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Abstract

Managers attempt to minimize spatial use conflicts in siting of offshore wind developments,

but they must rely on available data to balance biological, commercial, and recreational

needs. Marine spatial planning products are only as good as the data they are built upon

and fishing data present major challenges due to their confidentiality and the difficulty in iso-

lating true fishing activity. We present a methodology to increase the spatiotemporal resolu-

tion of fishing effort and exposure estimates for Southern New England scallop fishing

activity using random decision forests to perform supervised classification on AIS data, with

fallback to lower resolution datasets for vessels without AIS coverage. Final predictive accu-

racy of the tuned random forest AIS model was 97.9%, offering improvements of 24.7, 48.6,

and 50% over VTR fishing footprints, and AIS and VMS speed cutoff methods, respectively,

to predict whether vessel locations correspond to fishing activity. Comparison of the AIS

model with VMS and VTR fallback to the VTR fishing footprints data product demonstrated

that the increased precision of the AIS point data delineated as fishing dramatically changed

how fishing effort, and therefore exposure in the form of fishery landings values, is distrib-

uted spatially in Southern New England wind energy areas. This is due to how the probability

of fishing is distributed across location data points in the various products, which has impli-

cations for marine spatial planning and mitigation decision-making. Therefore, multiple data

products should be considered when evaluating management options, as exposure esti-

mates may differ depending on what inputs are used. The higher resolution AIS product

may offer enhanced value in understanding exposure and impacts to individual vessels,

especially once wind farms are under construction or operational.

Introduction

Demand for ocean space in the United States exclusive economic zone has grown rapidly with

the expansion of the offshore wind industry and increasing interest in federal waters for

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0313197 November 11, 2024 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Livermore J, Guilfoos T (2024) Scallop

fishing activity characterization in Southern New

England: Offshore wind demands and fisheries-

dependent methods. PLoS ONE 19(11): e0313197.

https://doi.org/10.1371/journal.pone.0313197

Editor: Claudio D’Iglio, University of Messina,

ITALY

Received: August 17, 2024

Accepted: October 22, 2024

Published: November 11, 2024

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: AIS data for all vessel

types, and shapefiles of federal and state waters

are publicly available through the Marine Cadastre

(https://marinecadastre.gov/ais/). Federal fishing

permit data are publicly available via NOAA’s

Greater Atlantic Regional Fisheries Office (https://

www.greateratlantic.fisheries.noaa.gov/public/

public/web/NEROINET/aps/permits/data/index.

html). Bathymetry data for the study area are

publicly available through the Northeast Ocean

Data Portal (https://www.northeastoceandata.org/

files/metadata/Themes/Bathymetry/Bathymetry.

htm). Moon phase data are publicly available

https://orcid.org/0000-0001-6676-6728
https://doi.org/10.1371/journal.pone.0313197
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0313197&domain=pdf&date_stamp=2024-11-11
https://doi.org/10.1371/journal.pone.0313197
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://marinecadastre.gov/ais/
https://www.greateratlantic.fisheries.noaa.gov/public/public/web/NEROINET/aps/permits/data/index.html
https://www.greateratlantic.fisheries.noaa.gov/public/public/web/NEROINET/aps/permits/data/index.html
https://www.greateratlantic.fisheries.noaa.gov/public/public/web/NEROINET/aps/permits/data/index.html
https://www.greateratlantic.fisheries.noaa.gov/public/public/web/NEROINET/aps/permits/data/index.html
https://www.northeastoceandata.org/files/metadata/Themes/Bathymetry/Bathymetry.htm
https://www.northeastoceandata.org/files/metadata/Themes/Bathymetry/Bathymetry.htm
https://www.northeastoceandata.org/files/metadata/Themes/Bathymetry/Bathymetry.htm


commercial aquaculture [1, 2]. Managers have attempted to minimize spatial use conflicts in

siting of offshore wind developments, aquaculture farms, and other fixed spatial uses, but they

must rely on available data to balance biological, commercial, and recreational needs [3–5].

Marine spatial planning products are only as good as the data they are built upon, and com-

mercial fishing data present a major challenge to understanding how offshore areas are utilized

due to their dynamic and confidential nature [6]. This is especially problematic because avoid-

ing spatial use conflicts is difficult and so is determining the level of economic exposure and

impact of changes to fishing activity in areas where conflicts do occur. Exposure is defined

here as the fishing landings revenue that has the potential to be lost due to offshore wind

development.

Very recently, the process of compensation for potential fishery losses in the form of lost

revenue incurred due to fishing activity displacement has become a point of discussion in off-

shore wind development, as Vineyard Wind and South Fork Wind Farm’s fishery compensa-

tion programs opened in early 2024 [7–9]. While two programs are already actively processing

claims of fishery losses, the allocations of funds were based on individual project and state-

level negotiations with dramatically different approaches to determining fishery exposure and

potential levels of development impact (e.g., [10–13]). For example, within the State of Rhode

Island, fishery compensation negotiations between developers and the state (with fishing

industry advisors) for Vineyard Wind and South Fork Wind focused on entirely different fish-

ery-dependent datasets and used different methods to estimate possible levels of effect [10, 11].

Despite the inconsistencies across approaches, there remains a dearth of policy to guide (or

require) and equitably distribute funds to affected fishers for a variety of reasons, including the

lack of agreement on what commercial fishing data should be used and how it should be ana-

lyzed to determine fishery exposure.

Commercial fishing data for federally managed species in New England exist in a variety of

forms, that include but is not limited to: dealer reports (also referred to as landings), vessel trip

reports (VTRs), observer reports, vessel monitoring system (VMS) data, and the automatic

information system (AIS). Each fishery-dependent data source was created with a specific pur-

pose in mind (generally enforcement or management), but none were designed for the pur-

pose of characterizing offshore commercial activity in terms of spatiotemporal distribution

and economic value. Landings provide information on dollar value, amount, and grade of

catch by vessel as it is sold to a dealer, but offers no information on the location of the corre-

sponding fishing activity. For fishery management plans (FMP) that require them, VTRs do

provide self-reported fishing locations, hail weights of catch, and effort information; however,

each VTR provides a single point location of fishing activity (which may apply to an entire

trip) [14]. VTRs may be used to attribute fishing effort on a more regional scale (e.g., Greater

Atlantic Region Statistical Areas), but understanding fishing activity in potential development

areas requires data at a significantly higher resolution (see [15] for a similar example).

Observer reports can supplement VTRs by supplying verified locations and times of individual

fishing tows or sets, but only cover a portion of fishing activity (e.g., [16]). VMS data offer

higher resolution fishing location information (locations every 30 minutes or every hour

depending on the FMP with additional caveats), but no information on catch [17]. Addition-

ally, VMS resolution still falls short in many applications (e.g., [18–20]). The AIS presents even

higher resolution location information (generally once per minute), but is only required on

vessels greater than 65 feet in length [21] and location recording can be affected by satellite

coverage or turned off by the vessel operator [22]. Further, all of the aforementioned data

sources, except the AIS, are confidential data [23].

As a result, a variety of non-confidential data products have been developed by aggregating

data into non-confidential formats or combining datasets in an attempt to better characterize
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through the Old Farmer’s Almanac (https://www.

almanac.com/astronomy/moon/calendar). Some

forms of fishery-dependent data are confidential

and cannot be shared publicly because they

contain information that identifies unique fishers,

dealers, and vessels, as well as fishing locations.

These data are confidential per U.S. Federal Law:

50 CFR Part 600 Subpart E – Confidentiality of

Statistics. However, access can be requested for

researchers who meet the criteria for access to

confidential data under this law. Vessel monitoring

system data access can be requested from the

NOAA Fisheries Office of Law Enforcement (https://

www.fisheries.noaa.gov/about/office-law-

enforcement). Confidential trip-level vessel trip

reports and dealer reports can be requested

through the Atlantic Coastal Cooperative Statistics

Program (https://safis.accsp.org:8443/accsp_prod/

f?p=DATA_ACCESS_REQUEST:1::::::). Northeast

Fisheries Observer Program data can be requested

through NOAA (see contact information at https://

www.fisheries.noaa.gov/new-england-mid-atlantic/

fisheries-observers/northeast-fisheries-observer-

program). Modeled vessel trip report location data

can be requested from the Northeast Fisheries

Science Center (https://www.fisheries.noaa.gov/

about/northeast-fisheries-science-center). All code

is publicly available on GitHub, available here:

https://doi.org/10.5281/zenodo.13891521.
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fishing activity in federal waters. Considering most fishing datasets have limited spatial and

temporal scope, combining data sources will be essential to develop a clearer understanding of

fishing activity and exposure to developments [24]. However, all of these data products still

have significant shortcomings due to the datasets that they were built upon. For example,

DePiper et al. [25], Kirkpatrick et al. [26], and Benjamin et al. [27] use VTR data and ultimately

must make assumptions about the location provided within the trip report. The National Oce-

anic and Atmospheric Administration’s (NOAA’s) Northeast Fisheries Science Center

(NEFSC) and the Greater Atlantic Regional Fisheries Office (GARFO) estimate fishery expo-

sure (defined here as the maximum value of lost ex-vessel value if no fishing occurs within a

development area) using these DePiper et al. [25] and Benjamin et al. [27] methods to develop

raster datasets of VTR fishing footprints [28]. These footprints ultimately portray the extent

predicted from a single location provided in a trip report, rather than the true extent of the

trip, which introduces bias into the exposure estimates; this bias depends on how much the

fishing footprint location is restricted [29]. For example, for the squid fishery VTR-based fish-

ing footprints may overestimate the number of vessels using a wind development area, but

underestimate the impact to affected vessels [29]. Moreover, analysis and correspondence with

commercial fishers conducted during mitigation discussions for the South Fork Wind Farm in

Rhode Island through the Coastal Resources Management Council’s Fishermen’s Advisory

Board suggested that fishermen tend to report on a VTR their first or last fishing location on a

trip, or where they had the most catch. This means that the VTR data are likely to include

reported locations that are biased towards the shoreline and away from wind development

areas, leading to artificially low estimates of landings values within wind areas [30]. In contrast,

Muench et al. [31] contend that fishing is most likely to be observed in the middle of a trip,

since the beginning and end of a fishing trip are generally travel to and from port. This method

is currently the primary tool used in fisheries mitigation discussions with wind developers

(e.g., [11]) but it is not clear whether this approach has been adequately vetted by the scientific

community [32].

Utilization of VMS or AIS data to describe offshore fishing activity presents a related, but

distinct issue. Palmer and Wigley [33] suggest that VMS polls with an imputed speed between

3.7 and 7.4 km/h (2–4 knots) for otter trawls, 4.6 and 11.1 km/h (2.5–6 knots) for scallop

dredge and 0.2 and 2.4 km/h (0.1–1.3 knots) for sink gillnet are usually fishing. Lee et al. [34]

contend that a speed range of 1–8 knots, independent of gear type, identifies fishing pings in

VMS data. Based on commercial fishing industry input, public VMS data products on the

Northeast Regional Ocean Data and Mid-Atlantic Ocean Data portals utilize a 4-knot speed

cutoff for most fisheries, and a 5-knot cutoff for scallop dredge, to generally delineate fishing

activity from transiting [35]. However, Muench et al. [31] demonstrate that representation of

fishing activity that has been derived using speed rules leads to severe misrepresentation of

fishing for most gears, with the exception of bottom otter trawling. Ultimately, a basic speed

filter is more biased to false positives than false negatives, leading to misallocation of fishing

activity to non-fishing locations. As such, data products based on VMS or AIS where fishing is

delineated based on speed may not accurately be attributing fishing to vessel activity; this

includes the data products on the regional ocean data portals [35], as well as more advanced

methods linking VMS to landings data (e.g., [36]) and AIS products (e.g., [37]). Despite these

challenges in delineating fishing versus non-fishing activity using a speed filter, the higher res-

olution of the VMS data inputs still generates more spatially explicit data products than relying

on VTR alone.

O’Farrell et al. [38] developed a machine learning approach to address this specific issue

using feature engineering by changing the way location pings are labeled when training the

model. Instead of labeling fishing points individually, they developed a method using window
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labeling to engineer model features, where VMS records were labeled as fishing if gears were

deployed within the hourly ping window surrounding that ping, rather than recording

whether fishing was occurring only at the timestamp the ping was logged. The window labeling

approach dramatically improved model true-positive/balanced accuracy in prediction of fish-

ing activity in VMS data. Other methods developed to separate fishing from non-fishing activ-

ity in AIS and VMS datasets include, but are not limited to, recursive Bayesian filtering

procedures [39], boosted regression trees [40], layered filtering approaches [20], hidden Mar-

kov models [41], and convolutional neural networks [42].

These papers all advance the methods in delineating fishing and non-fishing activity in ves-

sel location datasets, which may enable usage of higher resolution datasets in understanding

the spatial distribution of fishing effort. Allen-Jacobson et al. [29] highlight the value of fine-

scale fishing data for understanding fisheries exposure to offshore wind development since

higher resolution data are available for many fisheries in Southern New England in the form of

AIS, similar methods could be utilized to improve fishing prediction accuracy.

Here we present a comprehensive approach to characterizing offshore fishing activity

incorporating machine-learning on fine-scale AIS data to delineate fishing versus non-fishing

activities, with fallback to existing VMS and VTR approaches for vessels without AIS.

Materials and methods

Data

All data sources were acquired for the years of 2015–2018 based on the years that all datasets

were available at the time of request or download for the study area (Fig 1). To establish an

appropriate methodology, analysis was focused on a single fishery management plan: the

Atlantic scallop fishery. Publicly available AIS data were downloaded from Marine Cadastre

(https://marinecadastre.gov/ais/). Confidential VMS data were requested through NOAA’s

Office of Law Enforcement and received after execution of a non-disclosure agreement. Confi-

dential trip-level VTR data and dealer reports were obtained through the Atlantic Coastal

Cooperative Statistics Program’s (ACCSP) Data Warehouse. Public GARFO permit files were

downloaded from https://www.greateratlantic.fisheries.noaa.gov/public/public/web/

NEROINET/aps/permits/data/index.html. Confidential Northeast Fisheries Observer Pro-

gram (NEFOP) data were requested and received through NOAA’s NEFOP program. The

observer dataset includes start and end locations and timestamps of all tows, as recorded by an

independent on-board fisheries observer. Bathymetry data were downloaded from the North-

east Ocean Data Portal: https://www.northeastoceandata.org/files/metadata/Themes/

Bathymetry/Bathymetry.htm. Moon phase data were compiled from monthly calendars avail-

able at https://www.almanac.com/astronomy/moon/calendar. Modeled VTR location data (an

intermediary step of Benjamin et al. [27] were obtained from the Northeast Fisheries Science

Center (NEFSC). An ESRI feature class of offshore wind lease areas was downloaded from the

Bureau of Ocean Energy Management (BOEM) at https://www.boem.gov/renewable-energy/

mapping-and-data/renewable-energy-gis-data.

Methodology

Data processing. AIS data were first linked to GARFO permit files to determine vessel

fishing permits (Fig 2). The merged AIS data were also linked to VMS data to identify the fish-

ery management plan the trip was operating under through the VMS declaration code. All AIS

locations within state waters were omitted from further analysis. To generate training data,

AIS data were then merged to NEFOP data to mark all AIS pings that corresponded with fish-

ing (i.e., timestamp fell between start and end of an observed haul). To correct variances in
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time before engineering features, all data were resampled on 1-minute intervals using linear

interpolation between points for relevant fields. Finally, features were engineered on a 15-min-

ute rolling window for the following features: average speed over ground, standard deviation

of speed over ground, straight line distance (geodesic) from start to end locations, total dis-

tance (geodesic) traveled, average depth, standard deviation of depth, average of change in

course over ground between consecutive points, and change in course over ground from start

to end locations. Additional features included are moon light (percentage), month, and day of

the week. The final training dataset after merging included 143 vessels on 330 separate trips,

resulting in 8,487 individual observed hauls and 2,770,714 location pings, where a trip is all

activity the vessel engaged in between leaving and returning to port and a haul is the activity

while fishing gear is in the water and corresponding catch being hauled and sorted on deck.

Modeling. Supervised classification was conducted in Python (Python Software Founda-

tion. Python Language Reference, version 3.11. Available at http://www.python.org) using the

Skicit-learn library [43]. Random decision forests were selected because they present an option

to overcome the limitations of modeling non-linear relationships, since decision trees model

data hierarchically and branch data into leaves that represent predictions. Unconstrained deci-

sion trees can also easily be overfit but methods like random forests ensemble trees to limit

overfitting [44]. Further, Behivoke et al. [45] found that random forest modeling was the most

Fig 1. Study area. Southern New England (SNE) offshore wind lease areas (as of July 3,2024) are also shown.

https://doi.org/10.1371/journal.pone.0313197.g001
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Fig 2. Methodology flowchart. Ovals represent datasets including inputs, intermediary steps, and outputs. Rectangles are

processes (e.g., data merging, modeling steps). White shapes depict the process of building the final AIS data product.

Shapes shown in yellow or green are also included in creating data products used for comparison to the AIS model’s

predictive accuracy, where yellow corresponds to the VMS comparison product and green corresponds to the VTR

comparison product. Sample sizes shown for datasets are the number of fishing trips included within that dataset.

https://doi.org/10.1371/journal.pone.0313197.g002
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reliable method for processing global positioning system (GPS) tracks and identifying spa-

tially-explicit fishing activity, independent of gear type.

Random forests ensemble a large number of relatively unconstrained decision trees to

smooth out the predictions. They work by creating a bootstrapped sample set from the training

dataset, growing a random forest decision tree for the bootstrapped data, and averaging the

outputs of all the individual trees. Hastie et al. [44] and Yoon [46] offer detailed descriptions of

the random forest algorithm, summarized as follows:

1. For k = 1 to K:

a. Pull a bootstrap sample Z* of size N from the training dataset.

b. Grow a random forest decision tree Tk to the bootstrapped data by recursively repeating

the steps below for each terminal node on the tree, until the minimum node size nmin is

reached:

i. Select m variables at random from the p variables.

ii. Pick the optimal variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of random forest trees fTkg
K
1

.

To make a prediction at a new point x:

Regression: f̂ Krf xð Þ ¼
1

K

PK
k¼1

TkðxÞ

Classification: Let ĈkðxÞ be the class prediction of the kth random forest tree. Then ĈK
rf ðxÞ =

majority vote fĈkðxÞg
K

1
.

Cross-validation was used to tune model hyperparameters including number of trees and

tree depth as well as to select the number of model features to include. Feature selection was

done based on recursive feature elimination during cross-validation and feature importance.

O’Farrell et al. [38] note that out-of-bag (OOB) error rate often replaces cross-validation in

random forest applications to classification. OOB error stabilization was used to evaluate over-

all model performance because it provides an unbiased estimate of model performance since it

is calculated on out-of-bag samples unseen by the model. It can also happen simultaneously

with model fitting making it computationally efficient [44].

The trained model was applied to the unseen AIS dataset and then merged to landings data

to allow for ex-vessel value to be distributed across fishing locations. Within each trip, values

of sold catch were evenly distributed among all fishing locations in the AIS dataset. Other

methods of distribution were considered, including using annual vessel density by location or

using interpolated fishery-independent scallop abundance data to weight values within a trip,

but both approaches introduced added uncertainties. For this reason, an objective approach of

distributing value across points equally was taken.

Fallback to VMS and VTR. For any trips in the VTR dataset without corresponding AIS

data, VMS data were used instead, if available. VMS data were merged with VTRs and landings

to isolate relevant activity, and cross checked with AIS to avoid double counting. Locations

within the VMS dataset were parsed into fishing and non-fishing, based on a speed cutoff of

five knots, per Fontenault [35]. Landings values were then distributed evenly across fishing

locations, as was done with the AIS dataset. Trips with no corresponding AIS or VMS relied

on modeled VTR locations. For each individual reported VTR location, a raster of modeled

distribution of fishing probability (totaling to 1.0) was provided by the NEFSC; these rasters

are used to create NOAA’s fishing footprints data projects. These rasters were selected by trip
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number to avoid duplication with the AIS or VMS datasets, multiplied by ex-vessel value of

landings of the trip, and were then summed over individual years using basic raster math.

Combining datasets. AIS and VMS point datasets were combined into a single dataset

and then rasterized into a 500 m x 500 m raster grid (matching the resolution of Benjamin

et al. [29]), where raster values correspond to the sum of point values (ex-vessel dollars) within

each grid cell. This grid was then added to the VTR grid using raster math to create the final

raster of landings value by location.

Comparison to other data products. To assess how well the AIS model performed

against existing data products, a variety of methods were employed. First, a 5-knot speed cutoff

was applied to the AIS data for trips with NEFOP coverage and then the proportion of loca-

tions where the prediction was correct was calculated. Second, for VMS data with correspond-

ing NEFOP coverage, tow start and end times were used to parse whether the vessel was

fishing or not fishing at each location. Then the speed cutoff approach was applied and predic-

tions were compared to the NEFOP verified fishing status. Finally, VTR fishing footprint data

(the modeled distribution of fishing probability totaling to 1.0) for each individual trip with

observer coverage was compared against a raster of matching size and resolution containing

NEFOP verified haul location information for that trip. The haul location raster was created

by plotting each haul as a line from start to end and converting the vector data to a raster

where cells intersected with a haul receive a value of 1 and cells with no fishing activity were

assigned a value of 0. This raster was then compared to the trip’s VTR fishing footprint using

ordinary least squares regression. This was all VTR trips with observers onboard, generating

2,361 models. In order to compare the final aggregated AIS, VMS, VTR product against the

VTR fishing footprint data, the difference between the two output rasters for the full time

period was calculated.

The full combined AIS model with VMS and VTR fallback raster dataset was also compared

against the VTR raster layer for all trips covered in both datasets. Raster values represent spa-

tially aggregated scallop fishery exposure estimates. Raster values were summed within wind

lease areas to compare exposure estimates. Kernel density estimates of raster values were also

created for individual lease areas for both data products.

Since the VTR model distributes landing value spatially around a single reported location,

and the AIS model distributes value only to actual vessel locations, the AIS approach is likely

to distribute value more tightly. This could potentially generate mismatches where the VTR

approach is either misattributing value to a lease area or outside of a lease area (Fig 3). To

address this analytically, an intrusion analysis was conducted for all trips with AIS coverage

and corresponding VTR fishing footprints. For each trip, the AIS fishing values were overlaid

on lease areas to determine what value corresponded to each lease area, or outside of the leases.

The same was done for the VTR model for that same trip. The estimates between the two were

compared by calculating the difference between the two (subtracting the AIS estimate from

VTR estimate) for each individual lease. Trips where estimates within lease areas differed

between the two models were isolated and differences were analyzed further with summary

statistics and a kernel density plot.

Data coverage. After compiling all the primary datasets, coverage by AIS, VMS, and VTR

was calculated for generating the comprehensive data product (Table 1). Overall VMS and

VTR datasets covered more fishing trips than what is shown here, as AIS was used as the target

dataset. A stepwise triage was conducted by dataset where AIS was the primary dataset with

“fall back” to VMS, and then to VTR only when necessary. Within the AIS dataset, observers

were present for 330 of the trips, equating to a NEFOP coverage rate of 6.93%. This data was

used as the model training dataset, the “seen” dataset, and included 2,770,714 recorded loca-

tions for 143 fishing permits.
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Results

AIS model performance

After random forest model tuning (see S3 and S4 Figs), 10 features were ultimately selected to

be included:

• Crow_flies_km (kilometers traveled in a straight line)

• Depth_Std (standard deviation in depth)

• Depth_Avg (mean of depth)

• SOG_Avg (mean of speed over ground)

• SOG_Std (standard deviation of speed over ground)

• COG_Avg_Abs_d (mean of change in course over ground, also called heading)

• d_COG_StartEnd (change in course over ground from the start point to the end point)

• Moon (moon phase as a percentage for that date)

Fig 3. Assignment of trips to lease areas. Black outlines represent lease areas. Black dots are self-reported VTR locations, with concentric circles distributing

landings values based on modeled probabilities of fishing location (per Benjamin et al. [27]). Red dots are AIS pings delineated as fishing by the AIS model.

https://doi.org/10.1371/journal.pone.0313197.g003

Table 1. Coverage of scallop fishing activity within the study area by data source.

Source # Trips % Coverage # Seen Trips % Seen

AIS 4,761 44.79% 330 6.93%

VMS 3,624 34.10% NA NA

VTR 2,244 21.11% NA NA

Total trips = 10,629. Seen trips correspond with trips with AIS coverage for which a fisheries observer was present.

Observers were also present on some trips with VMS or VTR coverage, but these coverage rates were not assessed for

this study.

https://doi.org/10.1371/journal.pone.0313197.t001
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• Day of the week

• Month

Consider that most features were engineered over 15-minute windows, where the calculated

feature was a measure within that 15-minute time period. For example, the standard deviation

feature was the standard deviation within the 15 minutes around the target point using a mov-

ing window approach; this particular feature was intended to identify whether a vessel was

changing speed or moving at the same speed during the temporal window. The standard devi-

ation in speed emerged as the most important variable, followed by distance traveled in a

straight line, standard deviation of depth, mean of depth, and average of speed. The final

model produced predictions with 97.9% accuracy and an out-of-bag error of 0.021.

Comparison to other data products

As stated previously, the prediction accuracy of the AIS random forest model was ~98%. For

comparison to accuracy of VMS speed-cutoff methods, the 5-knot cutoff (>5 knots indicates

non-fishing activity) applied to the training AIS dataset correctly predicted fishing status for

49.3% of recorded locations. Results were similar when compared to the VMS. For trips with

VMS and NEFOP observers on board, the speed cutoff approach was correct for 47.9% of

recorded locations. VTR fishing footprint fishing prediction accuracy based on OLS regres-

sion, calculated as the mean of the coefficient values for the sole model coefficient in all trip-

level models, was 73.2%.

Exposure estimates within SNE lease areas differed between the AIS model with VMS and

VTR fallback and the VTR fishing footprints data products (Fig 4). For most years in most

lease areas, the VTR fishing footprint exposure estimate was larger than the AIS with fallback

estimate; this was not always the case (Table 2).

Kernel density estimates by lease area for the two data products demonstrate that scallop

landings are distributed differently by the two methodologies (Fig 5). Raster values in the

aggregated AIS model with VMS and VTR fallback were generally higher than values from the

VTR fishing footprints; this was seen in all ten wind lease areas assessed.

Based on intrusion analysis, 85.7% of trips had the same estimate between the two

approaches, while 14.3% of trips had disparities between the two for at least one of the 10 wind

lease areas. For the trips with differences in exposure estimates, the mean of the differences

was -$1,605.50, while the median was $154.72 per trip. The standard deviation was ±

Fig 4. Final scallop exposure data products for 2015–2018. (A) AIS model with VMS and VTR fallback. (B) VTR fishing footprints provided by NEFSC for

comparison. (C) The difference calculated between the two rasters. All rasters show only values greater than $500 to aid visual interpretation.

https://doi.org/10.1371/journal.pone.0313197.g004

PLOS ONE Scallop fishing activity in Southern New England: Offshore wind demands and fisheries-dependent methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0313197 November 11, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0313197.g004
https://doi.org/10.1371/journal.pone.0313197


Table 2. Aggregated annual and total dollars of scallop landings from SNE wind lease areas based on AIS model with VMS and VTR fallback versus VTR fishing

footprints.

Lease Number Year $ derived from AIS model with VMS and VTR fallback $ derived from VTR Fishing footprints Difference in Estimates

OCS-A 0486 2015 $47,909 $118,330 -$70,422

2016 $91,457 $122,536 -$31,079

2017 $11,157 $39,910 -$28,753

2018 $1,312 $13,071 -$11,759

Total $164,497 $293,848 -$129,351

OCS-A 0487 2015 $388,494 $355,295 $33,199

2016 $422,497 $503,061 -$80,563

2017 $201,628 $296,523 -$94,895

2018 $13,965 $36,835 -$22,870

Total $1,047,252 $1,191,713 -$144,462

OCS-A 0500 2015 $29,933 $139,211 -$109,278

2016 $34,898 $111,341 -$76,444

2017 $4,629 $54,397 -$49,768

2018 $5,509 $21,431 -$15,923

Total $79,253 $326,380 -$247,127

OCS-A 0501 2015 $49 $8,471 -$8,422

2016 $3,543 $13,888 -$10,345

2017 $780 $2,504 -$1,724

2018 $27,287 $2,067 $25,219

Total $40,679 $26,931 $13,749

OCS-A 0517 2015 $5,173 $19,984 -$14,811

2016 $649 $19,089 -$18,440

2017 $3,455 $13,787 -$10,332

2018 $182 $3,243 -$3,061

Total $10,324 $56,103 -$45,780

OCS-A 0520 2015 $46 $20,915 -$20,868

2016 $1,725 $18,772 -$17,048

2017 $42 $3,846 -$3,803

2018 $8,087 $8,961 -$874

Total $25,940 $52,493 -$26,554

OCS-A 0521 2015 $0 $23,490 -$23,490

2016 $0 $19,261 -$19,261

2017 $107 $4,332 -$4,225

2018 $68,747 $36,867 $31,880

Total $90,215 $83,950 $6,265

OCS-A 0522 2015 $47,909 $118,330 -$70,422

2016 $91,457 $122,536 -$31,079

2017 $11,157 $39,910 -$28,753

2018 $1,312 $13,071 -$11,759

Total $164,497 $293,848 -$129,351

OCS-A 0534 2015 $388,494 $355,295 $33,199

2016 $422,497 $503,061 -$80,563

2017 $201,628 $296,523 -$94,895

2018 $13,965 $36,835 -$22,870

Total $1,047,252 $1,191,713 -$144,462

(Continued)

PLOS ONE Scallop fishing activity in Southern New England: Offshore wind demands and fisheries-dependent methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0313197 November 11, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0313197


$14,886.32. Considering that differences were calculated as VTR estimate minus AIS estimate,

the mean indicates that AIS estimates were larger, while the median suggests that the VTR esti-

mates were larger. While trip-level VTR estimates were generally slightly larger than AIS esti-

mates, the distribution of estimates is heavily negatively skewed due to a number of trips

where AIS estimates were dramatically larger than VTR estimates (Fig 6).

Discussion

As stated earlier, most fishery-dependent data are collected for the purpose of fishery manage-

ment or enforcement, and may not be sufficient for offshore wind planning or understanding

potential impacts [29, 36]. As such, a variety of fishery-dependent data products have been

developed to increase suitability for understanding offshore development and fishing activity

overlap (e.g., [27, 28, 36]). Nevertheless, each data product still has shortcomings due to the

input data sources (e.g., spatiotemporal resolution) and necessary assumptions made during

analysis (S1 Table). Using a random forest machine learning approach, this effort aimed to use

fine-scale AIS data to expand upon existing fishery-dependent data products based upon

coarser-scale inputs, such as VTR and VMS.

Differences in data products

The AIS model demonstrated dramatic improvements in predicting fishing activity accurately

as compared to both VMS and VTR data products. AIS model predictions exceeded 97% accu-

racy, while speed cutoffs applied to AIS and VMS predicted fishing accurately only 49.3% and

47.9%, respectively, and VTR fishing footprints predicted fishing activity 73.2% of the time.

The AIS model approach offered improvements ranging from 24.7% and 50% improvement in

model prediction accuracy over existing approaches. However, the limited vessel coverage rate

makes the AIS data alone less useful. This work demonstrates the improved accuracy in using

AIS and machine learning and offers a method to couple the AIS model with the next best

available data for each individual trip, resulting in the most accurate, comprehensive fishing

exposure estimates.

This effort has highlighted the shortcomings of using speed alone to delineate fishing versus

non-fishing activity in the VMS, as discussed by Muench et al. [31]. Further, the outputs of the

AIS with fallback approach resulted in a more precise distribution of fishing landings values

offshore as compared to the VTR fishing footprints model due to the higher resolution of the

primary dataset, and the reduced need to estimate vessel location at the time of fishing.

The VTR fishing footprint data product has been used as the primary tool used by offshore

wind developers in fishery exposure estimates for project Construction and Operations Plans

(e.g., [47]). Allen-Jacobson et al. [29] discuss the value of the VTR fishing footprints at the 90th

Table 2. (Continued)

Lease Number Year $ derived from AIS model with VMS and VTR fallback $ derived from VTR Fishing footprints Difference in Estimates

OCS-A 0561 2015 $29,933 $139,211 -$109,278

2016 $34,898 $111,341 -$76,444

2017 $4,629 $54,397 -$49,768

2018 $5,509 $21,431 -$15,923

Total $79,253 $326,380 -$247,127

Lease numbers correspond to the offshore wind leases shown in Fig 1. These numbers should not be used directly in offshore wind planning or mitigation; this exercise

was meant to compare methods and not all applicable trips may be included in the final outputs.

https://doi.org/10.1371/journal.pone.0313197.t002
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percentile for capturing all trips with exposure to development of an area. This effort’s com-

parison to the AIS model with VMS and VTR fallback demonstrated that the increased preci-

sion of the AIS point data delineated as fishing dramatically changed how fishing effort, and

therefore exposure in the form of fishery landings values, is distributed spatially. The VTR fish-

ing footprint product distributes landings around a reported fishing location based on mod-

eled probability of fishing [27], which results in a smoothed distribution of fishing effort as

Fig 5. Kernel density estimates of raster cell values from AIS model with VMS and VTR fallback versus VTR fishing footprints for

each of the Southern New England lease areas. Raster exposure values were aggregated over the 2015–2018 study period.

https://doi.org/10.1371/journal.pone.0313197.g005
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seen in Fig 5. The AIS model approach does not distribute fishing effort, but rather parses fish-

ing from non-fishing ping locations, and then falls back to VMS and VTR, resulting in more

tightly distributed estimates of fishing effort (Fig 5).

Interestingly, the differences in landings distribution between the two data products is not

consistent across years or lease areas (Table 2). Estimates in the VTR fishing footprints product

were generally higher, but not in all years or wind lease areas. The higher VTR estimates make

sense, as the fishing footprint approach will create overlap with wind lease areas when fishing

activity may have occurred just outside a lease area, which the AIS-based product may classify

this fishing as outside the lease area (Fig 3). In contrast, there are other instances where fishing

may have occurred within a lease area that the AIS-product correctly quantifies the landings

value for, while the VTR fishing footprints may distribute some of the landings to outside the

lease and the VTR point itself may be outside the lease.

Intrusion analysis confirmed this to be the case, where some trips had larger VTR exposure

estimates and others had larger AIS exposure estimates within lease areas (Fig 6). For trips

where the models distributed fishing values differently in lease areas, VTR estimates were gen-

erally larger than AIS estimates, but only slightly larger (e.g., the median was a $154.72 differ-

ence). For those trips where the AIS estimate was larger, it was substantially so (in some cases

exceeding $150,000). Therefore, in aggregate, the VTR estimates were more conservative,

while AIS estimates highlighted some major discrepancies between approaches at the individ-

ual trip level. Our findings align with those of Allen-Jacobson et al. [29], where lease level esti-

mates using the VTR footprints may overestimate total exposure, but underestimate trip-level

exposure based on comparisons to higher resolution study fleet data for longfin inshore squid

(Doryteuthis pealeii) fishery.

Fig 6. Kernel density plot of differences in VTR and AIS estimates. Differences calculated between the VTR exposure estimate and AIS model exposure

estimate in lease areas for all individual trips with AIS coverage from 2015–2018; trips with matching estimates were omitted. Differences calculated as VTR

estimate minus AIS estimate; positive values are indicative of the VTR estimate being larger.

https://doi.org/10.1371/journal.pone.0313197.g006
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In short, the AIS model substantially improves upon the accuracy of predicting fishing

activity in vessel location datasets, but provides lower coverage than the VTR dataset. There-

fore, the AIS model needs to be combined with other datasets to ensure full coverage of the

fishery. The comprehensive approach here uses the best-available data for every individual

trip, improving overall accuracy. However, building this product is complex (i.e., Fig 2) and

computationally demanding. In contrast the VTR fishing footprints product offers high cover-

age of trips and is a readily available tool through NOAA [28].

Recommendations

The increased precision of the final combined AIS data product enhances the usefulness of this

product over VTR- and VMS-derived products for project micrositing, and may offer a more

detailed understanding of fishing effort during fishery mitigation and compensation discus-

sions, especially at the vessel- or trip-level. However, it offers limited added value for general

project siting and overall project exposure estimation because the same general areas of fishing

are identified by both products. Using VTR fishing footprints at the 90th percentile may there-

fore offer the most conservative approach to initial spatial planning efforts because it distrib-

utes fishing effort beyond the reported locations. Moreover, the differences in estimates across

fishery-dependent data products demonstrate the value of assessing multiple sources of fishing

effort data in offshore wind development and more general marine spatial planning decision

making.

This study focused solely on distributing fishing effort and ex-vessel values (the value of

catch sold to the dealer when a vessel lands). No considerations were made for possible shore-

side economic impacts to the scallop fleet. Further, fishing grounds may shift in the future in

response to changing ocean conditions, independent of offshore wind development [48]. Man-

agers should consider multiple data streams, with an understanding of their various caveats, in

addition to these additional factors to arrive at informed decisions.

It is not well understood how harvesters will respond to offshore wind farms during con-

struction or once operational [49]. Studies that address this topic exist in other regions (e.g.,

[50, 51]), but the fisheries and their specific vessel and gear configurations in the Northwest

Atlantic present new variables. However, the AIS with VMS and VTR fallback data product

offers substantial advantages in assessing the response of harvesters to wind development. The

combined AIS data product will allow for detailed assessment of if and how vessel activity

changes in response to offshore wind development, and will offer the ability to measure vessels’

proximity to wind infrastructure installed offshore (e.g., turbine foundations, cables, or substa-

tions). Such data will enable an enhanced understanding of the impacts of wind development

on fisheries in Southern New England and create new insight to improve future wind planning

and fisheries management efforts.

Given the various differences between the combined AIS data product and the VTR fishing

footprints, this work stresses that multiple data streams should be considered in all aspects of

offshore wind planning and mitigation. VTR footprints at the 90th percentile are accessible for

multiple years and fisheries and offer a conservative approach to identifying areas for proposed

development, while the combined AIS data product may be more accurate for use in assessing

individual vessel exposure and response to offshore wind development.
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S1 Table. Data acquisition.

(PDF)
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S1 Fig. Model AUC score as a function of the number of estimators (RF trees). This step

was used during model hyperparameter tuning to select the number of estimators in the tuned

model.

(TIF)

S2 Fig. Model AUC score as a function of the maximum decision tree depth. This step was

used during model hyperparameter tuning to select the maximum decision tree depth in the

tuned model.

(TIF)

S3 Fig. Percent correct classification as a function of the number of features included in

the model. This step was used during model hyperparameter tuning to determine how many

features to include in the tuned model.

(TIF)

S4 Fig. Feature importance. This step was used during model hyperparameter tuning to select

which features to include in the tuned model.

(TIF)

S5 Fig. Tuned model accuracy. Confusion matrix of predictive accuracy of the final tuned

model. Out-of-bag error was 0.021, while accuracy (% of predictions correct) was 97.9% and

balanced accuracy (average accuracy per class) was 97.0%.

(TIF)

S1 File. Code descriptions. Each script title is provided with a description of what it does and

what the inputs and outputs are.

(PDF)
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