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Introduction
With the current increase of offshore wind-energy 
developments, it is essential to assess and monitor 
their ecological effects (Gill, 2005). Specifically 
for seabirds, potential effects include mortality 
due to collision with offshore turbines and the 
displacement of birds from the wind farm area 
(Drewitt & Langston, 2006). With the focus on 
assessing a displacement (hereafter referred to 
as impact), approaches such as those under the 
Before-After Control-Impact (BACI) framework 
(Stewart-Oaten et al., 1986; Stewart-Oaten & 
Bence, 2001) are generally applied. For example, 
a BACI approach to investigate impact may rely 
on comparisons of an indicator variable (such 
as number of birds) between the pre- and post-
construction periods over the wind farm area 
and a control area (Petersen et al., 2006). The 
control area is used as a reference to characterise 
the temporal variability (Stewart-Oaten & Bence, 
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2001) in bird numbers other than that caused by 
the man-made construction. Such a comparison 
may consist of testing for a significant difference 
between the pre- and post-construction period 
in the mean number of birds in the impact and 
control areas (Petersen et al., 2006). A significant 
difference may then suggest an impact of wind 
farm construction. 

	 Given that the marine environment 
is a complex system with many processes 
interacting in a complex manner, this approach 
is generally not sufficient. Seabirds are highly-
mobile animals, presenting time-varying spatial 
dependence occurring at various scales. This may 
be caused by differences in feeding conditions 
near temperature fronts in the sea water, or by 
other as yet unknown factors. Also, collected bird 
counts contain spatial autocorrelation that needs 
to be accounted for in statistical tests aiming at 
detecting a significant difference between pre- and 
post-construction periods. Another complicating 
factor for applying this statistical testing approach 
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is that the number and spatial location of the survey 
points will usually be different for each survey. 

	 An alternative approach to investigate the 
impact of offshore wind farms on seabirds is the 
one developed in Pérez-Lapeña et al., (2010). In 
their approach, the effects of autocorrelation in 
collected species counts as well as the effect of 
varying pre- and post-construction environmental 
conditions and survey effort and design are 
explicitly taken into account. 

	 The method in Pérez-Lapeña et al., (2010) 
was developed using artificial data. The objective 
of this paper is to investigate the applicability of 
the method by Pérez-Lapeña et al., (2010) in a 
real case study regarding the impact of an offshore 
wind farm off the coast of the Netherlands on 
Guillemots (Uria aalge). Guillemots breed on 
the cliff coasts in the Northern North Sea and 
Helgoland, visiting the Southern North Sea in the 
winter. Given the large numbers of this species in 
Dutch waters during the winter months (Leopold 
et al., 2004), we choose the month of November 
for our analysis. 

The simulation-based method
The method developed in Pérez-Lapeña et al., 
(2010) provides a framework to detect, from pre- 
and post-construction collected data, whether 
seabirds have been displaced (attracted or driven 
away) in an area due to offshore wind farm 
construction (Figure 1).  

	 Using the pre-construction data, a 
deterministic model and a variogram model is 
constructed to reflect the spatial autocorrelation 
in bird counts at two different scales (coarse 
scale and local scale, respectively). To account 
for varying environmental conditions between 
pre- and post-construction periods, the pre-
construction situation is re-defined into a so-
called ‘reference situation’ to match the actual 
environmental conditions of the post-construction 
survey. By hypothesis-testing, it is assessed 
whether the actually collected post-construction 
bird counts are statistically different from the 
‘reference situation’. 

	 The null hypothesis (H0) that is being tested is 
‘no change’ in bird counts between the ‘reference’ 
and the post-construction situations, which is 
stated as: 

H0: 	[μwf - μc]ref – [μwf - μc]post = 0

where [μwf - μc]ref is the difference between the 
mean bird count in the wind farm area (μwf) and 
control area (μc) in the ‘reference situation’ and 
[μwf - μc ]post is the expected difference in the 
post-construction survey. The test statistic is 
defined as [μ;−wf - μ;−c ]ref – [xwf - xc]post where 
the values μ;−wf and μ;−c are estimate of μwf and 
μc for the reference situation, respectively, and 
their difference is taken as a constant. The values 
xwf and xc are a sample estimate of μwf and μc for 
the post-construction situation, respectively. 
The distribution of the test statistic under H0 
(referred to as the null distribution in Figure 1) 
is constructed by geostatistical simulation. Based 
on a user-specified significance level the critical 
regions under the distribution (left and right tail) 
can be identified for which H0 will be rejected. 
Using the post-construction survey data, the 
actual value of the test statistic is calculated and 
it can be assessed whether it falls into either of 
the critical regions. If so, the null hypothesis is 
rejected and a change in bird numbers between 
the ‘reference’ and the post-construction situation 
is identified. This implies that one can be quite 
certain (related to the chosen significance level) 
that birds have been displaced in relation to the 
wind farm construction. 

Guillemot dataset
The study area covers approximately 900 km2 
which includes the proposed wind farm location 
(impact area) and a zone around it (hereafter 
referred as the control area). It is located 
approximately 14 km distance to the Dutch coast 
at 17 m water depth. 

	 Count data on Guillemots were collected by 
Alterra-Texel and Wageningen IMARES under a 
study commissioned by NoordzeeWind during the 
pre- and post-construction phase of the offshore 
wind farm. As described in Leopold et al., (2004), 
surveys span the main phases of the bird calendar, 
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from breeding to migration and wintering periods. 
Survey transects were approximately 2.5 km 
apart, providing 10 equidistant transects over the 
total study area in each survey. Seabird count data 
were collected from a ship using the strip-transect 
methodology (Tasker et al., 1984). Guillemots 
were counted during periods of 5 minutes from the 
two sides of the ship. Within this time frame, the 
surface area surveyed was approximately 0.5 km2. 
Bird counts were then spatially referenced to the 
central position of the counting strips. Collected 
Guillemot counts for the month of November 
2003 (pre-construction) are shown in Figure 2. 

	 In general, we might expect the Guillemot 
count data to follow a Poisson distribution, because 

Guillemot count data are bounded by zero, as one 
cannot observe a negative number of birds, and 
have no upper limit on how large an observed 
count can be. However, the histogram shown 
in Figure 3 reveals this is not the case. Figure 3 
shows the sample-based distribution (from data in 
Figure 2) of the square root of the collected count 
values. In case counts were indeed following a 
Poisson distribution, the distribution of the square 
root of the counts would approximate the normal 
distribution. Obviously, this is not the case. 

	 From the histogram, we observe that there 
is a larger proportion of zeros than the one from 
a pure Poisson process. This property is referred 
to as ‘zero-inflation’ (Tu, 2002). Zero-inflation 
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Figure  1. Method for detecting local change in the abundance of a given species (modified after Pérez- 
Lapeña et al., 2010). The shaded boxes are further elaborated on in section “Investigating impact”.



may arise from an excess of true and false zeros 
(Martin et al., 2005). A true zero count occurs 
because, for example, the bird is absent at the 
survey location, due to poor habitat whereas a 
false zero count occurs because, even though the 
habitat may be suitable, one fails to record birds. 

Deterministic model
In the applied method, we separate spatial 
autocorrelation in Guillemot counts into two 
components, deterministic and stochastic. 
The deterministic component reflects spatial 
autocorrelation in bird counts at coarse scales 
and arises from birds responding to coarse-scale 
external environmental factors. The stochastic 
component reflects residual spatial correlation at 
local scales and may arise from birds responding 
to as yet unknown factors that have not been 
incorporated in the deterministic model. 

	 Coarse-scale environmental factors can 
influence the numbers of birds that are observed at 
different spatial locations (Suryan & Irons, 2001; 
Poot et al., 2004; Garthe, 1997; Hunt Jr, 1997). 
Water depth and the location of temperature 
fronts, for example, have been identified as 
having a correlation with the number of seabirds 
(Markones, 2007). The reasons for the appar
ent relationship are not known but it has been 
hypothesised that seabirds may select certain 

areas where physical conditions enhance the 
probability of finding prey (Wright & Begg, 
1997). 

	 We selected water depth as the explanatory 
variable in the constructed deterministic model 
given that datasets with time-varying environmental 
variables (such as sea surface temperature) were 
not available for the moment of the surveys. 
The deterministic model is constructed using 
Guillemot counts collected in the pre-construction 
period. 

	 As shown in the previous section, the 
Guillemot dataset is zero-inflated. In this study, 
we assume that this is due to an excess of only 
true zeros. Given this assumption, we expand the 
method proposed in Pérez-Lapeña et al., (2010) 
by using a two-part deterministic model. 

	 In a two-part model (Welsh et al., 1996; 
Mullahy, 1986) the first part is a binomial model. 
Using logistic regression (Agresti, 2002), one can 
determine the probability of observing at least one 
bird given the value of the explanatory variable 
(water depth). To construct this model, counts 
are divided into presence and absence, where 
presence observations are those having a count 
larger than zero and absence are those with a true 
zero count. The second part is a zero-truncated 
model. Using zero-truncated regression (Welsh et 
al., 1996), one can determine the mean bird count 

Figure 2. Observed Guillemot density (birds/
km2) during November 2003.

Figure  3. Sample-based histogram of collected 
Guillemot counts (square root).
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given that at least one bird is present. To construct 
this model, only positive counts are used because 
zero counts have already been taken into account 
in the binomial model. In addition, the expected 
number of birds predicted from this model is the 
mean bird count (using non-zero bird counts) in 
the area as the binomial model accounts for the 
probability of observing at least one bird given 
values of coarse-scale explanatory factors (water 
depth in this case). 

Logistic regression
Let p(xi) be the probability of observing at 
least one bird at observation location i given 
the explanatory variable x. The distribution for 
modelling the presence/absence data is:

	 (1)

The logit model (Agresti, 2002) fitted to the 
Guillemot counts converted to presence/absence 
for the month of November using water depth x as 
explanatory variable is: 

(2)

with both significant coefficients (p<0.001), and 
using water depth as predictor fits significantly 
better than a model with just an intercept. 

The probability p(xi) is estimated by:
 

(3)

Zero-truncated Poisson regression
Let λ be the mean of a Poisson distribution fitted to 
non-zero counts q. The distribution for modelling 
the zero-truncated observations is (Yee, 2008): 

							     
(4)

The Poisson model fitted to the non-zero Guillemot 
counts is:	

						      (5)

	 The estimated mean µ from the zero-
truncated Poisson model (Welsh et al., 1996) at 

locations with non-zero bird counts for the month 
of November is: 

		  (6)

Stochastic model
Once the deterministic model reflecting the 
spatial autocorrelation in bird counts due to coarse 
scale factors (water depth) has been constructed, 
we model residual spatial autocorrelation in 
bird counts at a local scale using a variogram. 
The variogram measures the degree of spatial 
autocorrelation between pairs of observations 
at different separation distances. It is a measure 
of variability: the semivariance increases as 
observations become more dissimilar (Gringarten 
& Deutsch, 2001). As this model requires the 
residual to be a stationary normal random 
variable, the residuals from the deterministic 
model are standardised. 

Standardised residuals from logistic regression
Let φi be a presence (φi = 1) or absence observation 
(φi = 0) at location i and p(xi) be the predicted 
probability of presence for a given water depth x 
calculated using logistic regression. 

	 Let p(xi)[1-p(xi)] be the variance of the 
binomial distribution (Agresti, 2002). 

We calculate the standardised residuals pl(i) as: 

							     
	 (7)

The empirical variogram of the standardised 
residuals is shown in Figure 4. 

	 From the computed empirical variogram, 
we conclude that the residuals are not spatially 
autocorrelated given that the semivariances at 
different distances fluctuate around the variance of 
the calculated standardised residuals. This value 
is called the sill and represents the variogram 
value that corresponds with zero autocorrelation 
(Gringarten & Deutsch, 2001). 
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	 Therefore, given the absence of spatial 
autocorrelation in the standardised residuals 
from the logistic model, the overall spatial 
autocorrelation in Guillemots absence/presence 
has been captured by the logistic model. 

Standardised residuals from Zero-truncated 
Poisson regression
Let obsi be the observed non-zero bird count 
at location i. Let µ be the predicted mean bird 
count calculated from zero-truncated Poisson 
regression. Let: 

							     
(8)

be the variance of the zero-truncated Poisson 
distribution (Yee, 2008). 

We calculate the standardised residuals pt(i) as: 

							     
(9)

	 In order to investigate residual spatial 
autocorrelation, we first transform the residuals 
so that these are normally distributed with mean 
µ=0 and variance σ2=1 using the normal score 
transform (Goovaerts & Jacquez, 2004). The 

reason for the transformation is two-fold. On 
the one hand, the distribution of the residuals is 
skewed with very large values at the right end of 
the tail (Figure 5). This would produce an erratic 
variogram (Gringarten & Deutsch, 2001), inflating 
the semivariance for pairs of observations con
taining such extreme values. On the other hand, 
the simulation procedure presented in Pérez-
Lapeña et al., (2010) simulates standardised 
residuals from a standard normal distribution 
(µ=0 and variance σ2=1). 

	 To investigate the effect of ordering in the 
data to perform the normal score transform, 
and to estimate the variogram, we apply the 
normal score transform to 1000 random orders 
in the residuals. We choose the 12° azimuth 
and 102° azimuth direction as having the higher 
and the lower degree of spatial autocorrelation 
respectively after constructing a rose diagram at 
12° azimuth intervals for each of the 1000 normal 
score transforms. The average rose diagram is 
shown in Figure 6.

 	 The rose diagram shows, for a given set 
of directions (azimuths), the approximated 
variogram ranges derived by linear interpolation 
between the values in the empirical variogram. 
The range of a variogram is the separation 
distance at which spatial correlation is no longer 
present (Gringarten & Deutsch, 2001). From the 

Figure 4. Empirical variogram of standardised 
residuals from logistic regression model (distance 
in m).

Figure 5. Histogram of standardised residuals 
from the zero-truncated Poisson model.
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rose diagram in Figure 6, we observe that, as the 
direction changes, the variogram range changes, 
drawing an elliptical shape. The minor and major 
axis of such an ellipse represents the approximated 
directions having the lower and the higher degree 
of spatial correlation. 

	 Given that the normal score residuals 
have a variance of 1, we expect that the sills 
in the 12° and 102° azimuths remain similar. 
This variogram behaviour is called geometric 
anisotropy (Gringarten & Deutsch, 2001). To fit 
the theoretical variogram, we find the anisotropy 
ratio between the ranges in both directions (Hengl, 
2009). The estimated anisotropy ratio is approxi
mately 0.5. 

	 The fitted directional variograms, for each of 
the 1000 normal score transformations in the 12° 
azimuth and 102° azimuth directions, are shown in 
Figure 7. The average variogram is superimposed 
in Figure 7 in black colour. 

	 The average-fitted exponential variograms 
have a partial sill = 0.5, nugget = 0.55, and the 
range in the 12° azimuth direction equals to 15.5 
km and in the 102° azimuth direction equals to 7.5 
km. 

Investigating impact
Once the spatial autocorrelation in bird counts has 
been modelled by i) the two-part deterministic 
model and ii) the directional variogram of the 
(normal score) standardised residuals, we have 
statistically described the pre-construction 
period. Using the two-part deterministic model, 
we re-define the pre-construction situation 
into the ‘reference situation’ given the actual 
environmental conditions and the survey effort 
and design of the post-construction survey. 

	 Using the two-part deterministic and 
stochastic models, we generate realisations of 
possible post-construction bird counts by means 
of geostatistical simulation. Simulated counts are 
used to construct the null distribution of the test 
statistic [μ;−wf - μ;−c]ref – [xwf - xc]post for hypothesis-
testing. 

Figure 6. Average rose diagram at intervals of 12° 
azimuth for the 1000 normal score transformations. 
The numbers refer to the approximated ranges (in 
km) where the semivariance reaches a sill of 1.

Figure 7. Fitted directional variograms (normal 
score) standardised residuals, for each of the 
1000 normal score transformations, in the 12° 
azimuth (left-hand panel) and 102° azimuth 
(right-hand panel) directions (distance in m). The 
semivariances are calculated at a lag of 2.3 km.
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	 The simulation procedure, with extended 
steps from Pérez-Lapeña et al., (2010) schematised 
in Figure 9 (steps 1-7), is summarised as follows: 

1.	 Using the logistic model, we predict the 
probability of observing at least one bird 
(p(xi) in equation 3) at post-construction 
survey locations given water-depth values 
at those locations. Using the zero-truncated 
Poisson model, we predict the mean 
number of birds (µ(i) in equation 6) at post-
construction survey locations. Multiplying 
µ(i) by p(xi) we obtain expected bird counts at 
post-construction survey locations and define 
the ‘reference’ situation. Using the expected 
bird counts, the indicator for the ‘reference’ 
situation [μ;−wf - μ;−c ]ref is calculated. 

2.	 Realisations of (normal score) standardised 
residuals of the zero-truncated Poisson 
model at post-construction survey locations 
are simulated. This is achieved by assigning 
standard normal random variables (µ=0 and 
variance σ2=1) to each spatial location with 
values in each realisation sampled from the 
standard normal distribution. 

3.	 The simulated (normal score) standardised 
residuals of the zero-truncated Poisson 
model are correlated satisfying the computed 
directional spatial autocorrelation (using the 
Cholesky decomposition). 

4.	 The correlated (normal score) residuals are 
backtransformed into correlated residuals 
(pt(i) in equation 9). 

5.	 Using the formula of the standardised 
residuals from the zero-truncated Poisson 
model, we obtain count values (obsi in 
equation 9). 

6.	 We simulate realisations of presence (value 
of 1) and absence (value of 0) at post-
construction survey locations with probability 
p(xi). This is achieved by generating random 
variables at each spatial location with values 
in each realisation sampled from a binomial 
distribution with probability p(xi). 

7.	 For each realisation r, we multiply at each 
survey location the count values obtained 

in step 5, by the presence/absence values 
obtained in step 6. 

8.	 For each realisation r, we calculate the 
difference between [μ;−wf - μ;−c]ref (from 
step 1) and [xwf - xc]post(r) where xwf and xc are 
the mean bird count in the wind farm and 
control area respectively (calculated from 
count values in step 7). With the calculated 
differences over all realisations, we derive 
the null distribution to be used in hypothesis-
testing. 

	 The distribution of the test statistic under 
H0 (null distribution) is shown in Figure 9. The 
null distribution represent possible values of 
the test statistic [μ;−wf - μ;−c]ref – [xwf - xc]post that 
could arise given the stochasticity in bird counts, 
when the wind farm does not displace birds. In 
order to test whether the difference between the 
‘reference situation’ and the post-construction 
survey is statistically significant, we calculate the 
test statistic using the post-construction data. The 
observed value of the test statistic is 0.75. With 
this value, we fail to reject H0 at a significance 
level of α=0.05, suggesting that there is no 
evidence that the wind farm did have a positive or 
negative effect on the number of Guillemots using 
the wind farm area. 

Discussion
Applying the method developed by Pérez-
Lapeña et al., (2010) in a real case showed that 
properties of the dataset at hand will dictate 
case-specific elaborations of the method, such as 
the formulation of an appropriate deterministic 
model, or case-specific transformation of the 
residual data to be appropriate for the stochastic 
modelling part. In the following we will discuss 
some implications of the presented elaborations. 

In the presented deterministic model, we have 
only accounted for static explanatory factors 
affecting the number of birds observed. The time-
varying location of water masses and temperature 
fronts, for example, are known to affect the 
collected counts (Markones, 2007). Given that 
impact is based on comparisons between the 
‘reference’ and post-construction situations and 
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that the spatial distribution of these explanatory 
factors may vary over time, an observed 
difference in bird counts between the wind farm 
and control areas may be erroneously attributed 
to the wind farm construction. Therefore, ideally, 
dynamic explanatory factors should have been 
incorporated in the deterministic model as well. 
In the current case, data on such dynamic factors 
were not available. Note, however, that if the 
spatial pattern of dynamic explanatory factors 
induce a consistent spatial correlation scale, these 
will be (partially) accounted for in the stochastic 
part of the model. 

	 The relationship between bird abundance and 
coarse-scale environmental factors (water depth 
in this case) has been modelled solely in the bino
mial model. This implies that the preference of 
Guillemots for certain water depths, hence certain 
locations in the study area, is only modelled 
as a probability of ‘bird presence’, not as ‘bird 
numbers’. To obtain actual estimates of the mean 

number of birds in the impact and control area, 
required for defining the ‘reference’ situation, 
the overall average number of birds present in 
the pre-construction period has been used. This 

Figure 8. Simulation procedure to obtain post construction realisations of Guillemots counts, expanded 
from Pérez-Lapeña et al., (2010). Numbers refer to the steps described in section ‘Investigating impact’.

Figure 9. Null distribution for the test statistic           
[μ;−wf - μ;−c]ref – [xwf - xc]post.
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essentially implies we assumed no year-to-year 
variability in the number of birds using the study 
area. When this is not a suitable assumption, 
another test statistic can be considered, e.g. the 
difference between the ratios of the mean number 
of birds in the wind farm area to the mean number 
of birds in the control area for the reference and 
the post-construction situation, respectively. 

	 By using a two-part model with a zero-
truncated Poisson distribution, we have assumed 
that the zeros in the dataset are true zeros. That is, 
a zero count occurs because the bird is not there 
due to, for example, poor habitat. False zeros 
will be present in reality as detection errors in 
collected data occur, e.g. a bird may be present but 
at the moment of the observation is under water 
catching prey. How the occurrence of false zeros 
affects the assessment and whether they should be 
included in the analysis procedure is the subject of 
further study. 

	 The Guillemot count data in the month of 
November consisted of data collected over a 
four-day period. In our analysis we considered 
the observations as a ‘snapshot’ of the situation 
in that month, and as such we neglected the 
variability in bird abundance patterns between 
and within days. As a result, to calculate the 
residual spatial autocorrelation in bird numbers 
using the variogram, we may have used pairs of 
observations that are close in space but that may 
be three days apart. A further spatio-temporal 
analysis should follow in order to justify the 
aggregation of data over the four-day period 
or otherwise, account for variability using, for 
example, different semivariograms for modelling 
the spatial correlation at different times during a 
day. 

	 Finally, the conclusion of impact is based on 
the result of a hypothesis test. Therefore, failure to 
reject H0 can be wrongly interpreted as acceptance 
of H0 (Ludwig et al., 2001), i.e. that an impact has 
not occurred. If the results of the study were to 
be used in an environmental monitoring context, 
a subsequent power analysis would have been 
required. In this manner, the suitability of the 
survey design to detect impacts possibly occurring 
could have been assessed.

Conclusion
This study investigated the applicability of the 
method developed in Pérez-Lapeña et al., (2010) 
in a real case, consisting of offshore wind farm 
impact on Guillemots. The method indeed 
provided a suitable framework for these type of 
impact studies and proved to be flexible enough 
to incorporate extensions at several steps of the 
analyses that had to be made to be suited for the 
case at hand. The method needed to be extended 
to include a two-part deterministic model to 
account for the zero-inflation present in the bird-
count dataset. Also, anisotropic variograms could 
be accommodated to account for the directional 
spatial correlation in the residuals. Finally, due 
to the skewness present in the residual data, with 
many low values but few very large values, a data 
transformation was applied to approach normality 
in the data, avoiding possible erratic behaviour in 
the constructed variograms.
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