis for the purpose of sample
ize determination can therefore be a powerful tool in design-
ng offshore wind research and monitoring programs (Franco
t al. 2015, South Fork Wind, LLC, and INSPIRE Environ-
ental 2020, Livermore et al. 2023). The four elements of a
ower analysis are the desired level of statistical power, the
cceptable level of significance, the effect size (often unknown
nd thus estimated based on best professional judgement),
nd sample size (often the value we are trying to determine).
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nowing effect sizes that are specific to the region, species,
nd biological response(s) being measured would enable more
ccurate estimates of the sample size needed to determine ex-
ected effects in future studies (Lakens 2013).

onclusions and recommendations

he science of offshore wind and fisheries is advancing rapidly
s is the development of offshore wind installations around
he world. There is an urgent need to translate the outcomes
f research and monitoring into information that is useful to
ecision-makers. This requires an evaluation of the biologi-
al relevance (i.e. the practical significance) of research and
onitoring findings. To facilitate this, the following recom-
endations are offered: (i) report effect size(s) and associated

onfidence intervals associated with outcomes of research and
onitoring studies alongside the results of conventional sta-

istical tests of significance; (ii) consider the biological rele-
ance of research and monitoring outcomes using scientific
easoning to assess the magnitude and direction of the effect
ize, the width of the confidence intervals, and the factors that
ay have affected them; (iii) advance cumulative science by re-
orting the components used to calculate effect sizes, namely
he mean, standard deviation, and sample sizes for individual
tudies; (iv) publish raw data to new or existing open access
ata repositories following the FAIR guiding principles of data
tewardship and management; and (v) conduct periodic meta-
nalyses of existing research to evaluate the mean, magnitude,
nd direction of the effect size across studies to evaluate the
verall mean effect of OWD.
Although this paper focuses on offshore wind and fisheries

pecies, the concepts presented here are applicable to other
arine species and other anthropogenic activities. For exam-
le, there is a growing body of knowledge describing the ef-
ects of offshore wind on marine mammals, seabirds, zoo-
lankton, and phytoplantkon (e.g. Wang et al. 2018, Gal-
asoro et al. 2022, Hestetun et al. 2023). Marine species
ay also encounter a variety of other point-source pressures
rought about by existing and emerging human activities such
s oil and gas developments, pollution, other marine renew-
bles, and seabed mining (Fowles et al. 2018, Fraser et al.
018, Miller et al. 2018, Hooper et al. 2021, Fortune et al.
024). Regardless of the taxa or activity evaluated, evaluating
he biological relevance for an observed effect is necessary for
nformed decision-making.
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