
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01887-6

Amplified threat of tropical cyclones to US
offshorewindenergy inachangingclimate
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The vulnerability of US offshore wind energy to tropical cyclones is a pressing concern, particularly
along the Atlantic and Gulf Coasts, key areas for offshore wind energy development. Assessing the
impact of projected climate change on tropical cyclones, and consequently on offshore wind
resources, is thus critical for effective risk management. Herein, we investigate the evolving risk to
offshorewind turbinesposedbyAtlantic tropical cyclones in a non-stationary climate using a synthetic
tropical cyclone model. Integrated with climate model simulations, projections show widespread
increases in tropical cyclone exposure, with historical 20-year storms occurring every ~12.7 years on
average, increasing in intensity by about 9.3 ms−1. Subsequent fragility analysis reveals that the
probabilities of turbine yielding and buckling from a 20-year tropical cyclone could increase by about
37% and 13%, respectively, with regional increases reaching up to 51%. These findings carry
substantial implications for the operation and future expansion of offshore wind farms.

Offshore wind (OSW) energy is poised to play a key role in achieving US
renewable energy goals, with a national OSW energy target of 30 gigawatts
(GW)by 20301. This ambitious goal signals considerable growth in thewind
energy sector over the coming decades, presenting substantial opportunities
for OSW development along US coastal regions near major population
centers2. In order tomeet state and national energy goals, there are plans to
establish wind energy areas (WEAs) along the USAtlantic and Gulf Coasts.
However, these regions are susceptible to tropical cyclones (TCs), which
have historically beenamong themost prevalent threats to life and property.
Between1980 and2023,TCs impacting theUShave causedover $1.3 trillion
in damages, averaging $22.8 billion per event3. The potential for damage in
coastal regions is expected to increase even further4–10, with one study
suggesting that the risk to people and property will rise by up to 60% by
210011. With the projected expansion of OSW energy infrastructure along
the Atlantic and Gulf Coasts, this underscores the need for more TC-
resilient turbine designs and the consideration of TC hazards in wind farm
siting plans.

To mitigate the damaging impacts of TCs on wind energy infra-
structure, it is crucial for wind farm development plans to assess the risk to
OSWturbines under extremeTCconditions. TCs are particularly impactful
due to a combination of high wind speeds, heavy rainfall, and storm surges.
Current theories and climatemodels predict that the intensity of storms and
associated precipitation will increase in the future12–20. Although some
studies suggest a decline in global TC frequency (TCF) under climate
change13,21–24, the interquartile range of outcomes from a number of studies
spans positive change, indicating variability in the influence of warming on
TCF13. Reports generally conclude that the proportion of storms reaching

Categories 4 and 5 strength are expected to increase due to anthropogenic
warmingover the21st century13,20.Moreover, future changes in steeringflow
may shift Atlantic TC tracks closer to theUS coast25,26, where environmental
conditions are becoming increasingly favorable for TC intensification27–31.
Thus, it is critical to understand thewind andwave impacts induced by TCs
on wind turbines, particularly in coastal regions where TC impacts are
expected to worsen.

Due to the lack of observed performance metrics for wind turbines
during TCs, researchers commonly employ structural modeling techniques
such as numerical finite element models, probabilistic models, and physics-
based simulation tools32–39. Previous studies have developed extensive fra-
meworks to quantify the risk posed by TCs to wind energy infrastructure,
including assessments for offshore turbines in WEAs off the Atlantic and
Gulf Coasts36–38. However, these studies did not consider potential changes
in TC climatology due to future climate conditions. Therefore, there is an
urgent need to understand the evolving TC risk to US OSW infrastructure
through assessments that comprehensively account for changes in the cli-
mate system and their consequent impacts on storms.

To address this gap, we assess the impact of projected future changes in
Atlantic TCs on US wind energy infrastructure using the Risk Analysis
Framework for Tropical Cyclones (RAFT). RAFT is a hybrid model inte-
grating physics, machine learning, and statistics, capable of generating large
ensembles of TCs that are consistent with a given climate and achieve
reasonable accuracy25,40,41. Specifically, we utilize turbine fragility curves42 to
simulate the structural response of fixed-bottom 5 megawatt (MW) OSW
turbinesalong theUSAtlantic andGulfCoasts exposed toTC-inducedwind
andwave loadingsbasedonRAFT-simulatedTCs.Given that our study area
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along the Atlantic and Gulf Coasts features shallow waters conducive to
fixed-bottom turbines, we have focused our analysis on these structures.
This focus on 5MW turbines is motivated by the availability of fragility
curves for the National Renewable Energy Laboratory’s (NREL) 5MW
offshore reference turbine. While proposed US OSW turbines are expected
to have higher capacities, the findings from this study can also provide
indicative insights into the potential risks faced by these larger turbines.Our
study not only evaluates how TC-induced risk to OSW infrastructure may
change in the future, but also offers anovelmethodology for risk assessment.

In our analysis, we will assess both overall TC exposure and risk pat-
terns for the coastal region extending 200 km offshore from the Gulf and
Atlantic Coasts, as well as subregional analyses (Northeast, Southeast, and
Gulf) to investigate spatial variability in TC behavior and impacts between
regions. Furthermore, we assess risk for specificWEAs at the state level (e.g.,
NewYork, NorthCarolina, and Texas) to allow for amore targeted analysis
of the unique vulnerabilities in each region planning OSW energy devel-
opment. This framework ensures a comprehensive assessment of OSW
turbine risks under changing TC conditions, aiming to support the suc-
cessful development of sustainable energy resources.

Results
Current and future wind turbine risk patterns
To relate TC wind speeds to the likelihood of turbine tower damage, we
investigate two damage states: (a) yielding, which refers to permanent
structural deformation, and (b) buckling, which refers to structural collapse.
These states are determined via turbine fragility analysis, detailed further in
the “Methods” section.

Using nine models from Phase 6 of the Coupled Model Inter-
comparison Project (CMIP6)43 simulating historical (1980–2014) and
future (2066–2100) climatic conditions under the SSP5-8.5 emissions sce-
nario, we employed RAFT40 to generate a combined total of 450,000 TC
tracks within the Atlantic basin for each period, equivalent to nearly 60,000
years of total simulated TC activity. In addition to benefiting from a large
sample of synthetic TCs that account for a range of climatic conditions,
utilizing a model ensemble helps balance and reduce uncertainties from
individual models43,44, thereby enhancing the robustness of projections. For
individual model output, see Section S2 of the Supplementary Information.
Unless otherwise stated, the significance of projected changes is evaluated
using two-tailed Student’s t-tests at the 95% confidence level.

We investigateTC impacts using recurrence intervals or returnperiods
(RPs), which provide a means to discern potential shifts in the occurrence
rate of TCs of a particular intensity. Given that the average lifespan of awind
turbine is ~20 years45–48, we assess the damage risk resulting from the peak
wind speed associated with a 20-year RP TC (i.e., the TC with a 5% annual
probability of occurrence) to evaluate the probabilities of yielding and
buckling within a turbine’s expected lifetime. Additionally, we repeat the
analysis for a 50-year TC to assess the risk of more severe storms impacting
the US Atlantic and Gulf Coasts.

Our findings indicate that the spatial risk of TC-induced damage to
OSW turbines along the US Atlantic and Gulf Coast regions is broadly
expected to increase, with strong intermodel agreement on the sign of
change (i.e., increase or decrease) in all regions assessed. Detailed regional
estimates and their associated uncertainties are outlined in Table 1. Sig-
nificant increases in yielding risk are expected for theGulf Coast andFlorida
peninsula resulting from 20- and 50-year storms (Fig. 1), with the average
risk of turbine yielding estimated to increase by nearly 40% for a 20-year
storm (Fig. 1c) and 27% for a 50-year storm (Fig. 1f). The Atlantic Coast
exhibits similar changes, with projected increases in turbine yielding risk of
about 35% for 20-year TCs and 31% for 50-year TCs.

Buckling, being a more acute damage state than yielding, requires
higher wind speeds to surpass the structural limit. Historically, the prob-
ability that 20- or 50-year storms would induce turbine buckling has been
below 10% across all regions assessed. However, under future climate
change, this probability is estimated to rise to as high as 57% (Table 1), with
the strongest increases and future risk expected for the Southeast and Gulf

Coast regions (Fig. 2). For the Gulf Coast and Florida, buckling risk from a
20-year storm is projected to increase from nearly 0% to almost 18%
(Fig. 2c). This increase is farmore severe when considering a 50-year storm,
with the buckling risk in this region expected to grow by almost a factor of
eight. Along the Atlantic Coast, the likelihood of TC-induced turbine
buckling is projected to rise as well, with anticipated increases in risk of
about 9% for a 20-year TC and 34% for a 50-year TC. For both turbine
yielding and buckling, the likelihood of damage is markedly higher for the
Southeast than the Northeast, differing by almost 12% historically and by
over 24% in a simulated future climate (Table 1).

Tropical cyclone impacts on turbine risk
Our analysis indicates a substantial increase in TC-related risk to OSW
turbines in the future, which prompts the question: Which underlying
changes in storm climatology are responsible for these projected increases?
To address this, we explore changes in TC climatology through two inter-
connected perspectives: shifting intensity distributions and changes in RPs
of damaging storms.

RAFT achieves satisfactory performance against observations in cap-
turing historical TC intensity along US coastal regions, with significant
pixel-wise correlations of 0.74 for 20-year TCs and 0.81 for 50-year TCs (see
Supplementary Information Section S1). Historically, 20-year TCs affecting
US Atlantic and Gulf Coast WEAs have generally been approximately
Category 1 storms (Fig. 3a). However, future 20-year TCs are anticipated to
intensify to Category 2 storms, and even up toCategory 3 storms in parts of
the Gulf of Mexico (Fig. 3b). Concurrently, historical 50-year TCs have
primarily been characterized by Categories 2 and 3 storms (Fig. 3d), while
future projections show Category 4 storms dominating much of the Gulf
and Atlantic offshore regions (Fig. 3e). For Florida and the Gulf Coast,
average peak TC winds are estimated to increase by about 21–31% for 20-
and 50-year storms (Fig. 3c, f), with similar changes projected for the
Atlantic Coast, exhibiting increases of about 18–22%. Slightly stronger
intensifications in peak TC wind speeds are expected for the Southeast
compared to the Northeast, deviating by about 2ms−1 (Table 1).

Our results reveal that the RPs of storms with intensities com-
mensurate with historical 20-year and 50-year TCs are forecasted to
decrease, implying these intensities will become more frequent in the
future. Specifically, storms with the intensity of historical 20-year TCs are
estimated to occur every 12.7 years on average in the future (Table 1).
Similarly, 50-year TCs are projected to occur nearly twice as often under
future climatic conditions, impacting the Atlantic and Gulf Coasts
roughly every 27.3 years.

Increases in the frequency of TCs making landfall also contribute to
rising risks for coastal regions. Historically, about 27% of Atlantic TCs
(≥18ms−1) simulated with RAFT make US landfall, comparable to the
observed rate of ~25% (Supplementary Information Section S1). This is
projected to increase to 34 ± 4% in a future climate based upon TC simu-
lations forced by nine distinct CMIP6 models. When considering only
Categories 1–5 TCs (≥33ms−1), the results indicate an increase from nearly
14% historically to 20 ± 3% in the future. Overall, changes in the landfall of
Categories 1–5 TCs along theGulf Coast and Florida are higher than for the
Atlantic Coast, with average increases of 5 ± 3% for the former compared to
2 ± 1% for the latter. Furthermore, significant increases are expected in
Category 4 storms across all regions, along with a rise in the most severe
Category 5TCs for the Southeast andGulf Coasts (Table 2). These increases
in coastal TCF are consistent with findings for the Atlantic basin under
historical and projected future climatic conditions based upon a similar
methodology25,wherein substantial increases in trackdensity appear to span
nearly the entire coastal region, supporting our findings of increased TC
landfall rates and broad elevated exposure of TCs to OSW turbines.

Wind speeds associated with turbine tower yielding generally corre-
spond to Categories 2 and 3 TCs, while the more severe Categories 4 and 5
TCs are linked to high probabilities of turbine buckling (Supplementary
Fig. S7). These associations are based on our fragility analysis, detailed in the
“Methods” section. Specifically considering TCwind speeds associated with
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tower yielding and buckling, we find that yielding-inducing winds are
expected to increase in frequencywithin the study area by about 56 ± 4%on
average, while the frequency of TC wind speeds associated with turbine
buckling are projected to rise by a factor of ~3 (Table 2).Higher variability in
the frequency of yielding-inducing winds is observed for the Atlantic Coast
compared to the Gulf Coast, a trend illustrated at the state level for New
York, North Carolina, and Texas in Fig. 4, each of which has an OSW
pipeline capacity of at least 3 GW49.

Assessing changes in yielding and buckling wind frequency at the state
level allows for amore targeted analysis of the unique vulnerabilities in each
region planning OSW energy development. The results indicate a general

upward shift in the frequency distribution of damaging winds, particularly
those associated with catastrophic turbine damage. The Northeast region is
expected to experience the largest increase in the study area, with the fre-
quency of buckling-inducing winds growing by nearly a factor of five, as
exemplified forNewYorkWEAs inFig. 4.NorthCarolinaWEAs exhibit the
highest exposure among the three states assessed, with a nearly threefold
higher frequency of buckling-inducingwinds compared to those in offshore
regions of New York. Texas WEAs are subjected to the lowest degree of
variability in exposure of these states, projected however to face pointed
increases in the frequency of bucklingwinds. These state-level changes align
with the broader regional trends outlined in Table 2, which details the

Table 1 | Offshore wind turbine risk and tropical cyclone intensity across US regions under historical and future climate
scenarios

Yielding risk (%) Buckling risk (%) TC intensity (ms−1) Return
period (years)

Region Historical Future Historical Future Historical Future Future

Northeast 20y RP 2.4 ± 0.9 28.2 ± 5.1 0.01 ± 0.01 3.1 ± 1 36.5 ± 1 43.3 ± 1.3* 11.8 ± 1**

50y RP 24.9 ± 4.6 60.6 ± 6* 0.9 ± 0.3 21.1 ± 4 44.2 ± 0.9 51.3 ± 1.2* 22.7 ± 2.9**

Southeast 20y RP 7.3 ± 2.1 52.4 ± 7.1* 0.09 ± 0.04 15.5 ± 3.6 39.8 ± 1.1 48.7 ± 1.6* 12.2 ± 1.3**

50y RP 58.4 ± 6.1 85.5 ± 4.7* 9 ± 2.1 57.2 ± 6.3* 50.2 ± 1 59.3 ± 1.4** 24.5 ± 3.8**

Gulf 20y RP 1.8 ± 0.3 41.2 ± 2.8** 0.01 ± 0.01 17.5 ± 1.7** 34.4 ± 0.7 45.1 ± 1.1* 13.3 ± 1.5**

50y RP 54.1 ± 2.9 81.3 ± 2.9** 7.3 ± 0.7 57.4 ± 3** 48.9 ± 0.7 58.9 ± 1.1* 30.4 ± 8.6**

Overall 20y RP 3 ± 0.5 40 ± 2.5** 0.03 ± 0.01 13.4 ± 1.3** 36 ± 0.5 45.3 ± 0.8** 12.7 ± 0.8**

50y RP 47.4 ± 2.5 76.8 ± 2.5** 6 ± 0.6 48 ± 2.6** 47.9 ± 0.5 57 ± 0.8** 27.3 ± 3.9**

Ensemblemeanvalues are shown for offshore turbine risk andpeak tropical cyclone intensity associatedwith 20- and50-year RPstorms.Risk reflects the likelihoodof the specified storm intensity inducing
each damage state. The rightmost column presents the projected future return periods for wind speeds corresponding to historical 20- and 50-year RP storms. Confidence intervals are constructed at the
95% confidence level using ensemble mean data. Future values marked with a (*) indicate statistically significant increases at the 90% confidence level, while (**) denotes significance at the 95%
confidence level. Values <0.1 are reported with an additional significant digit.

Fig. 1 | Offshore turbine tower yielding probabilities under different tropical
cyclone intensities. Probabilities represent the likelihood of towers beginning to
yield due to exposure to tropical cyclone winds for historical (1980–2014) and future
(2066–2100) periods. a, d Historical yielding probabilities for 20-year and 50-year

tropical cyclones, respectively. b, e Future yielding probabilities for 20-year and 50-
year tropical cyclones. c, f Difference (future minus historical) in yielding prob-
abilities for 20-year and 50-year tropical cyclones. Black markers denote regions
where at least 8 out of 9 models agree on the sign of the difference.
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frequency changes for Categories 1–5 TCs for theNortheast, Southeast, and
Gulf regions.

Discussion
This study introduces a novel framework for assessing the evolving TC risk
toOSWturbines along theUSAtlantic andGulfCoasts, as outlined inFig. 5.
By utilizinghistorical and future global climate simulationswithRAFT40, we
generated synthetic TCs and applied structural fragility functions specifi-
cally developed for OSW turbines42 to translate TC wind speeds into
damage risk.

Our analysis projects substantial increases in both the frequency and
intensity of TCs in the future. While the IPCC Sixth Assessment Report
forecasts with medium confidence a global decline or no change in the
frequency of TC formation with increasing global warming20, regional
changes, particularly in the North Atlantic, remain uncertain and show
conflicting results. For instance, Chand et al.50 find both decreasing and
increasing trends in North Atlantic TCF over different time periods. Con-
siderable uncertainty remains in the projected impacts of climate change on
TCF, largely due to internal climate variations and systematic intermodel
differences in sea surface temperature (SST) responses to increasing
greenhouse gases13,50–53. Although the Atlantic basin has seen increased TC
activity since the 1970s, there continues to be debate overwhether this trend
is driven more by internal climatic variability or by anthropogenic
forcing13,50–58. Crucially, our findings are consistent with other research
predicting an escalation in the proportion of intense storms (Categories 4
and 5) as a consequence of global warming13,15,18, drivenby rising SSTs and a
more thermodynamically favorable environment59–63. These estimates also
broadly agreewith previous studies suggesting an increased likelihood ofUS
landfall under global warming due to changing SST patterns and steering
flow25,26,64,65.

Analyses performed here are based on a CMIP6multimodel ensemble
average, which reduces potential biases inherent in individual models43,44.

Combined with the improved consensus among CMIP6 models regarding
future ocean warming patterns compared to CMIP525, this strengthens the
reliability of the climate projections we use to downscale TC activity. The
findings presented here are substantial, yet it is important to note
that climate-induced changes in TCs remain a dynamic and evolving
research area, with ongoing advancements in both TC theory and
the simulation capabilities of global climate models (GCMs) (e.g.,
refs. 4,10,13,21,24,25,51,57,66–71). While the accuracy of TC intensity and
frequency projections is expected to improve, RAFT demonstrates robust
performance in replicating historical TC behavior40, thereby enhancing the
credibility of our study (see Supplementary Information Section S1). Con-
sequently, this substantiates our findings of increased TC intensity and
frequency, thereby underpinning the elevated risk to OSW turbines.

The overall variability in turbine damage is influenced by various site-
specific factors such as turbine design and ocean depth72. Climatological
differences, such as the SST front associatedwith theGulf Stream, also play a
significant role in TCbehavior. The sharp gradient in risk along theAtlantic
Coast can partly be attributed to this SST front73, as observed in both our
results (e.g., Fig. 1b, d), and in observed TCs (Supplementary Fig. S3). The
findings of this study hold considerable implications for the planning and
development ofWEAs andOSWinfrastructure. Tomitigate heightenedTC
risks, it is crucial to strategically site turbines in lower-risk areas and to
enhance design standards to withstandmore intense TCs, thereby ensuring
the sustainability and resilience of renewable energy infrastructure in the
face of escalating TC threats. The need for region-specific mitigation stra-
tegies is underscored by the spatial variability identified here, with the
likelihood of turbine buckling estimated to be 2–5× larger for the Southeast
coastal region compared to theNortheast (Table 1).Moreover, increasedTC
risks are anticipated for onshore wind infrastructure, particularly in coastal
regions of New England, North Carolina, and Gulf Coast states (Supple-
mentary Fig. S9), aswell as in PuertoRico, where substantial increases inTC
activity and subsequent turbine damage risk are expected (Supplementary

Fig. 2 | Offshore turbine tower buckling probabilities under different tropical
cyclone intensities. Probabilities represent the likelihood of tower buckling (i.e.,
collapse) due to exposure to tropical cyclone winds for historical (1980–2014) and
future (2066–2100) periods. a, d Historical buckling probabilities for 20-year and

50-year tropical cyclones, respectively. b, e Future buckling probabilities for 20-year
and 50-year tropical cyclones. c, f Difference (future minus historical) in buckling
probabilities for 20-year and 50-year tropical cyclones. Blackmarkers denote regions
where at least 8 out of 9 models agree on the sign of the difference.
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Fig. S10). Detailed discussions on onshore TC risk can be found in Sec-
tion S4 of the Supplementary Information.

Additionally, the risk analysis methodology we utilized faces uncer-
tainties due to the lack of empirical performance metrics for large-scale
OSWturbines subjected to extremeTCconditions38.Our fragility analysis is
basedupon theNREL5MWoffshore reference turbine74,whereasproposed
OSW turbines in the study regions may range between 11–15MW49.
Notably, two of the three currently operational offshore projects in the US
utilize 6MW turbines, which closely align with our 5MW baseline, thus
justifying our choice75. It is important to recognize that along with other
elements of turbine design, differences in turbine capacities can affect their
vulnerability to wind and wave loadings. Moreover, the fragility functions

applied here are extrapolated from operational wind speeds to higher
magnitudes associated with TCs. Despite these uncertainties, using an
alternative fragility function36 calibrated for TC-force wind speeds yielded
similar broad-scale conclusions for turbine buckling risk, affirming the
robustness of our results (see Supplementary Information Section S3).

The absence of detailed fragility analyses along with the anticipated
intensification of TCs highlights the urgent need to address these gaps and
implement effective mitigation strategies. Protecting OSW turbines from
the increasing TC threat due to climate change involves measures such as
improved siting protocols and enhanced design standards. These steps are
critical to ensuring the long-term sustainability and resilience of the
renewable energy sector.

Fig. 3 | Maximum sustained 1-min hub height (90 m) tropical cyclone wind
speeds. Return period wind speeds are computed assuming 14.91 events per year,
based on the exceedance probability distribution of tropical cyclones passing
through each 0.5° × 0.5° pixel. a, d Historical (1980–2014) wind speeds for 20-year

and 50-year tropical cyclones, respectively. b, e Future (2066–2100) wind speeds for
20-year and 50-year tropical cyclones. c, f Difference (future minus historical) in
wind speeds for 20-year and 50-year tropical cyclones. Regions with black markers
denote areas where at least 8 out of 9 models agree on the sign of the difference.

Table 2 | Tropical cyclone track density across US regions under historical and future climate scenarios

TC Frequency (per square 5 degrees, per 50,000 TCs)

Region Cat-1 Cat-2 Cat-3 Cat-4 Cat-5

Northeast Historical 10,707 ± 1646 4271 ± 773 2126 ± 385 525 ± 122 3 ± 1

Future 12,350 ± 1931 7211 ± 1145* 4781 ± 796* 2624 ± 493** 255 ± 56

Southeast Historical 3996 ± 705 2029 ± 388 1463 ± 273 861 ± 153 104 ± 24

Future 4835 ± 841* 2762 ± 521* 2441 ± 493* 2292 ± 473** 768 ± 153**

Gulf Historical 2480 ± 237 1407 ± 141 1209 ± 121 817 ± 79 225 ± 25

Future 3105 ± 287* 1779 ± 173* 1736 ± 162* 2070 ± 205** 1214 ± 130**

Overall Historical 3977 ± 378 1950 ± 164 1396 ± 126 787 ± 68 185 ± 19

Future 4794 ± 386 2763 ± 237* 2324 ± 180* 2199 ± 200** 976 ± 99**

Track density is computed per square 5 degrees by summing and aggregating occurrenceswithin each 0.5 × 0.5 degree subregion for every 50,000Atlantic tropical cyclones, based on the ensemblemean
from nine models. Confidence intervals are constructed at the 95% confidence level via bootstrapping with 1000 samples. Future values marked with a (*) indicate statistically significant increases at the
90% confidence level, while (**) denotes significance at the 95% confidence level. Note that the frequency data includes multiple observations of the same storm as it traverses regions.
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Fig. 4 | Frequency distributions of tropical cyclone winds leading to turbine
yielding and buckling in selected US wind energy areas (WEAs). WEAs are
depicted for New York, North Carolina, and Texas, based on the 2023 Offshore
Wind Market Report49. Distributions are derived from storms simulated under
historical (1980–2014) and future (2066–2100) climates using data from nine
CMIP6 climate models. Percentages are calculated as the average tropical cyclone

track density within each 0.5° × 0.5° grid cell for each region, relative to all simulated
landfalling tropical cyclones for each period. The legend provides the 50th percentile
frequency percentages for yielding and buckling, respectively. Differences shown are
significant at the 99% confidence level using two-tailed Student’s t-tests. WEAs are
assigned to states based on existing power offtake contracts but may be reallocated;
they are not depicted to scale.

Fig. 5 |Workflow for offshorewind turbine risk assessment.This study’sworkflow
begins with the use of a multimodel ensemble from CMIP6 to simulate global
environmental conditions, generating tropical cyclones with RAFT for historical
and future periods. The sustained peak intensity of these tropical cyclones is then

utilized to apply turbine fragility functions, mapping wind speeds to damage risks
associated with wind and wave forcing. This process produces spatial maps of off-
shore wind turbine risk for both periods, which are subsequently used to assess the
projected change in damage likelihood under a high-emissions future climate.
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Methods
Tropical cyclone simulations
To represent environmental conditions forhistorical and future climates,we
utilize a multimodel ensemble of nine fully coupled GCMs from CMIP6:
Euro-Mediterranean Centre on Climate Change-coupled climate model
(CMCC-CM2-SR5), Canadian Earth System Model (CanESM5), Energy
Exascale Earth System Model (E3SM), EC-Earth Consortium Model (EC-
Earth3), Geophysical Fluid Dynamics Laboratory Climate Model
(GFDLCM4), Institute Pierre Simon Laplace ClimateModel (IPSL-CM6A-
LR), Model for Interdisciplinary Research on Climate (MIROC6), Max
Planck Institute Earth System Model (MPI-ESM1-2-LR), and Meteor-
ological Research Institute Earth System Model (MRI-ESM2-0). These
models were selected based on the availability of data for historical
(1980–2014) and future periods (2066–2100) under the SSP5-8.5 emissions
scenario43 as well as a sensitivity analysis indicating that these models are
broadly representative of the CMIP6 multimodel ensemble25.

As illustrated in Fig. 5, we employed the hybrid RAFT model to gen-
erate 50,000 synthetic TCs in the Atlantic basin, forced by climatic condi-
tions from each of the nine CMIP6 models for each time period40. RAFT
consists of a track model which determines storm movement through the
basin as governed by large-scale wind patterns, and an intensity model that
predicts stormstrengthbasedon the environmental conditions encountered
along the track. The RAFT model employs a variety of input variables,
including large-scale wind, relative humidity, wind shear, maximum
potential intensity, equivalent potential temperature, and surface roughness,
to generate synthetic TCs. Historical and future TC intensities simulated by
RAFT are bias-corrected using quantile delta mapping66,76 to improve the
reliability of RAFT TCs in representing observed TC behavior. This bias
correction modifies the RAFT-modeled TC intensities by aligning the
quantiles of the historical data with those of the observed records, and then
this same correction is applied to projected intensities ensuring a more
accurate representation of TC behavior and enhancing the model’s pre-
dictive reliability. Compared to best-track observations from the Interna-
tional Best Track Archive for Climate Stewardship (IBTrACS)77, RAFT
effectively captures the spatial distribution of both TC tracks and peak
intensity for 20- and 50-year storms. We find significant pixel-wise corre-
lations between RAFT simulations and observations when comparing his-
torical maximum sustained (10-min mean) TC wind speeds offshore, with
Pearson r-squared values of 0.89 and 0.96 alongwithmean relative errors of
0.12 and 0.03 for 20- and 50-year storms, respectively. Further model
validation metrics and discussions are provided in Section S1 of the Sup-
plementary Information.

For each model, maximum sustained 10 meter TC wind speeds were
recorded during both historical and future periods and then converted to
hub height (90m) wind speeds using themean eyewall wind profile78. Once
hub height wind speeds were determined, 20- and 50-year TC wind speeds
were calculated using a pixel-wise (0.5 × 0.5 degree cell) RP computation.
TC wind speeds were ranked by intensity within each spatial grid cell, and
using the observed annual average of 14.91 storms per year (from 1980 to
2014), we determined the wind speed corresponding to specific RPs. RPs
were calculated as the inverse probability of an event of at least a given
magnitude occurring in any year. The 20- and 50-year RP stormswere then
computed for historical and future climates simulated by each of the nine
models, and an ensemble mean was taken across each spatial grid cell to
produce the wind speed maps illustrated in Fig. 3.

For our risk assessment, we selected an offshore area within 200 km of
the coast to balance proximity to existing wind farms, typically located
within 150 km of the shore, with the potential for future wind farm devel-
opment extending across the Outer Continental Shelf. According to the
2024 edition of the Offshore Wind Market Report, current draft WEAs
extend beyond 150 km offshore75. A sensitivity analysis indicated a similar
likelihood of TC risk when limiting the domain to within 150 km of the
coast, with approximately a 10.6% lower damage risk resulting from20- and
50-year TCs in the nearshore region. This consideration allows our analysis
to be pertinent for assessing near-term risk and informing the ongoing

identification of optimal wind energy locations under future climate
conditions.

Tropical cyclone frequency analysis
To further understand the frequency distribution of TCs in different regions
impacted by Atlantic TCs, we segmented the study area into three regions
based on latitudinal ranges: the Northeast (38°N, 46.5°N], Southeast
[31°N, 38°N], andGulf [22.5°N, 31°N). Each regionwas divided into square
5° subregions, within which we analyzed TC track data to tally the number
of TCs of each intensity category (e.g., Categories 1–5) passing through each
0.5° × 0.5° grid cell.

For each 0.5° × 0.5° grid cell, we recorded the frequency of TCs by
intensity category and aggregated the data at the regional level to create
comprehensive frequency distributions representing TC track density. This
frequencyanalysiswasbasedon simulationsof 50,000TCsper subregion for
both historical and future climate scenarios. This allowed us to derive the
average frequency of TCs by intensity category for each region, conse-
quently providing insights into the regional shifts in TC climatology.
Aggregated results were utilized to calculate the average track density of TCs
of each intensity per region, reflecting the total frequency based on the
50,000 TCs per 5° × 5° subregion.

Landfall events were identified by counting instances where the center
of a TC crossed within 30 km of the US coastline. Using the RAFT model
ensemble, we derived the 95% confidence interval for the simulated mean
landfall proportion to account for intermodel variability in landfall patterns.
To validate the landfall frequency of TCs, we compared historical RAFT-
simulated TCs with all pre-2015 historical observations from IBTrACS.
Figure S1a, b of the Supplementary Information details simulated and
observed TCF distribution across the Atlantic basin, supporting the landfall
frequency analysis and providing context for the broader spatial patterns of
TCs. The calculated validation statistics, including the mean TCF values,
correlation coefficient, andmeanabsolute error areprovided inSectionS1of
the Supplementary Information.

Fragility analysis
Several studies have extensively analyzed the dynamic behaviors of wind
turbines under various sources of vibration, such as aerodynamic forces, sea
waves, and seismic loadings [e.g.,33–35,79,80]. To simplify computations, tur-
bines are often considered in a parked condition with themass of the blades
lumped at the top of the tower42. The parked condition is realistic for
assessing TC risk to wind turbines because the conventional cut-out wind
speed for turbines of 25ms−1 is well belowwind speeds associatedwith even
Category 1 TCs81.

Risk assessment for wind turbines due to aerodynamic forcing is
typically modeled using a log-logistic or log-normal distribution34,36,38,42,82,
which maps wind speed to the probability of damage or malfunction. The
parameters for these models are determined using wind turbine structural
simulations subjected to external forces. Many analyses, including this
study, are based upon theNREL5MWoffshore baselinewind turbine (with
a 90mhub height) because its properties are well-documented and publicly
available74.

Damage states relate the structural performance of wind turbines to
their displacement response under external forcings, such as aerodynamic
and sea wave loadings. The turbine tower begins to yield when the internal
stress response to forced displacement becomes nonlinear. For the turbine
assessed here, yielding is estimated to occur when the displacement at the
top of the turbine tower reaches 2.1 m, determined through pushover
analysis42. A top-of-tower displacement of about 2.9 m is associated with
turbine tower buckling, characterized by sudden collapse or structural
failure.

Once turbine structural damage states are defined, fragility functions
are used to estimate theprobabilityof exceeding the associateddisplacement
thresholds as a function of wind speed, depicted in Supplementary Fig. S7.
For OSW risk assessment, we implement fragility functions for turbine
tower yielding and buckling, which account for both wind and wave

https://doi.org/10.1038/s43247-024-01887-6 Article

Communications Earth & Environment |           (2024) 5:755 7

www.nature.com/commsenv


loadings impacting a 5MW non-yawing wind turbine42. While the wind
speeds in that study are within the normal operating range of a turbine
(3–25ms−1) and are unlikely to cause themajor damage TCs can inflict, we
assess more severe damage states from yielding- and buckling-inducing
winds, which we find to range between Categories 2 and 5 TCs, with wind
speeds from 43ms−1 to over 70ms−1 (Supplementary Fig. S7).

To investigate the sensitivity of our results to the choice of fragility
function, we repeated the buckling risk analysis using an alternativemethod
developed forOSWturbines36 and foundcomparable results. Further details
are provided in Section S3 of the Supplementary Information.

Data availability
Damage probability maps from the turbine risk assessment performed in
this study are available on the open-source repository Zenodo at https://
zenodo.org/records/1113096183. Although the RAFT input data for this
analysis is not yet published, RAFT-simulated TCs forced by ERA5 rea-
nalysis are freely accessible at https://doi.org/10.5281/zenodo.10392723.
Additionally, theCMIP6global climatemodel data used for forcingTCs can
be accessed at https://pcmdi.llnl.gov/CMIP6/.

Code availability
Code for processing input data and implementing the turbine fragility
function to generate probability maps is available upon reasonable request.
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